Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review

Author(s): Evgenii Gusev* and Alexey Sarapultsev

Volume 30, Issue 3, 2024

Published on: 27 December, 2023

Page: [180 - 214] Pages: 35

DOI: 10.2174/0113816128285578231218102020

Price: $65

conference banner
Abstract

Introduction: This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels.

Objective: We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors.

Methods: This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation.

Results: The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue.

Conclusion: The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.

Keywords: G-protein-coupled receptors, serotonin 5-HT, neuroimmunoinflammation, pro-inflammatory cytokines, chronic stress, major depressive disorder, neuropsychiatric pathology, neuroimmunoinflammatory framework, NIIS model.

[1]
Tian F, Shen Q, Hu Y, et al. Association of stress-related disorders with subsequent risk of all-cause and cause-specific mortality: A population-based and sibling-controlled cohort study. Lancet Reg Health Eur 2022; 18: 100402.
[http://dx.doi.org/10.1016/j.lanepe.2022.100402] [PMID: 35663363]
[2]
Yang L, Zhao Y, Wang Y, et al. The effects of psychological stress on depression. Curr Neuropharmacol 2015; 13(4): 494-504.
[http://dx.doi.org/10.2174/1570159X1304150831150507] [PMID: 26412069]
[3]
Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002; 34(1): 13-25.
[http://dx.doi.org/10.1016/S0896-6273(02)00653-0] [PMID: 11931738]
[4]
Lou H, Liu X, Liu P. Mechanism and implications of pro-nature physical activity in antagonizing psychological stress: The key role of microbial-gut-brain axis. Front Psychol 2023; 14: 1143827.
[http://dx.doi.org/10.3389/fpsyg.2023.1143827] [PMID: 37560094]
[5]
Umriukhin PE, Ershova ES, Filev AD, et al. The psychoemotional stress-induced changes in the abundance of SatIII (1q12) and telomere repeats, but not ribosomal DNA, in human leukocytes. Genes (Basel) 2022; 13(2): 343.
[http://dx.doi.org/10.3390/genes13020343] [PMID: 35205387]
[6]
Sara JDS, Toya T, Ahmad A, et al. Mental stress and its effects on vascular health. Mayo Clin Proc 2022; 97(5): 951-90.
[http://dx.doi.org/10.1016/j.mayocp.2022.02.004] [PMID: 35512885]
[7]
Goldstein DS. Stress and the autonomic nervous system. Auton Neurosci 2023; 247: 103096.
[http://dx.doi.org/10.1016/j.autneu.2023.103096] [PMID: 37257231]
[8]
Kivimäki M, Bartolomucci A, Kawachi I. The multiple roles of life stress in metabolic disorders. Nat Rev Endocrinol 2023; 19(1): 10-27.
[http://dx.doi.org/10.1038/s41574-022-00746-8] [PMID: 36224493]
[9]
Schneider KM, Blank N, Alvarez Y, et al. The enteric nervous system relays psychological stress to intestinal inflammation. Cell 2023; 186(13): 2823-2838.e20.
[http://dx.doi.org/10.1016/j.cell.2023.05.001] [PMID: 37236193]
[10]
Mishra R, Pandey P, Khan F. Unravelling the influence of nutrition and mental stress on immune response. Endocr Metab Immune Disord Drug Targets 2023; 23(4): 423-7.
[http://dx.doi.org/10.2174/1871530322666220928143601] [PMID: 36173043]
[11]
Sonino N, Fava GA, Lucente M, Guidi J. Allostatic load and endocrine disorders. Psychother Psychosom 2023; 92(3): 162-9.
[http://dx.doi.org/10.1159/000530691] [PMID: 37253338]
[12]
Song H, Sieurin J, Wirdefeldt K, et al. Association of stress-related disorders with subsequent neurodegenerative diseases. JAMA Neurol 2020; 77(6): 700-9.
[http://dx.doi.org/10.1001/jamaneurol.2020.0117] [PMID: 32150226]
[13]
Obuobi-Donkor G, Nkire N, Agyapong VIO. Prevalence of major depressive disorder and correlates of thoughts of death, suicidal behaviour, and death by suicide in the geriatric population-a general review of literature. Behav Sci 2021; 11(11): 142.
[http://dx.doi.org/10.3390/bs11110142] [PMID: 34821603]
[14]
Levin R, Nielsen TA. Disturbed dreaming, posttraumatic stress disorder, and affect distress: A review and neurocognitive model. Psychol Bull 2007; 133(3): 482-528.
[http://dx.doi.org/10.1037/0033-2909.133.3.482] [PMID: 17469988]
[15]
Marchand A, Drapeau A, Beaulieu-Prévost D. Psychological distress in Canada: The role of employment and reasons of non-employment. Int J Soc Psychiatry 2012; 58(6): 596-604.
[http://dx.doi.org/10.1177/0020764011418404] [PMID: 21873292]
[16]
Delassalle N, Cavaciuti M. Psychological distress and COVID-19. Dimens Crit Care Nurs 2023; 42(2): 53-62.
[http://dx.doi.org/10.1097/DCC.0000000000000565] [PMID: 36720029]
[17]
Troubat R, Barone P, Leman S, et al. Neuroinflammation and depression: A review. Eur J Neurosci 2021; 53(1): 151-71.
[http://dx.doi.org/10.1111/ejn.14720] [PMID: 32150310]
[18]
Pandya M, Altinay M, Malone DA Jr, Anand A. Where in the brain is depression? Curr Psychiatry Rep 2012; 14(6): 634-42.
[http://dx.doi.org/10.1007/s11920-012-0322-7] [PMID: 23055003]
[19]
Zhang Y, Yang Y, Zhu L, et al. Volumetric deficit within the fronto-limbic-striatal circuit in first-episode drug naïve patients with major depression disorder. Front Psychiatry 2021; 11: 600583.
[http://dx.doi.org/10.3389/fpsyt.2020.600583] [PMID: 33551870]
[20]
Jiang Y, Zou D, Li Y, et al. Monoamine neurotransmitters control basic emotions and affect major depressive disorders. Pharmaceuticals 2022; 15(10): 1203.
[http://dx.doi.org/10.3390/ph15101203] [PMID: 36297314]
[21]
Pitsillou E, Bresnehan SM, Kagarakis EA, et al. The cellular and molecular basis of major depressive disorder: Towards a unified model for understanding clinical depression. Mol Biol Rep 2020; 47(1): 753-70.
[http://dx.doi.org/10.1007/s11033-019-05129-3] [PMID: 31612411]
[22]
Pelletier M, Siegel RM. Wishing away inflammation? New links between serotonin and TNF signaling. Mol Interv 2009; 9(6): 299-301.
[http://dx.doi.org/10.1124/mi.9.6.5] [PMID: 20048135]
[23]
Correia AS, Cardoso A, Vale N. Highlighting immune system and stress in major depressive disorder, Parkinson’s, and Alzheimer’s diseases, with a connection with serotonin. Int J Mol Sci 2021; 22(16): 8525.
[http://dx.doi.org/10.3390/ijms22168525] [PMID: 34445231]
[24]
Gusev EY, Zotova NV. Cellular stress and general pathological processes. Curr Pharm Des 2019; 25(3): 251-97.
[http://dx.doi.org/10.2174/1381612825666190319114641] [PMID: 31198111]
[25]
Gusev E, Zhuravleva Y. Inflammation: A new look at an old problem. Int J Mol Sci 2022; 23(9): 4596.
[http://dx.doi.org/10.3390/ijms23094596] [PMID: 35562986]
[26]
Kumar V, Yasmeen N, Chaudhary AA, et al. Specialized pro-resolving lipid mediators regulate inflammatory macrophages: A paradigm shift from antibiotics to immunotherapy for mitigating COVID-19 pandemic. Front Mol Biosci 2023; 10: 1104577.
[http://dx.doi.org/10.3389/fmolb.2023.1104577] [PMID: 36825200]
[27]
AlZahrani S, Shinwari Z, Gaafar A, Alaiya A, Al-Kahtani A. Anti-inflammatory effect of specialized proresolving lipid mediators on mesenchymal stem cells: An in vitro study. Cells 2022; 12(1): 122.
[http://dx.doi.org/10.3390/cells12010122] [PMID: 36611915]
[28]
Perretti M, Dalli J. Resolution pharmacology: Focus on pro-resolving annexin A1 and lipid mediators for therapeutic innovation in inflammation. Annu Rev Pharmacol Toxicol 2023; 63(1): 449-69.
[http://dx.doi.org/10.1146/annurev-pharmtox-051821-042743] [PMID: 36151051]
[29]
Robert J. Evolution of heat shock protein and immunity. Dev Comp Immunol 2003; 27(6-7): 449-64.
[http://dx.doi.org/10.1016/S0145-305X(02)00160-X] [PMID: 12697304]
[30]
Lanz-Mendoza H, Contreras-Garduño J. Innate immune memory in invertebrates: Concept and potential mechanisms. Dev Comp Immunol 2022; 127: 104285.
[http://dx.doi.org/10.1016/j.dci.2021.104285] [PMID: 34626688]
[31]
Rowley AF. The evolution of inflammatory mediators. Mediators Inflamm 1996; 5(1): 3-13.
[http://dx.doi.org/10.1155/S0962935196000014] [PMID: 18475690]
[32]
Jiravanichpaisal P, Söderhäll K, Söderhäll I. Inflammation in arthropods. Curr Pharm Des 2010; 16(38): 4166-74.
[http://dx.doi.org/10.2174/138161210794519165] [PMID: 21184661]
[33]
La Corte C, Baranzini N, Grimaldi A, Parisi MG. Invertebrate models in innate immunity and tissue remodeling research. Int J Mol Sci 2022; 23(12): 6843.
[http://dx.doi.org/10.3390/ijms23126843] [PMID: 35743284]
[34]
Gusev EY, Zhuravleva YA, Zotova NV. Correlation of the evolution of immunity and inflammation in vertebrates. Biol Bull Rev 2019; 9(4): 358-72.
[http://dx.doi.org/10.1134/S2079086419040029]
[35]
Montali RJ. Comparative pathology of inflammation in the higher vertebrates (reptiles, birds and mammals). J Comp Pathol 1988; 99(1): 1-26.
[http://dx.doi.org/10.1016/0021-9975(88)90101-6] [PMID: 3062051]
[36]
Zotova N, Zhuravleva Y, Chereshnev V, Gusev E. Acute and chronic systemic inflammation: Features and differences in the pathogenesis, and integral criteria for verification and differentiation. Int J Mol Sci 2023; 24(2): 1144.
[http://dx.doi.org/10.3390/ijms24021144] [PMID: 36674657]
[37]
Brazhnikov A, Zotova N, Solomatina L, Sarapultsev A, Spirin A, Gusev E. Shock-associated systemic inflammation in amniotic fluid embolism, complicated by clinical death. Pathophysiology 2023; 30(1): 48-62.
[http://dx.doi.org/10.3390/pathophysiology30010006] [PMID: 36976733]
[38]
Gusev E, Sarapultsev A, Solomatina L, Chereshnev V. SARS- CoV-2-specific immune response and the pathogenesis of COVID-19. Int J Mol Sci 2022; 23(3): 1716.
[http://dx.doi.org/10.3390/ijms23031716] [PMID: 35163638]
[39]
Qu L, Matz AJ, Karlinsey K, Cao Z, Vella AT, Zhou B. Macrophages at the crossroad of meta-inflammation and inflammaging. Genes 2022; 13(11): 2074.
[http://dx.doi.org/10.3390/genes13112074] [PMID: 36360310]
[40]
Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care 2013; 16(1): 14-20.
[http://dx.doi.org/10.1097/MCO.0b013e32835ada13] [PMID: 23132168]
[41]
Songkiatisak P, Rahman SMT, Aqdas M, Sung MH. NF-κB, a culprit of both inflamm-ageing and declining immunity? Immun Ageing 2022; 19(1): 20.
[http://dx.doi.org/10.1186/s12979-022-00277-w] [PMID: 35581646]
[42]
Johnston EK, Abbott RD. Adipose tissue paracrine-, autocrine-, and matrix-dependent signaling during the development and progression of obesity. Cells 2023; 12(3): 407.
[http://dx.doi.org/10.3390/cells12030407] [PMID: 36766750]
[43]
Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech 2009; 2(5-6): 231-7.
[http://dx.doi.org/10.1242/dmm.001180] [PMID: 19407331]
[44]
Furuta K, Tang X, Islam S, Tapia A, Chen ZB, Ibrahim SH. Endotheliopathy in the metabolic syndrome: Mechanisms and clinical implications. Pharmacol Ther 2023; 244: 108372.
[http://dx.doi.org/10.1016/j.pharmthera.2023.108372] [PMID: 36894027]
[45]
Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: Current concepts and future perspectives. Eur Cardiol 2019; 14(1): 50-9.
[http://dx.doi.org/10.15420/ecr.2018.33.1] [PMID: 31131037]
[46]
Tao Q, Ang TFA, DeCarli C, et al. Association of chronic low- grade inflammation with risk of alzheimer disease in ApoE4 carriers. JAMA Netw Open 2018; 1(6): e183597.
[http://dx.doi.org/10.1001/jamanetworkopen.2018.3597] [PMID: 30646251]
[47]
Walker KA. Inflammation and neurodegeneration: Chronicity matters. Aging 2018; 11(1): 3-4.
[http://dx.doi.org/10.18632/aging.101704] [PMID: 30554190]
[48]
Kaur G, Singh NK. The role of inflammation in retinal neurodegeneration and degenerative diseases. Int J Mol Sci 2021; 23(1): 386.
[http://dx.doi.org/10.3390/ijms23010386] [PMID: 35008812]
[49]
Xie J, Gorlé N, Vandendriessche C, et al. Low-grade peripheral inflammation affects brain pathology in the AppNL-G-Fmouse model of Alzheimer’s disease. Acta Neuropathol Commun 2021; 9(1): 163.
[http://dx.doi.org/10.1186/s40478-021-01253-z] [PMID: 34620254]
[50]
Gusev E, Solomatina L, Zhuravleva Y, Sarapultsev A. The pathogenesis of end-stage renal disease from the standpoint of the theory of general pathological processes of inflammation. Int J Mol Sci 2021; 22(21): 11453.
[http://dx.doi.org/10.3390/ijms222111453] [PMID: 34768884]
[51]
Gusev E, Sarapultsev A. Atherosclerosis and inflammation: Insights from the theory of general pathological processes. Int J Mol Sci 2023; 24(9): 7910.
[http://dx.doi.org/10.3390/ijms24097910] [PMID: 37175617]
[52]
Lan T, Chen L, Wei X. Inflammatory cytokines in cancer: Comprehensive understanding and clinical progress in gene therapy. Cells 2021; 10(1): 100.
[http://dx.doi.org/10.3390/cells10010100] [PMID: 33429846]
[53]
Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 2016; 100(3): 481-9.
[http://dx.doi.org/10.1189/jlb.3RU0316-144R] [PMID: 27354413]
[54]
Robertson SA, Chin PY, Femia JG, Brown HM. Embryotoxic cytokines-Potential roles in embryo loss and fetal programming. J Reprod Immunol 2018; 125: 80-8.
[http://dx.doi.org/10.1016/j.jri.2017.12.003] [PMID: 29306096]
[55]
Winsor N, Krustev C, Bruce J, Philpott DJ, Girardin SE. Canonical and noncanonical inflammasomes in intestinal epithelial cells. Cell Microbiol 2019; 21(11): e13079.
[http://dx.doi.org/10.1111/cmi.13079] [PMID: 31265745]
[56]
Pomella S, Cassandri M, Antoniani F, et al. Heat shock proteins: Important helpers for the development, maintenance and regeneration of skeletal muscles. Muscles 2023; 2(2): 187-203.
[http://dx.doi.org/10.3390/muscles2020014]
[57]
Docherty S, Harley R, McAuley JJ, et al. The effect of exercise on cytokines: Implications for musculoskeletal health: A narrative review. BMC Sports Sci Med Rehabil 2022; 14(1): 5.
[http://dx.doi.org/10.1186/s13102-022-00397-2] [PMID: 34991697]
[58]
Selye H. A syndrome produced by diverse nocuous agents. 1936. J Neuropsychiatry Clin Neurosci 1998; 10(2): 230a-1.
[http://dx.doi.org/10.1176/jnp.10.2.230a] [PMID: 9722327]
[59]
Selye H. Stress and the general adaptation syndrome. BMJ 1950; 1(4667): 1383-92.
[http://dx.doi.org/10.1136/bmj.1.4667.1383] [PMID: 15426759]
[60]
Szabo S, Tache Y, Somogyi A. The legacy of Hans Selye and the origins of stress research: A retrospective 75 years after his landmark brief "letter" to the editor of nature. Stress 2012; 15(5): 472-8.
[61]
Tanguy G, Sagui E, Fabien Z, Martin-Krumm C, Canini F, Trousselard M. Anxiety and psycho-physiological stress response to competitive sport exercise. Front Psychol 2018; 9: 1469.
[http://dx.doi.org/10.3389/fpsyg.2018.01469] [PMID: 30210383]
[62]
Selye H. The part of inflammation in the local adaptation syndrome. Rev Can Biol 1953; 12(2): 155-75.
[PMID: 13121623]
[63]
Szabo S. The post-COVID stress syndrome: From the three-stage stress response of Hans Selye to COVID-19. Inflammopharmacology 2023; 1-8.
[http://dx.doi.org/10.1007/s10787-023-01179-z] [PMID: 37184668]
[64]
Balk RA. Systemic inflammatory response syndrome (SIRS). Virulence 2014; 5(1): 20-6.
[http://dx.doi.org/10.4161/viru.27135] [PMID: 24280933]
[65]
Kellner R. Psychosomatic syndromes, somatization and somatoform disorders. Psychother Psychosom 1994; 61(1-2): 4-24.
[http://dx.doi.org/10.1159/000288868] [PMID: 8121976]
[66]
Capitanio JP. Personality and disease. Brain Behav Immun 2008; 22(5): 647-50.
[http://dx.doi.org/10.1016/j.bbi.2008.02.002] [PMID: 18375097]
[67]
Deter HC. Bio-psycho-soziale oder psychotherapeutische Medizin – zur aktuellen Entwicklung der Psychosomatik in der klinischen Praxis. Wien Med Wochenschr 2018; 168(3-4): 52-61.
[http://dx.doi.org/10.1007/s10354-017-0582-2] [PMID: 28744775]
[68]
Jiang C, Jiang W, Yue Y, et al. The trends of psychosomatic symptoms and perceived stress among healthcare workers during the COVID-19 pandemic in China: Four cross-sectional nationwide surveys, 2020-2023. Psychiatry Res 2023; 326: 115301.
[http://dx.doi.org/10.1016/j.psychres.2023.115301] [PMID: 37390600]
[69]
Altamura M, D’Andrea G, Angelini E, et al. Psychosomatic syndromes are associated with IL-6 pro-inflammatory cytokine in heart failure patients. PLoS One 2022; 17(3): e0265282.
[http://dx.doi.org/10.1371/journal.pone.0265282] [PMID: 35271674]
[70]
Hazeltine DB, Polokowski AR, Reigada LC. Inflammatory cytokines, but not dietary patterns, are related to somatic symptoms of depression in a sample of women. Front Psychiatry 2022; 13: 822466.
[http://dx.doi.org/10.3389/fpsyt.2022.822466] [PMID: 35651828]
[71]
Lu S, Wei F, Li G. The evolution of the concept of stress and the framework of the stress system. Cell Stress 2021; 5(6): 76-85.
[http://dx.doi.org/10.15698/cst2021.06.250] [PMID: 34124582]
[72]
Qi G, Mi Y, Yin F. Cellular specificity and inter-cellular coordination in the brain bioenergetic system: Implications for aging and neurodegeneration. Front Physiol 2020; 10: 1531.
[http://dx.doi.org/10.3389/fphys.2019.01531] [PMID: 31969828]
[73]
Jain V, Langham MC, Wehrli FW. MRI estimation of global brain oxygen consumption rate. J Cereb Blood Flow Metab 2010; 30(9): 1598-607.
[http://dx.doi.org/10.1038/jcbfm.2010.49] [PMID: 20407465]
[74]
Jelinek M, Jurajda M, Duris K. Oxidative stress in the brain: Basic concepts and treatment strategies in stroke. Antioxidants 2021; 10(12): 1886.
[http://dx.doi.org/10.3390/antiox10121886] [PMID: 34942989]
[75]
Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 2018; 15: 490-503.
[http://dx.doi.org/10.1016/j.redox.2018.01.008] [PMID: 29413961]
[76]
Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid Med Cell Longev 2019; 2019: 1-18.
[http://dx.doi.org/10.1155/2019/2105607] [PMID: 31210837]
[77]
Armada-Moreira A, Gomes JI, Pina CC, et al. Going the extra (Synaptic) mile: Excitotoxicity as the road toward neurodegenerative diseases. Front Cell Neurosci 2020; 14: 90.
[http://dx.doi.org/10.3389/fncel.2020.00090] [PMID: 32390802]
[78]
Wang S, Bian L, Yin Y, Guo J. Targeting NMDA receptors in emotional disorders: Their role in neuroprotection. Brain Sci 2022; 12(10): 1329.
[http://dx.doi.org/10.3390/brainsci12101329] [PMID: 36291261]
[79]
Wolosker H, Balu DT. d-Serine as the gatekeeper of NMDA receptor activity: Implications for the pharmacologic management of anxiety disorders. Transl Psychiatry 2020; 10(1): 184.
[http://dx.doi.org/10.1038/s41398-020-00870-x] [PMID: 32518273]
[80]
Ghasemi M, Phillips C, Fahimi A, McNerney MW, Salehi A. Mechanisms of action and clinical efficacy of NMDA receptor modulators in mood disorders. Neurosci Biobehav Rev 2017; 80: 555-72.
[http://dx.doi.org/10.1016/j.neubiorev.2017.07.002] [PMID: 28711661]
[81]
Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system. Int J Mol Sci 2022; 23(11): 5954.
[http://dx.doi.org/10.3390/ijms23115954] [PMID: 35682631]
[82]
Northrop NA, Smith LP, Yamamoto BK, Eyerman DJ. Regulation of glutamate release by α7 nicotinic receptors: Differential role in methamphetamine-induced damage to dopaminergic and serotonergic terminals. J Pharmacol Exp Ther 2011; 336(3): 900-7.
[http://dx.doi.org/10.1124/jpet.110.177287] [PMID: 21159748]
[83]
Liu H, Zhang X, Shi P, et al. α7 Nicotinic acetylcholine receptor: A key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflamm 2023; 20(1): 84.
[http://dx.doi.org/10.1186/s12974-023-02768-z] [PMID: 36973813]
[84]
Lester DB, Rogers TD, Blaha CD. Acetylcholine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2010; 16(3): 137-62.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00142.x] [PMID: 20370804]
[85]
Sears SMS, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med 2021; 246(9): 1069-83.
[http://dx.doi.org/10.1177/1535370221989263] [PMID: 33554649]
[86]
Petroff OAC. GABA and glutamate in the human brain. Neuroscientist 2002; 8(6): 562-73.
[http://dx.doi.org/10.1177/1073858402238515] [PMID: 12467378]
[87]
Czapski GA, Strosznajder JB. Glutamate and GABA in microglia-neuron cross-talk in Alzheimer’s disease. Int J Mol Sci 2021; 22(21): 11677.
[http://dx.doi.org/10.3390/ijms222111677] [PMID: 34769106]
[88]
Lundgaard I, Li B, Xie L, et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun 2015; 6(1): 6807.
[http://dx.doi.org/10.1038/ncomms7807] [PMID: 25904018]
[89]
Knottnerus SJG, Bleeker JC, Wüst RCI, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 2018; 19(1): 93-106.
[http://dx.doi.org/10.1007/s11154-018-9448-1] [PMID: 29926323]
[90]
Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants 2023; 12(2): 517.
[http://dx.doi.org/10.3390/antiox12020517] [PMID: 36830075]
[91]
Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging 2021; 107: 86-95.
[http://dx.doi.org/10.1016/j.neurobiolaging.2021.07.014] [PMID: 34416493]
[92]
Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther 2017; 360(1): 201-5.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[93]
Fedoce AG, Ferreira F, Bota RG, Bonet-Costa V, Sun PY, Davies KJA. The role of oxidative stress in anxiety disorder: Cause or consequence? Free Radic Res 2018; 52(7): 737-50.
[http://dx.doi.org/10.1080/10715762.2018.1475733] [PMID: 29742940]
[94]
Correia AS, Cardoso A, Vale N. Oxidative stress in depression: The link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants 2023; 12(2): 470.
[http://dx.doi.org/10.3390/antiox12020470] [PMID: 36830028]
[95]
Fan X, Rudensky AY. Hallmarks of tissue-resident lymphocytes. Cell 2016; 164(6): 1198-211.
[http://dx.doi.org/10.1016/j.cell.2016.02.048] [PMID: 26967286]
[96]
Hooper CS. Cell turnover in epithelial populations. J Histochem Cytochem 1956; 4(6): 531-40.
[http://dx.doi.org/10.1177/4.6.531] [PMID: 13385475]
[97]
Nagappan PG, Chen H, Wang DY. Neuroregeneration and plasticity: A review of the physiological mechanisms for achieving functional recovery postinjury. Mil Med Res 2020; 7(1): 30.
[http://dx.doi.org/10.1186/s40779-020-00259-3] [PMID: 32527334]
[98]
Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci 2006; 7(4): 278-94.
[http://dx.doi.org/10.1038/nrn1886] [PMID: 16552414]
[99]
Fielder E, von Zglinicki T, Jurk D. The DNA damage response in neurons: Die by apoptosis or survive in a senescence-like state? J Alzheimers Dis 2017; 60(s1): S107-31.
[http://dx.doi.org/10.3233/JAD-161221] [PMID: 28436392]
[100]
Stagni V, Ferri A, Cirotti C, Barilà D. ATM kinase-dependent regulation of autophagy: A key player in senescence? Front Cell Dev Biol 2021; 8: 599048.
[http://dx.doi.org/10.3389/fcell.2020.599048] [PMID: 33490066]
[101]
Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 2019; 11(6): e10248.
[http://dx.doi.org/10.15252/emmm.201810248] [PMID: 31015277]
[102]
Poh L, Sim WL, Jo DG, et al. The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener 2022; 17(1): 4.
[http://dx.doi.org/10.1186/s13024-021-00506-8] [PMID: 35000611]
[103]
Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med 2013; 19(8): 983-97.
[http://dx.doi.org/10.1038/nm.3232] [PMID: 23921753]
[104]
Park H, Kang JH, Lee S. Autophagy in neurodegenerative diseases: A hunter for aggregates. Int J Mol Sci 2020; 21(9): 3369.
[http://dx.doi.org/10.3390/ijms21093369] [PMID: 32397599]
[105]
Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: Function and dysfunction. Cell Mol Life Sci 2014; 71(15): 2787-814.
[http://dx.doi.org/10.1007/s00018-013-1550-7] [PMID: 24442513]
[106]
Groenendyk J, Agellon LB, Michalak M. Calcium signaling and endoplasmic reticulum stress. Int Rev Cell Mol Biol 2021; 363: 1-20.
[http://dx.doi.org/10.1016/bs.ircmb.2021.03.003] [PMID: 34392927]
[107]
Swulius MT, Waxham MN. Ca(2+)/calmodulin-dependent protein kinases. Cell Mol Life Sci 2008; 65(17): 2637-57.
[http://dx.doi.org/10.1007/s00018-008-8086-2] [PMID: 18463790]
[108]
Wang YT, Li V. Molecular mechanisms of NMDA receptor-mediated excitotoxicity: Implications for neuroprotective therapeutics for stroke. Neural Regen Res 2016; 11(11): 1752-3.
[http://dx.doi.org/10.4103/1673-5374.194713] [PMID: 28123410]
[109]
Xu LZ, Li BQ, Li FY, et al. NMDA receptor GluN2B subunit is involved in excitotoxicity mediated by death-associated protein kinase 1 in Alzheimer’s disease. J Alzheimers Dis 2023; 91(2): 877-93.
[http://dx.doi.org/10.3233/JAD-220747] [PMID: 36502323]
[110]
Gutiérrez A, Contreras C, Sánchez A, Prieto D. Role of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC) in calcium signaling pathways linked to the α 1-adrenoceptor in resistance arteries. Front Physiol 2019; 10: 55.
[111]
Daub H, Ulrich Weiss F, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 1996; 379(6565): 557-60.
[http://dx.doi.org/10.1038/379557a0] [PMID: 8596637]
[112]
Kilpatrick LE, Hill SJ. Transactivation of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs): Recent insights using luminescence and fluorescence technologies. Curr Opin Endocr Metab Res 2021; 16: 102-12.
[http://dx.doi.org/10.1016/j.coemr.2020.10.003] [PMID: 33748531]
[113]
Vigneswara V, Kundi S, Ahmed Z. Receptor tyrosine kinases: molecular switches regulating CNS axon regeneration. J Signal Transduct 2012; 2012: 1-14.
[http://dx.doi.org/10.1155/2012/361721] [PMID: 22848811]
[114]
Sil S, Periyasamy P, Thangaraj A, Chivero ET, Buch S. PDGF/PDGFR axis in the neural systems. Mol Aspects Med 2018; 62: 63-74.
[http://dx.doi.org/10.1016/j.mam.2018.01.006] [PMID: 29409855]
[115]
Klimaschewski L, Claus P. Fibroblast growth factor signalling in the diseased nervous system. Mol Neurobiol 2021; 58(8): 3884-902.
[http://dx.doi.org/10.1007/s12035-021-02367-0] [PMID: 33860438]
[116]
Ardizzone A, Scuderi SA, Giuffrida D, et al. Role of Fibroblast Growth Factors Receptors (FGFRs) in brain tumors, focus on astrocytoma and glioblastoma. Cancers 2020; 12(12): 3825.
[http://dx.doi.org/10.3390/cancers12123825] [PMID: 33352931]
[117]
Stoleru B, Popescu AM, Tache DE, et al. Tropomyosin-receptor-kinases signaling in the nervous system. Maedica (Buchar) 2013; 8(1): 43-8.
[PMID: 24023598]
[118]
Ledonne A, Mercuri NB. On the Modulatory roles of neuregulins/erbb signaling on synaptic plasticity. Int J Mol Sci 2019; 21(1): 275.
[http://dx.doi.org/10.3390/ijms21010275] [PMID: 31906113]
[119]
Romano R, Bucci C. Role of EGFR in the nervous system. Cells 2020; 9(8): 1887.
[http://dx.doi.org/10.3390/cells9081887] [PMID: 32806510]
[120]
Werner H, LeRoith D. Insulin and insulin-like growth factor receptors in the brain: Physiological and pathological aspects. Eur Neuropsychopharmacol 2014; 24(12): 1947-53.
[http://dx.doi.org/10.1016/j.euroneuro.2014.01.020] [PMID: 24529663]
[121]
Boczek T, Mackiewicz J, Sobolczyk M, et al. The role of G Protein-Coupled Receptors (GPCRs) and calcium signaling in schizophrenia. focus on gpcrs activated by neurotransmitters and chemokines. Cells 2021; 10(5): 1228.
[http://dx.doi.org/10.3390/cells10051228] [PMID: 34067760]
[122]
Betke KM, Wells CA, Hamm HE. GPCR mediated regulation of synaptic transmission. Prog Neurobiol 2012; 96(3): 304-21.
[http://dx.doi.org/10.1016/j.pneurobio.2012.01.009] [PMID: 22307060]
[123]
Yu S, Sun L, Jiao Y, Lee LTO. The role of G protein-coupled receptor kinases in cancer. Int J Biol Sci 2018; 14(2): 189-203.
[http://dx.doi.org/10.7150/ijbs.22896] [PMID: 29483837]
[124]
Alexander SP, Christopoulos A, Davenport AP, et al. The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br J Pharmacol 2017/18; 174(S1): S17-S129.
[125]
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: Migraine and beyond. Physiol Rev 2023; 103(2): 1565-644.
[http://dx.doi.org/10.1152/physrev.00059.2021] [PMID: 36454715]
[126]
Mobbs JI, Belousoff MJ, Harikumar KG, et al. Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity. PLoS Biol 2021; 19(6): e3001295.
[http://dx.doi.org/10.1371/journal.pbio.3001295] [PMID: 34086670]
[127]
Inoue A, Raimondi F, Kadji FMN, et al. Illuminating G-protein- coupling selectivity of GPCRs. Cell 2019; 177(7): 1933-1947.e25.
[http://dx.doi.org/10.1016/j.cell.2019.04.044] [PMID: 31160049]
[128]
de Oliveira PG, Ramos MLS, Amaro AJ, Dias RA, Vieira SI. Gi/o-protein coupled receptors in the aging brain. Front Aging Neurosci 2019; 11: 89.
[http://dx.doi.org/10.3389/fnagi.2019.00089] [PMID: 31105551]
[129]
Mohan ML, Vasudevan NT, Naga Prasad SV. Proinflammatory cytokines mediate GPCR dysfunction. J Cardiovasc Pharmacol 2017; 70(2): 61-73.
[http://dx.doi.org/10.1097/FJC.0000000000000456] [PMID: 28763371]
[130]
Fan X, Jin WY, Wang YT. The NMDA receptor complex: A multifunctional machine at the glutamatergic synapse. Front Cell Neurosci 2014; 8: 160.
[http://dx.doi.org/10.3389/fncel.2014.00160] [PMID: 24959120]
[131]
Sternweis PC, Smrcka AV. G proteins in signal transduction: The regulation of phospholipase C. Ciba Found Symp 1993; 176: 96-106.
[PMID: 8299429]
[132]
Fisher IJ, Jenkins ML, Tall GG, Burke JE, Smrcka AV. Activation of phospholipase C β by Gβγ and Gαq involves C-terminal rearrangement to release autoinhibition. Structure 2020; 28(7): 810-819.e5.
[http://dx.doi.org/10.1016/j.str.2020.04.012] [PMID: 32402248]
[133]
Jackson L, Qifti A, Pearce KM, Scarlata S. Regulation of bifunctional proteins in cells: Lessons from the phospholipase Cβ/G protein pathway. Protein Sci 2020; 29(6): 1258-68.
[http://dx.doi.org/10.1002/pro.3809] [PMID: 31867822]
[134]
Jiang M, Bajpayee NS. Molecular mechanisms of go signaling. Neurosignals 2009; 17(1): 23-41.
[http://dx.doi.org/10.1159/000186688] [PMID: 19212138]
[135]
Bartlett PJ, Metzger W, Gaspers LD, Thomas AP. Differential regulation of multiple steps in inositol 1,4,5-trisphosphate signaling by protein kinase C shapes hormone-stimulated Ca2+ oscillations. J Biol Chem 2015; 290(30): 18519-33.
[http://dx.doi.org/10.1074/jbc.M115.657767] [PMID: 26078455]
[136]
Barnett ME, Madgwick DK, Takemoto DJ. Protein kinase C as a stress sensor. Cell Signal 2007; 19(9): 1820-9.
[http://dx.doi.org/10.1016/j.cellsig.2007.05.014] [PMID: 17629453]
[137]
Steinberg SF. Mechanisms for redox-regulation of protein kinase C. Front Pharmacol 2015; 6: 128.
[http://dx.doi.org/10.3389/fphar.2015.00128] [PMID: 26157389]
[138]
Redig AJ, Platanias LC. The protein kinase C (PKC) family of proteins in cytokine signaling in hematopoiesis. J Interferon Cytokine Res 2007; 27(8): 623-36.
[http://dx.doi.org/10.1089/jir.2007.0007] [PMID: 17784814]
[139]
Hansson A, Serhan CN, Haeggström J, Ingelman-Sundberg M, Samuelsson B, Morris J. Activation of protein kinase C by lipoxin A and other eicosanoids. Intracellular action of oxygenation products of arachidonic acid. Biochem Biophys Res Commun 1986; 134(3): 1215-22.
[http://dx.doi.org/10.1016/0006-291X(86)90380-3] [PMID: 2418836]
[140]
Salerno F, Paolini NA, Stark R, von Lindern M, Wolkers MC. Distinct PKC-mediated posttranscriptional events set cytokine production kinetics in CD8+ T cells. Proc Natl Acad Sci 2017; 114(36): 9677-82.
[http://dx.doi.org/10.1073/pnas.1704227114] [PMID: 28835535]
[141]
Zhang L, Wei X, Wang Z, et al. NF-κB activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Rep 2023; 42(3): 112185.
[http://dx.doi.org/10.1016/j.celrep.2023.112185] [PMID: 36857187]
[142]
Dhar V, Gandhi S, Sakharwade SC, Chawla A, Mukhopadhaya A. Vibrio cholerae porin OmpU activates dendritic cells via TLR2 and the NLRP3 inflammasome. Infect Immun 2023; 91(2): e00332-22.
[http://dx.doi.org/10.1128/iai.00332-22] [PMID: 36794951]
[143]
Ghaiad HR, Ali SO, Al-Mokaddem AK, Abdelmonem M. Regulation of PKC/TLR-4/NF-kB signaling by sulbutiamine improves diabetic nephropathy in rats. Chem Biol Interact 2023; 381: 110544.
[http://dx.doi.org/10.1016/j.cbi.2023.110544] [PMID: 37224990]
[144]
Kusampudi S, Meganathan V, Keshava S, Boggaram V. Purification and characterization of a serine protease from organic dust and elucidation of its inductive effects on lung inflammatory mediators. Am J Physiol Lung Cell Mol Physiol 2023; 325(1): L74-90.
[http://dx.doi.org/10.1152/ajplung.00309.2022] [PMID: 37253661]
[145]
Perveen K, Quach A, Stark MJ, et al. PKCζ activation promotes maturation of cord blood T cells towards a Th1 IFN-γ propensity. Immunology 2023; 170(3): 359-73.
[http://dx.doi.org/10.1111/imm.13674] [PMID: 37340593]
[146]
Underhill SM, Amara SG. Acetylcholine receptor stimulation activates protein kinase C mediated internalization of the dopamine transporter. Front Cell Neurosci 2021; 15: 662216.
[http://dx.doi.org/10.3389/fncel.2021.662216] [PMID: 33897375]
[147]
Blank T, Zwart R, Nijholt I, Spiess J. Serotonin 5-HT2 receptor activation potentiatesN-methyl-D-aspartate receptor-mediated ion currents by a protein kinase C-dependent mechanism. J Neurosci Res 1996; 45(2): 153-60.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19960715)45:2<153::AID-JNR7>3.0.CO;2-9] [PMID: 8843032]
[148]
Liu Z, Bunney EB, Appel SB, Brodie MS. Serotonin reduces the hyperpolarization-activated current (Ih) in ventral tegmental area dopamine neurons: Involvement of 5-HT2 receptors and protein kinase C. J Neurophysiol 2003; 90(5): 3201-12.
[http://dx.doi.org/10.1152/jn.00281.2003] [PMID: 12890794]
[149]
Mi X, Ding WG, Toyoda F, Kojima A, Omatsu-Kanbe M, Matsuura H. Selective activation of adrenoceptors potentiates IKs current in pulmonary vein cardiomyocytes through the protein kinase A and C signaling pathways. J Mol Cell Cardiol 2021; 161: 86-97.
[http://dx.doi.org/10.1016/j.yjmcc.2021.08.004] [PMID: 34375616]
[150]
Di Marzo V, Vial D, Sokoloff P, Schwartz JC, Piomelli D. Selection of alternative G-mediated signaling pathways at the dopamine D2 receptor by protein kinase C. J Neurosci 1993; 13(11): 4846-53.
[http://dx.doi.org/10.1523/JNEUROSCI.13-11-04846.1993] [PMID: 7693893]
[151]
Matowe WC, Ananthalakshmi KVV, Kombian SB. Role of protein kinase C in substance P-induced synaptic depression in the nucleus accumbens in vitro. Med Princ Pract 2007; 16(2): 90-9.
[http://dx.doi.org/10.1159/000098359] [PMID: 17303942]
[152]
Vaughan PFT, Walker JH, Peers C. The regulation of neurotransmitter secretion by protein kinase C. Mol Neurobiol 1998; 18(2): 125-55.
[http://dx.doi.org/10.1007/BF02914269] [PMID: 10065877]
[153]
Schroeder GE, Kotsonis P, Musgrave IF, Majewski H. Protein kinase C involvement in maintenance and modulation of noradrenaline release in the mouse brain cortex. Br J Pharmacol 1995; 116(6): 2757-63.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb17238.x] [PMID: 8591001]
[154]
Obis T, Besalduch N, Hurtado E, et al. The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: Location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release. Mol Brain 2015; 8(1): 8.
[http://dx.doi.org/10.1186/s13041-015-0098-x] [PMID: 25761522]
[155]
Weiss S, Dascal N. Molecular aspects of modulation of L-type calcium channels by protein kinase C. Curr Mol Pharmacol 2015; 8(1): 43-53.
[http://dx.doi.org/10.2174/1874467208666150507094733] [PMID: 25966700]
[156]
Gada KD, Logothetis DE. PKC regulation of ion channels: The involvement of PIP2. J Biol Chem 2022; 298(6): 102035.
[http://dx.doi.org/10.1016/j.jbc.2022.102035] [PMID: 35588786]
[157]
Robilotto GL, Mohapatra DP, Shepherd AJ, Mickle AD. Role of Src kinase in regulating protein kinase C mediated phosphorylation of TRPV1. Eur J Pain 2022; 26(9): 1967-78.
[http://dx.doi.org/10.1002/ejp.2017] [PMID: 35900227]
[158]
Brandt DT, Goerke A, Heuer M, et al. Protein kinase C delta induces Src kinase activity via activation of the protein tyrosine phosphatase PTP alpha. J Biol Chem 2003; 278(36): 34073-8.
[http://dx.doi.org/10.1074/jbc.M211650200] [PMID: 12826681]
[159]
Gatesman A, Walker VG, Baisden JM, Weed SA, Flynn DC. Protein kinase Calpha activates c-Src and induces podosome formation via AFAP-110. Mol Cell Biol 2004; 24(17): 7578-97.
[http://dx.doi.org/10.1128/MCB.24.17.7578-7597.2004] [PMID: 15314167]
[160]
Matsuoka H, Harada K, Mashima K, Inoue M. Muscarinic receptor stimulation induces TASK1 channel endocytosis through a PKC-Pyk2-Src pathway in PC12 cells. Cell Signal 2020; 65: 109434.
[http://dx.doi.org/10.1016/j.cellsig.2019.109434] [PMID: 31676368]
[161]
Yamazaki Y, Jia Y, Wong JK, Sumikawa K. Chronic nicotine-induced switch in Src-family kinase signaling for long-term potentiation induction in hippocampal CA1 pyramidal cells. Eur J Neurosci 2006; 24(11): 3271-84.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05213.x] [PMID: 17156388]
[162]
Szilveszter KP, Németh T, Mócsai A. Tyrosine kinases in autoimmune and inflammatory skin diseases. Front Immunol 2019; 10: 1862.
[http://dx.doi.org/10.3389/fimmu.2019.01862] [PMID: 31447854]
[163]
Byeon SE, Yi YS, Oh J, Yoo BC, Hong S, Cho JY. The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012; 2012: 1-18.
[http://dx.doi.org/10.1155/2012/512926] [PMID: 23209344]
[164]
Chhabra Y, Lee CMM, Müller AF, Brooks AJ. GHR signalling: Receptor activation and degradation mechanisms. Mol Cell Endocrinol 2021; 520: 111075.
[http://dx.doi.org/10.1016/j.mce.2020.111075] [PMID: 33181235]
[165]
Yalçin Kehri̇bar D, Özgen M, Yolbaş S, et al. The inhibition of Src kinase suppresses the production of matrix metalloproteinases in from synovial fibroblasts and inhibits MAPK and STATs pathways. Turk J Med Sci 2021; 51(4): 2142-9.
[http://dx.doi.org/10.3906/sag-2008-274] [PMID: 33714238]
[166]
Nie L, Ye WR, Chen S, Chirchiglia D, Wang M. Src family kinases in the central nervous system: Their emerging role in pathophysiology of migraine and neuropathic pain. Curr Neuropharmacol 2021; 19(5): 665-78.
[http://dx.doi.org/10.2174/1570159X18666200814180218] [PMID: 32798375]
[167]
Cirotti C, Contadini C, Barilà D. SRC kinase in glioblastoma: News from an old acquaintance. Cancers (Basel) 2020; 12(6): 1558.
[http://dx.doi.org/10.3390/cancers12061558] [PMID: 32545574]
[168]
Wang JQ, Derges JD, Bodepudi A, Pokala N, Mao LM. Roles of non-receptor tyrosine kinases in pathogenesis and treatment of depression. J Integr Neurosci 2022; 21(1): 25.
[http://dx.doi.org/10.31083/j.jin2101025] [PMID: 35164461]
[169]
Christidis P, Vij A, Petousis S, et al. Neuroprotective effect of Src kinase in hypoxia-ischemia: A systematic review. Front Neurosci 2022; 16: 1049655.
[http://dx.doi.org/10.3389/fnins.2022.1049655] [PMID: 36507364]
[170]
Ali DW, Salter MW. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol 2001; 11(3): 336-42.
[http://dx.doi.org/10.1016/S0959-4388(00)00216-6] [PMID: 11399432]
[171]
Lei J, Ingbar DH. Src kinase integrates PI3K/Akt and MAPK/ERK1/2 pathways in T3-induced Na-K-ATPase activity in adult rat alveolar cells. Am J Physiol Lung Cell Mol Physiol 2011; 301(5): L765-71.
[http://dx.doi.org/10.1152/ajplung.00151.2011] [PMID: 21840963]
[172]
Black JD, Affandi T, Black AR, Reyland ME. PKC α and PKC δ: Friends and rivals. J Biol Chem 2022; 298(8): 102194.
[http://dx.doi.org/10.1016/j.jbc.2022.102194] [PMID: 35760100]
[173]
Cheng JJ, Wung BS, Chao YJ, Wang DL. Sequential activation of protein kinase C (PKC)-alpha and PKC-epsilon contributes to sustained Raf/ERK1/2 activation in endothelial cells under mechanical strain. J Biol Chem 2001; 276(33): 31368-75.
[http://dx.doi.org/10.1074/jbc.M011317200] [PMID: 11399752]
[174]
Dresselhaus EC, Meffert MK. Cellular specificity of NF-κB function in the nervous system. Front Immunol 2019; 10: 1043.
[http://dx.doi.org/10.3389/fimmu.2019.01043] [PMID: 31143184]
[175]
O’Neill LAJ, Kaltschmidt C. NF-kB: A crucial transcription factor for glial and neuronal cell function. Trends Neurosci 1997; 20(6): 252-8.
[http://dx.doi.org/10.1016/S0166-2236(96)01035-1] [PMID: 9185306]
[176]
Chu LF, Wang WT, Ghanta VK, Lin CH, Chiang YY, Hsueh CM. Ischemic brain cell-derived conditioned medium protects astrocytes against ischemia through GDNF/ERK/NF-kB signaling pathway. Brain Res 2008; 1239: 24-35.
[http://dx.doi.org/10.1016/j.brainres.2008.08.087] [PMID: 18804095]
[177]
Zeng A, Yin J, Li Y, et al. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis 2018; 9(3): 394.
[http://dx.doi.org/10.1038/s41419-018-0343-1] [PMID: 29531296]
[178]
Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S. Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J Biol Chem 1996; 271(38): 23512-9.
[http://dx.doi.org/10.1074/jbc.271.38.23512] [PMID: 8798560]
[179]
Nagao M, Yamauchi J, Kaziro Y, Itoh H. Involvement of protein kinase C and Src family tyrosine kinase in Galphaq/11-induced activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. J Biol Chem 1998; 273(36): 22892-8.
[http://dx.doi.org/10.1074/jbc.273.36.22892] [PMID: 9722508]
[180]
Leonard B, McCann JL, Starrett GJ, et al. The PKC/NF-κB signaling pathway induces APOBEC3B expression in multiple human cancers. Cancer Res 2015; 75(21): 4538-47.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2171-T] [PMID: 26420215]
[181]
Lu W, Tang S, Li A, et al. The role of PKC/PKR in aging, Alzheimer’s disease, and perioperative neurocognitive disorders. Front Aging Neurosci 2022; 14: 973068.
[http://dx.doi.org/10.3389/fnagi.2022.973068] [PMID: 36172481]
[182]
Hornik TC, Neniskyte U, Brown GC. Inflammation induces multinucleation of Microglia via PKC inhibition of cytokinesis, generating highly phagocytic multinucleated giant cells. J Neurochem 2014; 128(5): 650-61.
[http://dx.doi.org/10.1111/jnc.12477] [PMID: 24117490]
[183]
Abramson E, Hardman C, Shimizu AJ, et al. Designed PKC-targeting bryostatin analogs modulate innate immunity and neuroinflammation. Cell Chem Biol 2021; 28(4): 537-545.e4.
[http://dx.doi.org/10.1016/j.chembiol.2020.12.015] [PMID: 33472023]
[184]
Prescott JA, Mitchell JP, Cook SJ. Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478(13): 2619-64.
[http://dx.doi.org/10.1042/BCJ20210139] [PMID: 34269817]
[185]
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2(1): 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[186]
Matsumori A. Nuclear Factor-κB is a prime candidate for the diagnosis and control of inflammatory cardiovascular disease. Eur Cardiol 2023; 18: e40.
[http://dx.doi.org/10.15420/ecr.2023.10] [PMID: 37456770]
[187]
Singh S, Singh TG. Role of Nuclear Factor Kappa B (NF-κB) signaling in neurodegenerative diseases: An mechanistic approach. Curr Neuropharmacol 2020; 18(10): 918-35.
[http://dx.doi.org/10.2174/1570159X18666200207120949] [PMID: 32031074]
[188]
Mettang M, Reichel SN, Lattke M, et al. IKK2/NF-κB signaling protects neurons after traumatic brain injury. FASEB J 2018; 32(4): 1916-32.
[http://dx.doi.org/10.1096/fj.201700826R] [PMID: 29187362]
[189]
Mattson MP, Culmsee C, Yu Z, Camandola S. Roles of nuclear factor kappaB in neuronal survival and plasticity. J Neurochem 2000; 74(2): 443-56.
[http://dx.doi.org/10.1046/j.1471-4159.2000.740443.x] [PMID: 10646495]
[190]
Li Y, Song W, Tong Y, et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis. J Neuroinflammation 2021; 18(1): 1.
[http://dx.doi.org/10.1186/s12974-020-02040-8] [PMID: 33402173]
[191]
Kaltschmidt B, Helweg LP, Greiner JFW, Kaltschmidt C. NF-κB in neurodegenerative diseases: Recent evidence from human genetics. Front Mol Neurosci 2022; 15: 954541.
[http://dx.doi.org/10.3389/fnmol.2022.954541] [PMID: 35983068]
[192]
Sun E, Motolani A, Campos L, Lu T. The pivotal role of NF-kB in the pathogenesis and therapeutics of Alzheimer’s disease. Int J Mol Sci 2022; 23(16): 8972.
[http://dx.doi.org/10.3390/ijms23168972] [PMID: 36012242]
[193]
Desale SE, Chidambaram H, Chinnathambi S. G-protein coupled receptor, PI3K and Rho signaling pathways regulate the cascades of Tau and amyloid-β in Alzheimer’s disease. Mol Biomed 2021; 2(1): 17.
[http://dx.doi.org/10.1186/s43556-021-00036-1] [PMID: 35006431]
[194]
Nakano N, Matsuda S, Ichimura M, et al. PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson’s disease (Review). Int J Mol Med 2017; 39(2): 253-60.
[http://dx.doi.org/10.3892/ijmm.2016.2833] [PMID: 28000847]
[195]
Dobbin Z, Landen C. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int J Mol Sci 2013; 14(4): 8213-27.
[http://dx.doi.org/10.3390/ijms14048213] [PMID: 23591839]
[196]
Patke A, Mecklenbräuker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. BAFF controls B cell metabolic fitness through a PKCβ- and Akt-dependent mechanism. J Exp Med 2006; 203(11): 2551-62.
[http://dx.doi.org/10.1084/jem.20060990] [PMID: 17060474]
[197]
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq signaling in autophagy control: Between chemical and mechanical cues. Antioxidants 2022; 11(8): 1599.
[http://dx.doi.org/10.3390/antiox11081599] [PMID: 36009317]
[198]
Manna P, Jain SK. Phosphatidylinositol-3,4,5-triphosphate and cellular signaling: Implications for obesity and diabetes. Cell Physiol Biochem 2015; 35(4): 1253-75.
[http://dx.doi.org/10.1159/000373949] [PMID: 25721445]
[199]
Kitagishi Y, Kobayashi M, Kikuta K, Matsuda S. Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses. Depress Res Treat 2012; 2012: 1-8.
[http://dx.doi.org/10.1155/2012/752563] [PMID: 23320155]
[200]
Sharma A, Bhalla S, Mehan S. PI3K/AKT/mTOR signalling inhibitor chrysophanol ameliorates neurobehavioural and neurochemical defects in propionic acid-induced experimental model of autism in adult rats. Metab Brain Dis 2022; 37(6): 1909-29.
[http://dx.doi.org/10.1007/s11011-022-01026-0] [PMID: 35687217]
[201]
Wang N, Wang M. Dexmedetomidine suppresses sevoflurane anesthesia-induced neuroinflammation through activation of the PI3K/Akt/mTOR pathway. BMC Anesthesiol 2019; 19(1): 134.
[http://dx.doi.org/10.1186/s12871-019-0808-5] [PMID: 31351473]
[202]
Lima IVA, Almeida-Santos AF, Ferreira-Vieira TH, et al. Antidepressant-like effect of valproic acid-Possible involvement of PI3K/Akt/mTOR pathway. Behav Brain Res 2017; 329: 166-71.
[http://dx.doi.org/10.1016/j.bbr.2017.04.015] [PMID: 28408298]
[203]
Wang Y, Wang W, Li D, et al. IGF-1 alleviates NMDA-induced excitotoxicity in cultured hippocampal neurons against autophagy via the NR2B/PI3K-AKT-mTOR pathway. J Cell Physiol 2014; 229(11): 1618-29.
[http://dx.doi.org/10.1002/jcp.24607] [PMID: 24604717]
[204]
Jadaun KS, Mehan S, Sharma A, Siddiqui EM, Kumar S, Alsuhaymi N. Neuroprotective effect of chrysophanol as a PI3K/AKT/mTOR signaling inhibitor in an experimental model of autologous blood-induced intracerebral hemorrhage. Curr Med Sci 2022; 42(2): 249-66.
[http://dx.doi.org/10.1007/s11596-022-2496-x]
[205]
Nidai Ozes O, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 1999; 401(6748): 82-5.
[http://dx.doi.org/10.1038/43466] [PMID: 10485710]
[206]
Romashkova JA, Makarov SS. NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401(6748): 86-90.
[http://dx.doi.org/10.1038/43474] [PMID: 10485711]
[207]
Salminen A, Kaarniranta K. Insulin/IGF-1 paradox of aging: Regulation via AKT/IKK/NF-κB signaling. Cell Signal 2010; 22(4): 573-7.
[http://dx.doi.org/10.1016/j.cellsig.2009.10.006] [PMID: 19861158]
[208]
Lin CY, Chen JH, Fu RH, Tsai CW. Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-κB pathway and protects against neurotoxicity. Chem Res Toxicol 2014; 27(11): 1958-66.
[http://dx.doi.org/10.1021/tx5003063] [PMID: 25271104]
[209]
Li M, Zhong X, Xu WT. Substance P promotes the progression of bronchial asthma through activating the PI3K/AKT/NF-κB pathway mediated cellular inflammation and pyroptotic cell death in bronchial epithelial cells. Cell Cycle 2022; 21(20): 2179-91.
[http://dx.doi.org/10.1080/15384101.2022.2092166] [PMID: 35726575]
[210]
Chen P, Huang N, Pang B, et al. Proteomic and metabolomic approaches elucidate the molecular mechanism of emodin against neuropathic pain through modulating the gamma-aminobutyric acid (GABA)-ergic pathway and PI3K/AKT/NF-κB pathway. Phytother Res 2023; 37(5): 1883-99.
[http://dx.doi.org/10.1002/ptr.7704] [PMID: 36723382]
[211]
Goyal A, Agrawal A, Verma A, Dubey N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson’s disease. Exp Mol Pathol 2023; 129: 104846.
[http://dx.doi.org/10.1016/j.yexmp.2022.104846] [PMID: 36436571]
[212]
Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: Shaping chronic neuroinflammation. J Neuroinflammation 2021; 18(1): 276.
[http://dx.doi.org/10.1186/s12974-021-02325-6] [PMID: 34838047]
[213]
Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Mol Cell Biol 1999; 19(4): 2435-44.
[http://dx.doi.org/10.1128/MCB.19.4.2435] [PMID: 10082509]
[214]
Li M, Liu J, Zhang C. Evolutionary history of the vertebrate mitogen activated protein kinases family. PLoS One 2011; 6(10): e26999.
[http://dx.doi.org/10.1371/journal.pone.0026999] [PMID: 22046431]
[215]
Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol 2002; 20(1): 55-72.
[http://dx.doi.org/10.1146/annurev.immunol.20.091301.131133] [PMID: 11861597]
[216]
Sattarifard H, Safaei A, Khazeeva E, Rastegar M, Davie JR. Mitogen- and stress-activated protein kinase (MSK1/2) regulated gene expression in normal and disease states. Biochem Cell Biol 2023; 101(3): 204-19.
[http://dx.doi.org/10.1139/bcb-2022-0371] [PMID: 36812480]
[217]
Arthur JSC, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 2013; 13(9): 679-92.
[http://dx.doi.org/10.1038/nri3495] [PMID: 23954936]
[218]
Munshi A, Ramesh R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 2013; 4(9-10): 401-8.
[http://dx.doi.org/10.1177/1947601913485414] [PMID: 24349638]
[219]
Cruz C, Cruz F. The ERK 1 and 2 pathway in the nervous system: From basic aspects to possible clinical applications in pain and visceral dysfunction. Curr Neuropharmacol 2007; 5(4): 244-52.
[http://dx.doi.org/10.2174/157015907782793630] [PMID: 19305741]
[220]
Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68: 109541.
[http://dx.doi.org/10.1016/j.cellsig.2020.109541] [PMID: 31945453]
[221]
Ryu HH, Kim T, Kim JW, et al. Excitatory neuron–specific SHP2-ERK signaling network regulates synaptic plasticity and memory. Sci Signal 2019; 12(571): eaau5755.
[http://dx.doi.org/10.1126/scisignal.aau5755] [PMID: 30837304]
[222]
Choi H, Kim IS, Mun JY. Propionic acid induces dendritic spine loss by MAPK/ERK signaling and dysregulation of autophagic flux. Mol Brain 2020; 13(1): 86.
[http://dx.doi.org/10.1186/s13041-020-00626-0] [PMID: 32487196]
[223]
Chen Q, Kong L, Xu Z, et al. The role of TMEM16A/ERK/NK-1 signaling in dorsal root ganglia neurons in the development of neuropathic pain induced by spared nerve injury (SNI). Mol Neurobiol 2021; 58(11): 5772-89.
[http://dx.doi.org/10.1007/s12035-021-02520-9] [PMID: 34406600]
[224]
Maruta T, Nemoto T, Hidaka K, et al. Upregulation of ERK phosphorylation in rat dorsal root ganglion neurons contributes to oxaliplatin-induced chronic neuropathic pain. PLoS One 2019; 14(11): e0225586.
[http://dx.doi.org/10.1371/journal.pone.0225586] [PMID: 31765435]
[225]
Cakir M, Grossman AB. Targeting MAPK (Ras/ERK) and PI3K/Akt pathways in pituitary tumorigenesis. Expert Opin Ther Targets 2009; 13(9): 1121-34.
[http://dx.doi.org/10.1517/14728220903170675] [PMID: 19637976]
[226]
Gao WL, Tian F, Zhang SQ, Zhang H, Yin ZS. Epidermal growth factor increases the expression of Nestin in rat reactive astrocytes through the Ras–Raf–ERK pathway. Neurosci Lett 2014; 562: 54-9.
[http://dx.doi.org/10.1016/j.neulet.2014.01.018] [PMID: 24462842]
[227]
Yin G, Huang J, Petela J, et al. Targeting small GTPases: Emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8(1): 212.
[http://dx.doi.org/10.1038/s41392-023-01441-4] [PMID: 37221195]
[228]
Merighi S, Benini A, Mirandola P, et al. Modulation of the Akt/Ras/Raf/MEK/ERK pathway by A3 adenosine receptor. Purinergic Signal 2006; 2(4): 627-32.
[http://dx.doi.org/10.1007/s11302-006-9020-4] [PMID: 18404465]
[229]
Crudden C, Shibano T, Song D, Suleymanova N, Girnita A, Girnita L. Blurring boundaries: Receptor tyrosine kinases as functional g protein-coupled receptors. Int Rev Cell Mol Biol 2018; 339: 1-40.
[http://dx.doi.org/10.1016/bs.ircmb.2018.02.006] [PMID: 29776602]
[230]
Spiegel A. Cell signaling. beta-arrestin-not just for G protein-coupled receptors. Science 2003; 301(5638): 1338-9.
[http://dx.doi.org/10.1126/science.1089552] [PMID: 12958351]
[231]
Qu C, Park JY, Yun MW, et al. Scaffolding mechanism of arrestin-2 in the cRaf/MEK1/ERK signaling cascade. Proc Natl Acad Sci 2021; 118(37): e2026491118.
[http://dx.doi.org/10.1073/pnas.2026491118] [PMID: 34507982]
[232]
Eishingdrelo H, Sun W, Li H, et al. ERK and β-arrestin interaction: A converging point of signaling pathways for multiple types of cell surface receptors. SLAS Discov 2015; 20(3): 341-9.
[http://dx.doi.org/10.1177/1087057114557233] [PMID: 25361946]
[233]
Gurevich VV, Gurevich EV. GPCR signaling regulation: The role of GRKs and arrestins. Front Pharmacol 2019; 10: 125.
[http://dx.doi.org/10.3389/fphar.2019.00125] [PMID: 30837883]
[234]
Shah K, Lahiri DK. Cdk5 activity in the brain – multiple paths of regulation. J Cell Sci 2014; 127(11): 2391-400.
[http://dx.doi.org/10.1242/jcs.147553] [PMID: 24879856]
[235]
Barnett DGS, Bibb JA. The role of Cdk5 in cognition and neuropsychiatric and neurological pathology. Brain Res Bull 2011; 85(1-2): 9-13.
[http://dx.doi.org/10.1016/j.brainresbull.2010.11.016] [PMID: 21145377]
[236]
Ao C, Li C, Chen J, Tan J, Zeng L. The role of Cdk5 in neurological disorders. Front Cell Neurosci 2022; 16: 951202.
[http://dx.doi.org/10.3389/fncel.2022.951202] [PMID: 35966199]
[237]
Pao PC, Tsai LH. Three decades of Cdk5. J Biomed Sci 2021; 28(1): 79.
[http://dx.doi.org/10.1186/s12929-021-00774-y] [PMID: 34814918]
[238]
Reinhardt L, Kordes S, Reinhardt P, et al. Dual inhibition of GSK3β and CDK5 protects the cytoskeleton of neurons from neuroinflammatory-mediated degeneration in vitro and in vivo. Stem Cell Reports 2019; 12(3): 502-17.
[http://dx.doi.org/10.1016/j.stemcr.2019.01.015] [PMID: 30773488]
[239]
Klinman E, Holzbaur ELF. Stress-induced CDK5 activation disrupts axonal transport via Lis1/Ndel1/Dynein. Cell Rep 2015; 12(3): 462-73.
[http://dx.doi.org/10.1016/j.celrep.2015.06.032] [PMID: 26166569]
[240]
Papadopoulou A, Siamatras T, Delgado-Morales R, et al. Acute and chronic stress differentially regulate cyclin-dependent kinase 5 in mouse brain: Implications to glucocorticoid actions and major depression. Transl Psychiatry 2015; 5(6): e578.
[http://dx.doi.org/10.1038/tp.2015.72] [PMID: 26057048]
[241]
Shi GX, Cai W, Andres DA. Rit subfamily small GTPases: Regulators in neuronal differentiation and survival. Cell Signal 2013; 25(10): 2060-8.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.002] [PMID: 23770287]
[242]
Reiner DJ, Lundquist EA. Small GTPases. WormBook 2018; 2018: 1-65.
[http://dx.doi.org/10.1895/wormbook.1.67.2] [PMID: 27218782]
[243]
Lu Y, Peng W, Xu Y. Small GTPase and regulation of inflammation response in atherogenesis. J Cardiovasc Pharmacol 2013; 62(4): 331-40.
[http://dx.doi.org/10.1097/FJC.0b013e3182a12eb3] [PMID: 23921305]
[244]
Puls A, Eliopoulos AG, Nobes CD, Bridges T, Young LS, Hall A. Activation of the small GTPase Cdc42 by the inflammatory cytokines TNFα and IL-1, and by the Epstein-Barr virus transforming protein LMP1. J Cell Sci 1999; 112(17): 2983-92.
[http://dx.doi.org/10.1242/jcs.112.17.2983] [PMID: 10444392]
[245]
Bros M, Haas K, Moll L, Grabbe S. RhoA as a key regulator of innate and adaptive immunity. Cells 2019; 8(7): 733.
[http://dx.doi.org/10.3390/cells8070733] [PMID: 31319592]
[246]
Ponimaskin E, Voyno-Yasenetskaya T, Richter DW, Schachner M, Dityatev A. Morphogenic signaling in neurons via neurotransmitter receptors and small GTPases. Mol Neurobiol 2007; 35(3): 278-87.
[http://dx.doi.org/10.1007/s12035-007-0023-0] [PMID: 17917116]
[247]
Syrovatkina V, Alegre KO, Dey R, Huang XY. Regulation, signaling, and physiological functions of G-proteins. J Mol Biol 2016; 428(19): 3850-68.
[http://dx.doi.org/10.1016/j.jmb.2016.08.002] [PMID: 27515397]
[248]
Bhattacharya M, Babwah AV, Ferguson SSG. Small GTP-binding protein-coupled receptors. Biochem Soc Trans 2004; 32(6): 1040-4.
[http://dx.doi.org/10.1042/BST0321040] [PMID: 15506958]
[249]
Qu L, Pan C, He SM, et al. The ras superfamily of small GTPases in non-neoplastic cerebral diseases. Front Mol Neurosci 2019; 12: 121.
[http://dx.doi.org/10.3389/fnmol.2019.00121] [PMID: 31213978]
[250]
Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological modulators of small GTPases of rho family in neurodegenerative diseases. Front Cell Neurosci 2021; 15: 661612.
[http://dx.doi.org/10.3389/fncel.2021.661612] [PMID: 34054432]
[251]
Arrazola Sastre A, Luque Montoro M, Gálvez-Martín P, et al. Small GTPases of the Ras and rho families switch on/off signaling pathways in neurodegenerative diseases. Int J Mol Sci 2020; 21(17): 6312.
[http://dx.doi.org/10.3390/ijms21176312] [PMID: 32878220]
[252]
Norum JH, Hart K, Levy FO. Ras-dependent ERK activation by the human G(s)-coupled serotonin receptors 5-HT4(b) and 5-HT7(a). J Biol Chem 2003; 278(5): 3098-104.
[http://dx.doi.org/10.1074/jbc.M206237200] [PMID: 12446729]
[253]
Yang HW, Shin MG, Lee S, et al. Cooperative activation of PI3K by Ras and Rho family small GTPases. Mol Cell 2012; 47(2): 281-90.
[http://dx.doi.org/10.1016/j.molcel.2012.05.007] [PMID: 22683270]
[254]
Senoo H, Wai M, Matsubayashi HT, Sesaki H, Iijima M. Hetero-oligomerization of Rho and Ras GTPases connects GPCR activation to mTORC2-AKT signaling. Cell Rep 2020; 33(8): 108427.
[http://dx.doi.org/10.1016/j.celrep.2020.108427] [PMID: 33238110]
[255]
Bresnick AR, Backer JM. PI3Kβ-A versatile transducer for GPCR, RTK, and Small GTPase signaling. Endocrinology 2019; 160(3): 536-55.
[http://dx.doi.org/10.1210/en.2018-00843] [PMID: 30601996]
[256]
Wang G, Wei Z, Wu G. Role of Rab GTPases in the export trafficking of G protein-coupled receptors. Small GTPases 2018; 9(1-2): 130-5.
[http://dx.doi.org/10.1080/21541248.2016.1277000] [PMID: 28125329]
[257]
Slater SJ, Seiz JL, Stagliano BA, Stubbs CD. Interaction of protein kinase C isozymes with Rho GTPases. Biochemistry 2001; 40(14): 4437-45.
[http://dx.doi.org/10.1021/bi001654n] [PMID: 11284700]
[258]
Johnson DS, Chen YH. Ras family of small GTPases in immunity and inflammation. Curr Opin Pharmacol 2012; 12(4): 458-63.
[http://dx.doi.org/10.1016/j.coph.2012.02.003] [PMID: 22401931]
[259]
Johnstone TB, Agarwal SR, Harvey RD, Ostrom RS. cAMP signaling compartmentation: Adenylyl cyclases as anchors of dynamic signaling complexes. Mol Pharmacol 2018; 93(4): 270-6.
[http://dx.doi.org/10.1124/mol.117.110825] [PMID: 29217670]
[260]
Takei Y. Evolution of the membrane/particulate guanylyl cyclase: From physicochemical sensors to hormone receptors. Gen Comp Endocrinol 2022; 315: 113797.
[http://dx.doi.org/10.1016/j.ygcen.2021.113797] [PMID: 33957096]
[261]
Halls ML, Cooper DMF. Regulation by Ca2+-signaling pathways of adenylyl cyclases. Cold Spring Harb Perspect Biol 2011; 3(1): a004143.
[http://dx.doi.org/10.1101/cshperspect.a004143] [PMID: 21123395]
[262]
Erdogan S, Aslantas O, Celik S, Atik E. The effects of increased cAMP content on inflammation, oxidative stress and PDE4 transcripts during Brucella melitensis infection. Res Vet Sci 2008; 84(1): 18-25.
[http://dx.doi.org/10.1016/j.rvsc.2007.02.003] [PMID: 17397885]
[263]
Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M. Cyclic AMP. Am J Respir Cell Mol Biol 2008; 39(2): 127-32.
[http://dx.doi.org/10.1165/rcmb.2008-0091TR] [PMID: 18323530]
[264]
Tavares LP, Negreiros-Lima GL, Lima KM, et al. Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacol Res 2020; 159: 105030.
[http://dx.doi.org/10.1016/j.phrs.2020.105030] [PMID: 32562817]
[265]
Dhyani V, Gare S, Gupta RK, Swain S, Venkatesh KV, Giri L. GPCR mediated control of calcium dynamics: A systems perspective. Cell Signal 2020; 74: 109717.
[http://dx.doi.org/10.1016/j.cellsig.2020.109717] [PMID: 32711109]
[266]
Dumaz N, Marais R. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. FEBS J 2005; 272(14): 3491-504.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04763.x] [PMID: 16008550]
[267]
Sobolczyk M, Boczek T. Astrocytic calcium and cAMP in neurodegenerative diseases. Front Cell Neurosci 2022; 16: 889939.
[http://dx.doi.org/10.3389/fncel.2022.889939] [PMID: 35663426]
[268]
Ceddia RP, Collins S. A compendium of G-protein–coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci 2020; 134(5): 473-512.
[http://dx.doi.org/10.1042/CS20190579] [PMID: 32149342]
[269]
Lutzu S, Castillo PE. Modulation of NMDA receptors by g-protein-coupled receptors: Role in synaptic transmission, plasticity and beyond. Neuroscience 2021; 456: 27-42.
[http://dx.doi.org/10.1016/j.neuroscience.2020.02.019] [PMID: 32105741]
[270]
Calamera G, Moltzau LR, Levy FO, Andressen KW. Phosphodiesterases and compartmentation of cAMP and cGMP signaling in regulation of cardiac contractility in normal and failing hearts. Int J Mol Sci 2022; 23(4): 2145.
[http://dx.doi.org/10.3390/ijms23042145] [PMID: 35216259]
[271]
Denninger JW, Marletta MA. Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim Biophys Acta Bioenerg 1999; 1411(2-3): 334-50.
[http://dx.doi.org/10.1016/S0005-2728(99)00024-9] [PMID: 10320667]
[272]
Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 2010; 62(3): 525-63.
[http://dx.doi.org/10.1124/pr.110.002907] [PMID: 20716671]
[273]
Golshiri K, Ataei Ataabadi E, Portilla FEC, Jan Danser AH, Roks AJM. The importance of the nitric oxide-cGMP pathway in age-related cardiovascular disease: Focus on phosphodiesterase-1 and soluble guanylate cyclase. Basic Clin Pharmacol Toxicol 2020; 127(2): 67-80.
[http://dx.doi.org/10.1111/bcpt.13319] [PMID: 31495057]
[274]
Feng C, Zheng H, Feng C. Deciphering mechanism of conformationally controlled electron transfer in nitric oxide synthases. Front Biosci 2018; 23(10): 1803-21.
[http://dx.doi.org/10.2741/4674] [PMID: 29772530]
[275]
Araki S, Osuka K, Takata T, Tsuchiya Y, Watanabe Y. Coordination between calcium/calmodulin-dependent protein kinase II and neuronal nitric oxide synthase in neurons. Int J Mol Sci 2020; 21(21): 7997.
[http://dx.doi.org/10.3390/ijms21217997] [PMID: 33121174]
[276]
Qu J, Mei Q, Niu R. Oxidative CaMKII as a potential target for inflammatory disease. Mol Med Rep 2019; 20(2): 863-70.
[http://dx.doi.org/10.3892/mmr.2019.10309] [PMID: 31173191]
[277]
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82: 59-74.
[http://dx.doi.org/10.1016/j.niox.2018.10.006] [PMID: 30394348]
[278]
Sharina I, Martin E. Cellular factors that shape the activity or function of nitric oxide-stimulated soluble guanylyl cyclase. Cells 2023; 12(3): 471.
[http://dx.doi.org/10.3390/cells12030471] [PMID: 36766813]
[279]
Rapôso C, Luna RLA, Nunes AKS, Thomé R, Peixoto CA. Role of iNOS-NO-cGMP signaling in modulation of inflammatory and myelination processes. Brain Res Bull 2014; 104: 60-73.
[http://dx.doi.org/10.1016/j.brainresbull.2014.04.002] [PMID: 24727400]
[280]
Sticozzi C, Belmonte G, Frosini M, Pessina F. Nitric oxide/cyclic GMP-dependent calcium signalling mediates IL-6- and TNF-α-induced expression of glial fibrillary acid protein. J Mol Neurosci 2021; 71(4): 854-66.
[http://dx.doi.org/10.1007/s12031-020-01708-3] [PMID: 32964397]
[281]
França MER, Peixoto CA. cGMP signaling pathway in hepatic encephalopathy neuroinflammation and cognition. Int Immunopharmacol 2020; 79: 106082.
[http://dx.doi.org/10.1016/j.intimp.2019.106082] [PMID: 31869775]
[282]
Correia SS, Liu G, Jacobson S, et al. The CNS-penetrant soluble guanylate cyclase stimulator CYR119 attenuates markers of inflammation in the central nervous system. J Neuroinflamm 2021; 18(1): 213.
[http://dx.doi.org/10.1186/s12974-021-02275-z] [PMID: 34537066]
[283]
Peixoto CA, Nunes AKS, Garcia-Osta A. Phosphodiesterase-5 inhibitors: Action on the signaling pathways of neuroinflammation, neurodegeneration, and cognition. Mediators Inflamm 2015; 2015: 1-17.
[http://dx.doi.org/10.1155/2015/940207] [PMID: 26770022]
[284]
Jehle A, Garaschuk O. The interplay between cGMP and calcium signaling in Alzheimer’s disease. Int J Mol Sci 2022; 23(13): 7048.
[http://dx.doi.org/10.3390/ijms23137048] [PMID: 35806059]
[285]
Gong R, Ding C, Hu J, et al. Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior. Science 2011; 333(6049): 1642-6.
[http://dx.doi.org/10.1126/science.1207675] [PMID: 21835979]
[286]
Fu Y, Liu H, He L, et al. Prenatal chronic stress impairs the learning and memory ability via inhibition of the NO/cGMP/PKG pathway in the Hippocampus of offspring. Behav Brain Res 2022; 433: 114009.
[http://dx.doi.org/10.1016/j.bbr.2022.114009] [PMID: 35850398]
[287]
Hildebrand S, Ibrahim M, Schlitzer A, Maegdefessel L, Röll W, Pfeifer A. PDGF regulates guanylate cyclase expression and cGMP signaling in vascular smooth muscle. Commun Biol 2022; 5(1): 197.
[http://dx.doi.org/10.1038/s42003-022-03140-2] [PMID: 35241778]
[288]
Liao K, Lv DY, Yu HL, et al. iNOS regulates activation of the NLRP3 inflammasome through the sGC/cGMP/PKG/TACE/TNF-α axis in response to cigarette smoke resulting in aortic endothelial pyroptosis and vascular dysfunction. Int Immunopharmacol 2021; 101(Pt B): 108334.
[289]
Erondu NE, Kennedy MB. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci 1985; 5(12): 3270-7.
[http://dx.doi.org/10.1523/JNEUROSCI.05-12-03270.1985] [PMID: 4078628]
[290]
Bayer KU, Schulman H. CaM kinase: Still inspiring at 40. Neuron 2019; 103(3): 380-94.
[http://dx.doi.org/10.1016/j.neuron.2019.05.033] [PMID: 31394063]
[291]
Zalcman G, Federman N, Romano A. CaMKII isoforms in learning and memory: Localization and function. Front Mol Neurosci 2018; 11: 445.
[http://dx.doi.org/10.3389/fnmol.2018.00445] [PMID: 30564099]
[292]
Wang X, Zhang C, Szábo G, Sun QQ. Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Res 2013; 1518: 9-25.
[http://dx.doi.org/10.1016/j.brainres.2013.04.042] [PMID: 23632380]
[293]
Nicole O, Pacary E. CaMKIIβ in neuronal development and plasticity: An emerging candidate in brain diseases. Int J Mol Sci 2020; 21(19): 7272.
[http://dx.doi.org/10.3390/ijms21197272] [PMID: 33019657]
[294]
Song Q, Fan C, Wang P, Li Y, Yang M, Yu SY. Hippocampal CA1 βCaMKII mediates neuroinflammatory responses via COX-2/PGE2 signaling pathways in depression. J Neuroinflamm 2018; 15(1): 338.
[http://dx.doi.org/10.1186/s12974-018-1377-0] [PMID: 30526621]
[295]
Jiang H, Ashraf GM, Liu M, et al. Tilianin ameliorates cognitive dysfunction and neuronal damage in rats with vascular dementia via p-CaMKII/ERK/CREB and ox-CaMKII-dependent MAPK/NF-κB pathways. Oxid Med Cell Longev 2021; 2021: 1-18.
[http://dx.doi.org/10.1155/2021/6673967] [PMID: 34527176]
[296]
Robison AJ. Emerging role of CaMKII in neuropsychiatric disease. Trends Neurosci 2014; 37(11): 653-62.
[http://dx.doi.org/10.1016/j.tins.2014.07.001] [PMID: 25087161]
[297]
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/calmodulin-dependent protein kinase type II in mediating function and dysfunction at glutamatergic synapses. Front Mol Neurosci 2022; 15: 855752.
[http://dx.doi.org/10.3389/fnmol.2022.855752] [PMID: 35795689]
[298]
Kawaguchi S, Hirano T. Gating of long-term depression by Ca2+/ calmodulin-dependent protein kinase II through enhanced cGMP signalling in cerebellar Purkinje cells. J Physiol 2013; 591(7): 1707-30.
[http://dx.doi.org/10.1113/jphysiol.2012.245787] [PMID: 23297306]
[299]
Toussaint F, Charbel C, Allen BG, Ledoux J. Vascular CaMKII: Heart and brain in your arteries. Am J Physiol Cell Physiol 2016; 311(3): C462-78.
[http://dx.doi.org/10.1152/ajpcell.00341.2015] [PMID: 27306369]
[300]
Jones RJ, Jourd’heuil D, Salerno JC, Smith SME, Singer HA. iNOS regulation by calcium/calmodulin-dependent protein kinase II in vascular smooth muscle. Am J Physiol Heart Circ Physiol 2007; 292(6): H2634-42.
[http://dx.doi.org/10.1152/ajpheart.01247.2006] [PMID: 17293490]
[301]
Prasad AM, Morgan DA, Nuno DW, et al. Calcium/calmodulin-dependent kinase II inhibition in smooth muscle reduces angiotensin II-induced hypertension by controlling aortic remodeling and baroreceptor function. J Am Heart Assoc 2015; 4(6): e001949.
[http://dx.doi.org/10.1161/JAHA.115.001949] [PMID: 26077587]
[302]
Grottelli S, Amoroso R, Macchioni L, et al. Acetamidine-based iNOS inhibitors as molecular tools to counteract inflammation in BV2 microglial cells. Molecules 2020; 25(11): 2646.
[http://dx.doi.org/10.3390/molecules25112646] [PMID: 32517272]
[303]
Gliozzi M, Scicchitano M, Bosco F, et al. Modulation of nitric oxide synthases by oxidized LDLs: Role in vascular inflammation and atherosclerosis development. Int J Mol Sci 2019; 20(13): 3294.
[http://dx.doi.org/10.3390/ijms20133294] [PMID: 31277498]
[304]
Suschek C, Schnorr O, Kolb-Bachofen V. The role of iNOS in chronic inflammatory processes in vivo: Is it damage-promoting, protective, or active at all? Curr Mol Med 2004; 4(7): 763-75.
[http://dx.doi.org/10.2174/1566524043359908] [PMID: 15579023]
[305]
Goldmann T, Wieghofer P, Jordão MJC, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 2016; 17(7): 797-805.
[http://dx.doi.org/10.1038/ni.3423] [PMID: 27135602]
[306]
Hattori Y. The behavior and functions of embryonic microglia. Anat Sci Int 2022; 97(1): 1-14.
[http://dx.doi.org/10.1007/s12565-021-00631-w] [PMID: 34537900]
[307]
Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol 2017; 79(1): 619-43.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034406] [PMID: 27959620]
[308]
Gusev EY, Zotova NV, Zhuravleva YA, Chereshnev VA. Physiological and pathogenic role of scavenger receptors in humans. Med Immunol 2020; 22(1): 7-48.
[http://dx.doi.org/10.15789/1563-0625-PAP-1893]
[309]
Zhou M, Cornell J, Salinas S, Huang H-Y. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res 2022; 17(4): 705-16.
[http://dx.doi.org/10.4103/1673-5374.322423] [PMID: 34472455]
[310]
Guo S, Wang H, Yin Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front Aging Neurosci 2022; 14: 815347.
[http://dx.doi.org/10.3389/fnagi.2022.815347] [PMID: 35250543]
[311]
Garaschuk O, Verkhratsky A. Physiology of microglia. Methods Mol Biol 2019; 2034: 27-40.
[http://dx.doi.org/10.1007/978-1-4939-9658-2_3] [PMID: 31392675]
[312]
Bourgognon JM, Cavanagh J. The role of cytokines in modulating learning and memory and brain plasticity. Brain Neurosci Adv 2020; 4: 2398212820979802.
[http://dx.doi.org/10.1177/2398212820979802] [PMID: 33415308]
[313]
Zhao J, Zhang W, Wu T, et al. Efferocytosis in the central nervous system. Front Cell Dev Biol 2021; 9: 773344.
[http://dx.doi.org/10.3389/fcell.2021.773344] [PMID: 34926460]
[314]
Hiraga S, Itokazu T, Nishibe M, Yamashita T. Neuroplasticity related to chronic pain and its modulation by microglia. Inflamm Regen 2022; 42(1): 15.
[http://dx.doi.org/10.1186/s41232-022-00199-6] [PMID: 35501933]
[315]
Dzyubenko E, Hermann DM. Role of glia and extracellular matrix in controlling neuroplasticity in the central nervous system. Semin Immunopathol 2023; 45(3): 377-87.
[http://dx.doi.org/10.1007/s00281-023-00989-1] [PMID: 37052711]
[316]
Shatz CJ. MHC class I: An unexpected role in neuronal plasticity. Neuron 2009; 64(1): 40-5.
[http://dx.doi.org/10.1016/j.neuron.2009.09.044] [PMID: 19840547]
[317]
Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012; 8(9): 1254-66.
[http://dx.doi.org/10.7150/ijbs.4679] [PMID: 23136554]
[318]
Gu Q, Kanungo J. Effect of ketamine on gene expression in zebrafish embryos. J Appl Toxicol 2021; 41(12): 2083-9.
[http://dx.doi.org/10.1002/jat.4199] [PMID: 34002392]
[319]
Roberto M, Patel RR, Bajo M. Ethanol and cytokines in the central nervous system. Handb Exp Pharmacol 2017; 248: 397-431.
[http://dx.doi.org/10.1007/164_2017_77] [PMID: 29236160]
[320]
García-Rodríguez MT, Juanatey-Rodríguez I, Seijo-Bestilleiro R, González-Martin C. Psycho-emotional distress in children and adolescents in relation to COVID-19 confinement and pandemic: A systematized review: Author lists. Ital J Pediatr 2023; 49(1): 47.
[http://dx.doi.org/10.1186/s13052-023-01450-7]
[321]
Dominguez-Salas S, Gomez-Salgado J, Andrés-Villas M, Diaz-Milanes D, Romero-Martin M, Ruiz-Frutos C. Psycho-emotional approach to the psychological distress related to the COVID-19 pandemic in Spain: A cross-sectional observational study. Healthcare 2020; 8: 190.
[http://dx.doi.org/10.3390/healthcare8030190]
[322]
Thakur A, Choudhary D, Kumar B, Chaudhary A. A review on post-traumatic stress disorder (PTSD): Symptoms, therapies and recent case studies. Curr Mol Pharmacol 2022; 15(3): 502-16.
[http://dx.doi.org/10.2174/1874467214666210525160944] [PMID: 34036925]
[323]
Ressler KJ, Berretta S, Bolshakov VY, et al. Post-traumatic stress disorder: Clinical and translational neuroscience from cells to circuits. Nat Rev Neurol 2022; 18(5): 273-88.
[http://dx.doi.org/10.1038/s41582-022-00635-8] [PMID: 35352034]
[324]
Maddox SA, Hartmann J, Ross RA, Ressler KJ. Deconstructing the gestalt: Mechanisms of fear, threat, and trauma memory encoding. Neuron 2019; 102(1): 60-74.
[http://dx.doi.org/10.1016/j.neuron.2019.03.017] [PMID: 30946827]
[325]
Stout DM, Glenn DE, Acheson DT, Simmons AN, Risbrough VB. Characterizing the neural circuitry associated with configural threat learning. Brain Res 2019; 1719: 225-34.
[http://dx.doi.org/10.1016/j.brainres.2019.06.003] [PMID: 31173725]
[326]
Glise K, Ahlborg G Jr, Jonsdottir IH. Prevalence and course of somatic symptoms in patients with stress-related exhaustion: Does sex or age matter. BMC Psychiatry 2014; 14(1): 118.
[http://dx.doi.org/10.1186/1471-244X-14-118] [PMID: 24755373]
[327]
Nanni MG, Caruso R, Sabato S, Grassi L. Demoralization and embitterment. Psychol Trauma 2018; 10(1): 14-21.
[http://dx.doi.org/10.1037/tra0000326] [PMID: 29323522]
[328]
Scarpa A, Raine A. Psychophysiology of anger and violent behavior. Psychiatr Clin North Am 1997; 20(2): 375-94.
[http://dx.doi.org/10.1016/S0193-953X(05)70318-X] [PMID: 9196920]
[329]
Ménard C, Hodes GE, Russo SJ. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience 2016; 321: 138-62.
[http://dx.doi.org/10.1016/j.neuroscience.2015.05.053] [PMID: 26037806]
[330]
Tafet GE, Nemeroff CB. The links between stress and depression: Psychoneuroendocrinological, genetic, and environmental interactions. J Neuropsychiatry Clin Neurosci 2016; 28(2): 77-88.
[http://dx.doi.org/10.1176/appi.neuropsych.15030053] [PMID: 26548654]
[331]
Bernstein CN. Psychological stress and depression: Risk factors for IBD? Dig Dis 2016; 34(1-2): 58-63.
[http://dx.doi.org/10.1159/000442929] [PMID: 26983009]
[332]
Ross JA, Van Bockstaele EJ. The locus coeruleus-norepinephrine system in stress and arousal: Unraveling historical, current, and future perspectives. Front Psychiatry 2021; 11: 601519.
[http://dx.doi.org/10.3389/fpsyt.2020.601519] [PMID: 33584368]
[333]
Baik JH. Stress and the dopaminergic reward system. Exp Mol Med 2020; 52(12): 1879-90.
[http://dx.doi.org/10.1038/s12276-020-00532-4] [PMID: 33257725]
[334]
Lee S, Jeong J, Kwak Y, Park SK. Depression research: Where are we now? Mol Brain 2010; 3(1): 8.
[http://dx.doi.org/10.1186/1756-6606-3-8] [PMID: 20219105]
[335]
Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression. Neuropharmacology 2012; 62(1): 63-77.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.036] [PMID: 21827775]
[336]
Wang YT, Wang XL, Feng ST, Chen NH, Wang ZZ, Zhang Y. Novel rapid-acting glutamatergic modulators: Targeting the synaptic plasticity in depression. Pharmacol Res 2021; 171: 105761.
[http://dx.doi.org/10.1016/j.phrs.2021.105761] [PMID: 34242798]
[337]
Onaolapo AY, Onaolapo OJ. Glutamate and depression: Reflecting a deepening knowledge of the gut and brain effects of a ubiquitous molecule. World J Psychiatry 2021; 11(7): 297-315.
[http://dx.doi.org/10.5498/wjp.v11.i7.297] [PMID: 34327123]
[338]
Boku S, Nakagawa S, Toda H, Hishimoto A. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin Neurosci 2018; 72(1): 3-12.
[http://dx.doi.org/10.1111/pcn.12604] [PMID: 28926161]
[339]
Bus BA, Molendijk ML. De neurotrofe hypothese van depressie. Tijdschr Psychiatr 2016; 58(3): 215-22.
[PMID: 26979853]
[340]
Borsellino P, Krider RI, Chea D, Grinnell R, Vida TA. Ketamine and the disinhibition hypothesis: Neurotrophic factor-mediated treatment of depression. Pharmaceuticals 2023; 16(5): 742.
[http://dx.doi.org/10.3390/ph16050742] [PMID: 37242525]
[341]
Li YF. A hypothesis of monoamine (5-HT) - Glutamate/GABA long neural circuit: Aiming for fast-onset antidepressant discovery. Pharmacol Ther 2020; 208: 107494.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107494] [PMID: 31991195]
[342]
Brigitta B. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci 2002; 4(1): 7-20.
[http://dx.doi.org/10.31887/DCNS.2002.4.1/bbondy] [PMID: 22033824]
[343]
LeMoult J. From stress to depression: Bringing together cognitive and biological science. Curr Dir Psychol Sci 2020; 29(6): 592-8.
[http://dx.doi.org/10.1177/0963721420964039] [PMID: 33343103]
[344]
Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett 2018; 592(5): 692-702.
[http://dx.doi.org/10.1002/1873-3468.12964] [PMID: 29292494]
[345]
Bolaños JP, Almeida A. The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life 2010; 62(1): 14-8.
[http://dx.doi.org/10.1002/iub.280] [PMID: 19937972]
[346]
Schiavone S, Jaquet V, Trabace L, Krause KH. Severe life stress and oxidative stress in the brain: From animal models to human pathology. Antioxid Redox Signal 2013; 18(12): 1475-90.
[http://dx.doi.org/10.1089/ars.2012.4720] [PMID: 22746161]
[347]
Grippo AJ, Johnson AK. Stress, depression and cardiovascular dysregulation: A review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress 2009; 12(1): 1-21.
[http://dx.doi.org/10.1080/10253890802046281]
[348]
Hare DL. Depression and cardiovascular disease. Curr Opin Lipidol 2021; 32(3): 167-74.
[http://dx.doi.org/10.1097/MOL.0000000000000749] [PMID: 33859128]
[349]
Rotariu D, Babes EE, Tit DM, et al. Oxidative stress - Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother 2022; 152: 113238.
[http://dx.doi.org/10.1016/j.biopha.2022.113238] [PMID: 35687909]
[350]
Zuo L, Prather ER, Stetskiv M, et al. Inflammaging and oxidative stress in human diseases: From molecular mechanisms to novel treatments. Int J Mol Sci 2019; 20(18): 4472.
[http://dx.doi.org/10.3390/ijms20184472] [PMID: 31510091]
[351]
Naomi R, Teoh SH, Embong H, et al. The role of oxidative stress and inflammation in obesity and its impact on cognitive impairments-a narrative review. Antioxidants 2023; 12(5): 1071.
[http://dx.doi.org/10.3390/antiox12051071] [PMID: 37237937]
[352]
Sani G, Margoni S, Brugnami A, et al. The Nrf2 pathway in depressive disorders: A systematic review of animal and human studies. Antioxidants 2023; 12(4): 817.
[http://dx.doi.org/10.3390/antiox12040817] [PMID: 37107192]
[353]
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5: 116-32.
[http://dx.doi.org/10.1016/j.ibror.2018.11.004] [PMID: 30591953]
[354]
Loeb E, El Asmar K, Trabado S, et al. Nitric oxide synthase activity in major depressive episodes before and after antidepressant treatment: Results of a large case-control treatment study. Psychol Med 2022; 52(1): 80-9.
[http://dx.doi.org/10.1017/S0033291720001749] [PMID: 32524920]
[355]
Czarny P, Wigner P, Galecki P, Sliwinski T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80(Pt C): 309-21.
[http://dx.doi.org/10.1016/j.pnpbp.2017.06.036] [PMID: 28669580]
[356]
Rentscher KE, Carroll JE, Mitchell C. Psychosocial stressors and telomere length: A current review of the science. Annu Rev Public Health 2020; 41(1): 223-45.
[http://dx.doi.org/10.1146/annurev-publhealth-040119-094239] [PMID: 31900099]
[357]
Vazquez-Villasenor I, Garwood CJ, Simpson JE, Heath PR, Mortiboys H, Wharton SB. Persistent DNA damage alters the neuronal transcriptome suggesting cell cycle dysregulation and altered mitochondrial function. Eur J Neurosci 2021; 54(9): 6987-7005.
[358]
Shadfar S, Brocardo M, Atkin JD. The complex mechanisms by which neurons die following DNA damage in neurodegenerative diseases. Int J Mol Sci 2022; 23(5): 2484.
[http://dx.doi.org/10.3390/ijms23052484] [PMID: 35269632]
[359]
Gupta S, You P, SenGupta T, Nilsen H, Sharma K. Crosstalk between different DNA repair pathways contributes to neurodegenerative diseases. Biology 2021; 10(2): 163.
[http://dx.doi.org/10.3390/biology10020163] [PMID: 33669593]
[360]
Nisar S, Bhat AA, Hashem S, et al. Genetic and neuroimaging approaches to understanding post-traumatic stress disorder. Int J Mol Sci 2020; 21(12): 4503.
[http://dx.doi.org/10.3390/ijms21124503] [PMID: 32599917]
[361]
Sherin JE, Nemeroff CB. Post-traumatic stress disorder: The neurobiological impact of psychological trauma. Dialogues Clin Neurosci 2011; 13(3): 263-78.
[http://dx.doi.org/10.31887/DCNS.2011.13.2/jsherin] [PMID: 22034143]
[362]
Seah C, Breen MS, Rusielewicz T, et al. Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nat Neurosci 2022; 25(11): 1434-45.
[http://dx.doi.org/10.1038/s41593-022-01161-y] [PMID: 36266471]
[363]
Bansal Y, Kuhad A. Mitochondrial dysfunction in depression. Curr Neuropharmacol 2016; 14(6): 610-8.
[http://dx.doi.org/10.2174/1570159X14666160229114755] [PMID: 26923778]
[364]
Khan M, Baussan Y, Hebert-Chatelain E. Connecting dots between mitochondrial dysfunction and depression. Biomolecules 2023; 13(4): 695.
[http://dx.doi.org/10.3390/biom13040695] [PMID: 37189442]
[365]
Hollis F, Pope BS, Gorman-Sandler E, Wood SK. Neuroinflammation and mitochondrial dysfunction link social stress to depression. Curr Top Behav Neurosci 2022; 54: 59-93.
[http://dx.doi.org/10.1007/7854_2021_300] [PMID: 35184261]
[366]
Allen J, Caruncho HJ, Kalynchuk LE. Severe life stress, mitochondrial dysfunction, and depressive behavior: A pathophysiological and therapeutic perspective. Mitochondrion 2021; 56: 111-7.
[http://dx.doi.org/10.1016/j.mito.2020.11.010] [PMID: 33220501]
[367]
Karabatsiakis A, Schönfeldt-Lecuona C. Depression, mitochondrial bioenergetics, and electroconvulsive therapy: A new approach towards personalized medicine in psychiatric treatment - A short review and current perspective. Transl Psychiatry 2020; 10(1): 226.
[http://dx.doi.org/10.1038/s41398-020-00901-7] [PMID: 32647150]
[368]
Visentin APV, Colombo R, Scotton E, et al. Targeting inflammatory-mitochondrial response in major depression: Current evidence and further challenges. Oxid Med Cell Longev 2020; 2020: 1-20.
[http://dx.doi.org/10.1155/2020/2972968] [PMID: 32351669]
[369]
Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 2017; 13(8): 477-91.
[http://dx.doi.org/10.1038/nrneurol.2017.99] [PMID: 28731040]
[370]
de Mena L, Lopez-Scarim J, Rincon-Limas DE. TDP-43 and ER stress in neurodegeneration: Friends or foes? Front Mol Neurosci 2021; 14: 772226.
[http://dx.doi.org/10.3389/fnmol.2021.772226] [PMID: 34759799]
[371]
Kim S, Kim DK, Jeong S, Lee J. The common cellular events in the neurodegenerative diseases and the associated role of endoplasmic reticulum stress. Int J Mol Sci 2022; 23(11): 5894.
[http://dx.doi.org/10.3390/ijms23115894] [PMID: 35682574]
[372]
Nevell L, Zhang K, Aiello AE, et al. Elevated systemic expression of ER stress related genes is associated with stress-related mental disorders in the Detroit Neighborhood Health Study. Psychoneuroendocrinology 2014; 43: 62-70.
[http://dx.doi.org/10.1016/j.psyneuen.2014.01.013] [PMID: 24703171]
[373]
Guedes VA, Lai C, Devoto C, et al. Extracellular vesicle proteins and MicroRNAs are linked to chronic post-traumatic stress disorder symptoms in service members and veterans with mild traumatic brain injury. Front Pharmacol 2021; 12: 745348.
[http://dx.doi.org/10.3389/fphar.2021.745348] [PMID: 34690777]
[374]
Han F, Yan S, Shi Y. Single-prolonged stress induces endoplasmic reticulum-dependent apoptosis in the hippocampus in a rat model of post-traumatic stress disorder. PLoS One 2013; 8(7): e69340.
[http://dx.doi.org/10.1371/journal.pone.0069340] [PMID: 23894451]
[375]
Criado-Marrero M, Rein T, Binder EB, Porter JT, Koren J 3rd, Blair LJ. Hsp90 and FKBP51: Complex regulators of psychiatric diseases. Philos Trans R Soc Lond B Biol Sci 1738; 373(1738): 20160532.
[376]
Rajkumar RP. Biomarkers of neurodegeneration in post-traumatic stress disorder: An integrative review. Biomedicines 2023; 11(5): 1465.
[http://dx.doi.org/10.3390/biomedicines11051465] [PMID: 37239136]
[377]
Mohamed AZ, Cumming P, Srour H, et al. Amyloid pathology fingerprint differentiates post-traumatic stress disorder and traumatic brain injury. Neuroimage Clin 2018; 19: 716-26.
[http://dx.doi.org/10.1016/j.nicl.2018.05.016] [PMID: 30009128]
[378]
Justice NJ, Huang L, Tian JB, et al. Posttraumatic stress disorder- like induction elevates β-amyloid levels, which directly activates corticotropin-releasing factor neurons to exacerbate stress responses. J Neurosci 2015; 35(6): 2612-23.
[http://dx.doi.org/10.1523/JNEUROSCI.3333-14.2015] [PMID: 25673853]
[379]
Yamanaka G, Hayashi K, Morishita N, et al. Experimental and clinical investigation of cytokines in migraine: A narrative review. Int J Mol Sci 2023; 24(9): 8343.
[http://dx.doi.org/10.3390/ijms24098343] [PMID: 37176049]
[380]
Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol 2019; 10: 1008.
[http://dx.doi.org/10.3389/fphar.2019.01008] [PMID: 31572186]
[381]
Buckley PF. Neuroinflammation and schizophrenia. Curr Psychiatry Rep 2019; 21(8): 72.
[http://dx.doi.org/10.1007/s11920-019-1050-z] [PMID: 31267432]
[382]
Tanaka M, Toldi J, Vécsei L. Exploring the etiological links behind neurodegenerative diseases: Inflammatory cytokines and bioactive kynurenines. Int J Mol Sci 2020; 21(7): 2431.
[http://dx.doi.org/10.3390/ijms21072431] [PMID: 32244523]
[383]
Wu S, Wolfe A. Signaling of cytokines is important in regulation of GnRH neurons. Mol Neurobiol 2012; 45(1): 119-25.
[http://dx.doi.org/10.1007/s12035-011-8224-y] [PMID: 22161498]
[384]
Johnson JD, Barnard DF, Kulp AC, Mehta DM. Neuroendocrine regulation of brain cytokines after psychological stress. J Endocr Soc 2019; 3(7): 1302-20.
[http://dx.doi.org/10.1210/js.2019-00053] [PMID: 31259292]
[385]
Felger JC, Lotrich FE. Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience 2013; 246: 199-229.
[http://dx.doi.org/10.1016/j.neuroscience.2013.04.060] [PMID: 23644052]
[386]
Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009; 65(9): 732-41.
[http://dx.doi.org/10.1016/j.biopsych.2008.11.029] [PMID: 19150053]
[387]
Anisman H, Merali Z, Hayley S. Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: Comorbidity between depression and neurodegenerative disorders. Prog Neurobiol 2008; 85(1): 1-74.
[http://dx.doi.org/10.1016/j.pneurobio.2008.01.004] [PMID: 18346832]
[388]
Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits. Depress Anxiety 2013; 30(4): 297-306.
[http://dx.doi.org/10.1002/da.22084] [PMID: 23468190]
[389]
Correia AS, Vale N. Tryptophan metabolism in depression: A narrative review with a focus on serotonin and kynurenine pathways. Int J Mol Sci 2022; 23(15): 8493.
[http://dx.doi.org/10.3390/ijms23158493] [PMID: 35955633]
[390]
de Oliveira CM, Sakata RK, Issy AM, Gerola LR, Salomão R. Cytokines and pain. Rev Bras Anesthesiol Cytokines Pain 2011; 61(2): 255-9, 260-5, 137-42.
[http://dx.doi.org/10.1016/S0034-7094(11)70029-0]
[391]
Candee R, Wilkenson R, Schreiber M, DeCenzo M. The roles of neuroinflammation and glutamatergic excitotoxicity in treatment-resistant depression. JAAPA 2023; 36(4): 12-7.
[http://dx.doi.org/10.1097/01.JAA.0000921252.57819.4b] [PMID: 36913608]
[392]
Jewett BE, Thapa B. Physiology, NMDA receptor. StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[393]
Neves D, Salazar IL, Almeida RD, Silva RM. Molecular mechanisms of ischemia and glutamate excitotoxicity. Life Sci 2023; 328: 121814.
[http://dx.doi.org/10.1016/j.lfs.2023.121814] [PMID: 37236602]
[394]
Ji N, Lei M, Chen Y, Tian S, Li C, Zhang B. How oxidative stress induces depression? ASN Neuro 2023; 15: 17590914231181037.
[http://dx.doi.org/10.1177/17590914231181037] [PMID: 37331994]
[395]
Kalkman HO. Novel treatment targets based on insights in the etiology of depression: Role of IL-6 trans-signaling and stress-induced elevation of glutamate and ATP. Pharmaceuticals 2019; 12(3): 113.
[http://dx.doi.org/10.3390/ph12030113] [PMID: 31362361]
[396]
Francija E, Petrovic Z, Brkic Z, Mitic M, Radulovic J, Adzic M. Disruption of the NMDA receptor GluN2A subunit abolishes inflammation-induced depression. Behav Brain Res 2019; 359: 550-9.
[http://dx.doi.org/10.1016/j.bbr.2018.10.011] [PMID: 30296532]
[397]
Ye Y, Yao S, Wang R, et al. PI3K/Akt/NF-κB signaling pathway regulates behaviors in adolescent female rats following with neonatal maternal deprivation and chronic mild stress. Behav Brain Res 2019; 362: 199-207.
[http://dx.doi.org/10.1016/j.bbr.2019.01.008] [PMID: 30630016]
[398]
Afridi R, Suk K. Microglial responses to stress-induced depression: Causes and consequences. Cells 2023; 12(11): 1521.
[http://dx.doi.org/10.3390/cells12111521] [PMID: 37296642]
[399]
Wang H, He Y, Sun Z, et al. Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation 2022; 19(1): 132.
[http://dx.doi.org/10.1186/s12974-022-02492-0] [PMID: 35668399]
[400]
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial inflammatory-metabolic pathways and their potential therapeutic implication in major depressive disorder. Front Psychiatry 2022; 13: 871997.
[http://dx.doi.org/10.3389/fpsyt.2022.871997] [PMID: 35782423]
[401]
Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr 2010; 20(2): 87-103.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10] [PMID: 21133840]
[402]
Brites D, Fernandes A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 2015; 9: 476.
[http://dx.doi.org/10.3389/fncel.2015.00476] [PMID: 26733805]
[403]
Isik S, Yeman Kiyak B, Akbayir R, Seyhali R, Arpaci T. Microglia mediated neuroinflammation in Parkinson’s disease. Cells 2023; 12(7): 1012.
[http://dx.doi.org/10.3390/cells12071012] [PMID: 37048085]
[404]
Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and neuroinflammation: Crucial pathological mechanisms in traumatic brain injury-induced neurodegeneration. Front Aging Neurosci 2022; 14: 825086.
[http://dx.doi.org/10.3389/fnagi.2022.825086] [PMID: 35401152]
[405]
Muzio L, Viotti A, Martino G. Microglia in neuroinflammation and neurodegeneration: From understanding to therapy. Front Neurosci 2021; 15: 742065.
[http://dx.doi.org/10.3389/fnins.2021.742065] [PMID: 34630027]
[406]
Javanmehr N, Saleki K, Alijanizadeh P, Rezaei N. Microglia dynamics in aging-related neurobehavioral and neuroinflammatory diseases. J Neuroinflammation 2022; 19(1): 273.
[http://dx.doi.org/10.1186/s12974-022-02637-1] [PMID: 36397116]
[407]
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat Rev Neurol 2021; 17(3): 157-72.
[http://dx.doi.org/10.1038/s41582-020-00435-y] [PMID: 33318676]
[408]
Guo J, Qiu T, Wang L, et al. Microglia loss and astrocyte activation cause dynamic changes in hippocampal [18F]DPA-714 uptake in mouse models of depression. Front Cell Neurosci 2022; 16: 802192.
[http://dx.doi.org/10.3389/fncel.2022.802192] [PMID: 35250485]
[409]
Li S, Fang Y, Zhang Y, et al. Microglial NLRP3 inflammasome activates neurotoxic astrocytes in depression-like mice. Cell Rep 2022; 41(4): 111532.
[http://dx.doi.org/10.1016/j.celrep.2022.111532] [PMID: 36288697]
[410]
Deng S, Chen J, Wang F. Microglia: A central player in depression. Curr Med Sci 2020; 40(3): 391-400.
[http://dx.doi.org/10.1007/s11596-020-2193-1] [PMID: 32681244]
[411]
Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci 2015; 38(10): 637-58.
[http://dx.doi.org/10.1016/j.tins.2015.08.001] [PMID: 26442697]
[412]
He X, Li Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 2022; 55(9): e13275.
[http://dx.doi.org/10.1111/cpr.13275] [PMID: 35754255]
[413]
Shih RH, Wang CY, Yang CM. NF-kappaB signaling pathways in neurological inflammation: A mini review. Front Mol Neurosci 2015; 8: 77.
[http://dx.doi.org/10.3389/fnmol.2015.00077] [PMID: 26733801]
[414]
Wang DB, Kinoshita C, Kinoshita Y, Morrison RS. p53 and mitochondrial function in neurons. Biochim Biophys Acta Mol Basis Dis 2014; 1842(8): 1186-97.
[http://dx.doi.org/10.1016/j.bbadis.2013.12.015] [PMID: 24412988]
[415]
Moens U, Kostenko S, Sveinbjørnsson B. The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes 2013; 4(2): 101-33.
[http://dx.doi.org/10.3390/genes4020101] [PMID: 24705157]
[416]
Corrêa SAL, Eales KL. The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct 2012; 2012: 1-12.
[http://dx.doi.org/10.1155/2012/649079] [PMID: 22792454]
[417]
Zhang X, Connelly J, Levitan ES, Sun D, Wang JQ. Calcium/calmodulin–dependent protein kinase II in cerebrovascular diseases. Transl Stroke Res 2021; 12(4): 513-29.
[http://dx.doi.org/10.1007/s12975-021-00901-9] [PMID: 33713030]
[418]
Wilkaniec A, Gąssowska-Dobrowolska M, Strawski M, Adamczyk A, Czapski GA. Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity. J Neuroinflamm 2018; 15(1): 1.
[http://dx.doi.org/10.1186/s12974-017-1027-y] [PMID: 29301548]
[419]
Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde YA. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J Neurosci 2002; 22(3): 854-62.
[http://dx.doi.org/10.1523/JNEUROSCI.22-03-00854.2002] [PMID: 11826115]
[420]
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. Mol Biomed 2023; 4(1): 40.
[http://dx.doi.org/10.1186/s43556-023-00151-1] [PMID: 37938494]
[421]
Jain M, Singh MK, Shyam H, et al. Role of JAK/STAT in the neuroinflammation and its association with neurological disorders. Ann Neurosci 2021; 28(3-4): 191-200.
[http://dx.doi.org/10.1177/09727531211070532] [PMID: 35341232]
[422]
Rusek M, Smith J, El-Khatib K, Aikins K, Czuczwar SJ, Pluta R. The role of the JAK/STAT signaling pathway in the pathogenesis of Alzheimer’s disease: New potential treatment target. Int J Mol Sci 2023; 24(1): 864.
[http://dx.doi.org/10.3390/ijms24010864] [PMID: 36614305]
[423]
Nie L, Sun K, Gong Z, Li H, Quinn JP, Wang M. Src family kinases facilitate the crosstalk between CGRP and cytokines in sensitizing trigeminal ganglion via transmitting CGRP receptor/PKA pathway. Cells 2022; 11(21): 3498.
[http://dx.doi.org/10.3390/cells11213498] [PMID: 36359895]
[424]
Nicolas CS, Amici M, Bortolotto ZA, et al. The role of JAK-STAT signaling within the CNS. JAK-STAT 2013; 2(1): e22925.
[http://dx.doi.org/10.4161/jkst.22925] [PMID: 24058789]
[425]
McGregor G, Irving AJ, Harvey J. Canonical JAK-STAT signaling is pivotal for long-term depression at adult hippocampal temporoammonic-CA1 synapses. FASEB J 2017; 31(8): 3449-66.
[http://dx.doi.org/10.1096/fj.201601293RR] [PMID: 28461339]
[426]
Nicolas CS, Peineau S, Amici M, et al. The Jak/STAT pathway is involved in synaptic plasticity. Neuron 2012; 73(2): 374-90.
[http://dx.doi.org/10.1016/j.neuron.2011.11.024] [PMID: 22284190]
[427]
Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: Anatomical sites and molecular mechanisms. Trends Immunol 2005; 26(9): 485-95.
[http://dx.doi.org/10.1016/j.it.2005.07.004] [PMID: 16039904]
[428]
Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vascul Biol 2020; 2(1): H1-H18.
[http://dx.doi.org/10.1530/VB-19-0033] [PMID: 32923970]
[429]
Sommer A, Winner B, Prots I. The Trojan horse-neuroinflammatory impact of T cells in neurodegenerative diseases. Mol Neurodegener 2017; 12(1): 78.
[http://dx.doi.org/10.1186/s13024-017-0222-8] [PMID: 29078813]
[430]
Miller AH. Depression and immunity: A role for T cells? Brain Behav Immun 2010; 24(1): 1-8.
[http://dx.doi.org/10.1016/j.bbi.2009.09.009] [PMID: 19818725]
[431]
Hu H, Yang X, He Y, Duan C, Sun N. Psychological stress induces depressive-like behavior associated with bone marrow-derived monocyte infiltration into the hippocampus independent of blood–brain barrier disruption. J Neuroinflamm 2022; 19(1): 208.
[http://dx.doi.org/10.1186/s12974-022-02569-w] [PMID: 36002834]
[432]
Pariante CM. Depression, stress and the adrenal axis. J Neuroendocrinol 2003; 15(8): 811-2.
[http://dx.doi.org/10.1046/j.1365-2826.2003.01058.x] [PMID: 12834443]
[433]
Varghese FP, Brown ES. The hypothalamic-pituitary-adrenal axis in major depressive disorder: A brief primer for primary care physicians. Prim Care Companion J Clin Psychiatry 2001; 3(4): 151-5.
[PMID: 15014598]
[434]
Menke A. Is the HPA axis as target for depression outdated, or is there a new hope? Front Psychiatry 2019; 10: 101.
[http://dx.doi.org/10.3389/fpsyt.2019.00101] [PMID: 30890970]
[435]
Ceruso A, Martínez-Cengotitabengoa M, Peters-Corbett A, Diaz-Gutierrez MJ, Martínez-Cengotitabengoa M. Alterations of the HPA axis observed in patients with major depressive disorder and their relation to early life stress: A systematic review. Neuropsychobiology 2020; 79(6): 417-27.
[http://dx.doi.org/10.1159/000506484] [PMID: 32203965]
[436]
Kakehi R, Hori H, Yoshida F, et al. Hypothalamic-pituitary-adrenal axis and renin-angiotensin-aldosterone system in adulthood PTSD and childhood maltreatment history. Front Psychiatry 2023; 13: 967779.
[http://dx.doi.org/10.3389/fpsyt.2022.967779] [PMID: 36699501]
[437]
Stanton LM, Price AJ, Manning EE. Hypothalamic corticotrophin releasing hormone neurons in stress-induced psychopathology: Revaluation of synaptic contributions. J Neuroendocrinol 2023; 35(4): e13268.
[http://dx.doi.org/10.1111/jne.13268] [PMID: 37078436]
[438]
Mandelli L, Milaneschi Y, Hiles S, Serretti A, Penninx BW. Unhealthy lifestyle impacts on biological systems involved in stress response: Hypothalamic-pituitary-adrenal axis, inflammation and autonomous nervous system. Int Clin Psychopharmacol 2023; 38(3): 127-35.
[http://dx.doi.org/10.1097/YIC.0000000000000437] [PMID: 36730700]
[439]
Trzeciak P, Herbet M. Role of the intestinal microbiome, intestinal barrier and psychobiotics in depression. Nutrients 2021; 13(3): 927.
[http://dx.doi.org/10.3390/nu13030927] [PMID: 33809367]
[440]
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015; 9: 392.
[http://dx.doi.org/10.3389/fncel.2015.00392] [PMID: 26528128]
[441]
Chang L, Wei Y, Hashimoto K. Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res Bull 2022; 182: 44-56.
[http://dx.doi.org/10.1016/j.brainresbull.2022.02.004] [PMID: 35151796]
[442]
Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: From pathogenesis to treatment. EBioMedicine 2023; 90: 104527.
[http://dx.doi.org/10.1016/j.ebiom.2023.104527] [PMID: 36963238]
[443]
Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: Double trouble. Neuron 2020; 107(2): 234-56.
[http://dx.doi.org/10.1016/j.neuron.2020.06.002] [PMID: 32553197]
[444]
Tubbs JD, Ding J, Baum L, Sham PC. Immune dysregulation in depression: Evidence from genome-wide association. Brain, Behavior, Immunity - Health 2020; 7: 100108.
[http://dx.doi.org/10.1016/j.bbih.2020.100108] [PMID: 34589869]
[445]
Andersson NW, Goodwin RD, Okkels N, et al. Depression and the risk of severe infections: Prospective analyses on a nationwide representative sample. Int J Epidemiol 2016; 45(1): 131-9.
[http://dx.doi.org/10.1093/ije/dyv333] [PMID: 26708840]
[446]
Marshall GD Jr. Psychological stress, immune dysfunction, and allergy. Ann Allergy Asthma Immunol 2020; 125(4): 365-6.
[http://dx.doi.org/10.1016/j.anai.2020.08.020] [PMID: 32981592]
[447]
Reiche EMV, Nunes SOV, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol 2004; 5(10): 617-25.
[http://dx.doi.org/10.1016/S1470-2045(04)01597-9] [PMID: 15465465]
[448]
Cañas-González B, Fernández-Nistal A, Ramírez JM, Martínez-Fernández V. Influence of stress and depression on the immune system in patients evaluated in an anti-aging unit. Front Psychol 2020; 11: 1844.
[http://dx.doi.org/10.3389/fpsyg.2020.01844] [PMID: 32849086]
[449]
Geng C, Guo Y, Wang C, et al. Systematic impacts of chronic unpredictable mild stress on metabolomics in rats. Sci Rep 2020; 10(1): 700.
[http://dx.doi.org/10.1038/s41598-020-57566-x] [PMID: 31959868]
[450]
Shaffer C, Westlin C, Quigley KS, Whitfield-Gabrieli S, Barrett LF. Allostasis, action, and affect in depression: Insights from the theory of constructed emotion. Annu Rev Clin Psychol 2022; 18(1): 553-80.
[http://dx.doi.org/10.1146/annurev-clinpsy-081219-115627] [PMID: 35534123]
[451]
de Oliveira C, Sabbah W, Bernabé E. Allostatic load and depressive symptoms in older adults: An analysis of 12-year panel data. Psychoneuroendocrinology 2023; 152: 106100.
[http://dx.doi.org/10.1016/j.psyneuen.2023.106100] [PMID: 36989564]
[452]
Epel E. Psychological and metabolic stress: A recipe for accelerated cellular aging? Hormones 2009; 8(1): 7-22.
[http://dx.doi.org/10.14310/horm.2002.1217] [PMID: 19269917]
[453]
Fleshner M, Crane CR. Exosomes, DAMPs and miRNA: Features of stress physiology and immune homeostasis. Trends Immunol 2017; 38(10): 768-76.
[http://dx.doi.org/10.1016/j.it.2017.08.002] [PMID: 28838855]
[454]
Fleshner M. Stress-evoked sterile inflammation, danger associated molecular patterns (DAMPs), microbial associated molecular patterns (MAMPs) and the inflammasome. Brain Behav Immun 2013; 27(1): 1-7.
[http://dx.doi.org/10.1016/j.bbi.2012.08.012] [PMID: 22964544]
[455]
Tatayeva R, Ossadchaya E, Sarkulova S, Sembayeva Z, Koigeldinova S. Psychosomatic aspects of the development of comorbid pathology: A review. Med J Islam Repub Iran 2022; 36: 152.
[http://dx.doi.org/10.47176/mjiri.36.152] [PMID: 36636258]
[456]
Feng L, Li Z, Gu X, Jiang J, Liu X. Psychosomatic disorders in patients with gastrointestinal diseases: Single-center cross-sectional study of 1186 inpatients. Gastroenterol Res Pract 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/6637084] [PMID: 34007268]
[457]
Witusik A, Mokros Ł, Kamecki K, Pietras T, Bąk B. Astma jako choroba psychosomatyczna. Paul Merkur Lekarski 2022; 50(295): 51-3.
[458]
Sabel BA, Wang J, Cárdenas-Morales L, Faiq M, Heim C. Mental stress as consequence and cause of vision loss: The dawn of psychosomatic ophthalmology for preventive and personalized medicine. EPMA J 2018; 9(2): 133-60.
[http://dx.doi.org/10.1007/s13167-018-0136-8] [PMID: 29896314]
[459]
Friend SF, Nachnani R, Powell SB, Risbrough VB. C-reactive protein: Marker of risk for post-traumatic stress disorder and its potential for a mechanistic role in trauma response and recovery. Eur J Neurosci 2022; 55(9-10): 2297-310.
[http://dx.doi.org/10.1111/ejn.15031] [PMID: 33131159]
[460]
Speelman T, Dale L, Louw A, Verhoog NJD. The association of acute phase proteins in stress and inflammation-induced T2D. Cells 2022; 11(14): 2163.
[http://dx.doi.org/10.3390/cells11142163] [PMID: 35883605]
[461]
Renner V, Schellong J, Bornstein S, Petrowski K. Stress-induced pro- and anti-inflammatory cytokine concentrations in female PTSD and depressive patients. Transl Psychiatry 2022; 12(1): 158.
[http://dx.doi.org/10.1038/s41398-022-01921-1] [PMID: 35422029]
[462]
Renner V, Joraschky P, Kirschbaum C, Schellong J, Petrowski K. Pro- and anti-inflammatory cytokines Interleukin-6 and Interleukin-10 predict therapy outcome of female patients with posttraumatic stress disorder. Transl Psychiatry 2022; 12(1): 472.
[http://dx.doi.org/10.1038/s41398-022-02230-3] [PMID: 36351891]
[463]
Kim IB, Lee JH, Park SC. The relationship between stress, inflammation, and depression. Biomedicines 2022; 10(8): 1929.
[http://dx.doi.org/10.3390/biomedicines10081929] [PMID: 36009476]
[464]
Anisman H, Merali Z. Cytokines, stress, and depressive illness. Brain Behav Immun 2002; 16(5): 513-24.
[http://dx.doi.org/10.1016/S0889-1591(02)00009-0] [PMID: 12401465]
[465]
Dion-Albert L, Cadoret A, Doney E, et al. Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat Commun 2022; 13(1): 164.
[http://dx.doi.org/10.1038/s41467-021-27604-x] [PMID: 35013188]
[466]
Matsuno H, Tsuchimine S, O’Hashi K, et al. Association between vascular endothelial growth factor-mediated blood–brain barrier dysfunction and stress-induced depression. Mol Psychiatry 2022; 27(9): 3822-32.
[http://dx.doi.org/10.1038/s41380-022-01618-3] [PMID: 35618888]
[467]
Medina-Rodriguez EM, Beurel E. Blood brain barrier and inflammation in depression. Neurobiol Dis 2022; 175: 105926.
[http://dx.doi.org/10.1016/j.nbd.2022.105926] [PMID: 36375722]
[468]
Dudek KA, Dion-Albert L, Lebel M, et al. Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proc Natl Acad Sci 2020; 117(6): 3326-36.
[http://dx.doi.org/10.1073/pnas.1914655117] [PMID: 31974313]
[469]
Gal Z, Torok D, Gonda X, et al. Inflammation and blood-brain barrier in depression: Interaction of CLDN5 and IL6 gene variants in stress-induced depression. Int J Neuropsychopharmacol 2023; 26(3): 189-97.
[http://dx.doi.org/10.1093/ijnp/pyac079] [PMID: 36472886]
[470]
Blasco BV, García-Jiménez J, Bodoano I, Gutiérrez-Rojas L. Obesity and depression: Its prevalence and influence as a prognostic factor: A systematic review. Psychiatry Investig 2020; 17(8): 715-24.
[http://dx.doi.org/10.30773/pi.2020.0099] [PMID: 32777922]
[471]
Ouakinin SRS, Barreira DP, Gois CJ. Depression and obesity: Integrating the role of stress, neuroendocrine dysfunction and inflammatory pathways. Front Endocrinol 2018; 9: 431.
[http://dx.doi.org/10.3389/fendo.2018.00431] [PMID: 30108549]
[472]
Eik-Nes TT, Tokatlian A, Raman J, Spirou D, Kvaløy K. Depression, anxiety, and psychosocial stressors across BMI classes: A Norwegian population study - The HUNT study. Front Endocrinol 2022; 13: 886148.
[http://dx.doi.org/10.3389/fendo.2022.886148] [PMID: 36034441]
[473]
Sarwar H, Rafiqi SI, Ahmad S, et al. Hyperinsulinemia associated depression. Clin Med Insights Endocrinol Diabetes 2022; 15: 11795514221090244.
[http://dx.doi.org/10.1177/11795514221090244] [PMID: 35494421]
[474]
Lyra e Silva NM, Lam MP, Soares CN, Munoz DP, Milev R, De Felice FG. Insulin resistance as a shared pathogenic mechanism between depression and type 2 diabetes. Front Psychiatry 2019; 10: 57.
[http://dx.doi.org/10.3389/fpsyt.2019.00057] [PMID: 30837902]
[475]
Kleinridders A, Cai W, Cappellucci L, et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci 2015; 112(11): 3463-8.
[http://dx.doi.org/10.1073/pnas.1500877112] [PMID: 25733901]
[476]
Leonard BE, Wegener G. Inflammation, insulin resistance and neuroprogression in depression. Acta Neuropsychiatr 2020; 32(1): 1-9.
[http://dx.doi.org/10.1017/neu.2019.17] [PMID: 31186075]
[477]
Shea S, Lionis C, Kite C, et al. Non-alcoholic fatty liver disease (NAFLD) and potential links to depression, anxiety, and chronic stress. Biomedicines 2021; 9(11): 1697.
[http://dx.doi.org/10.3390/biomedicines9111697] [PMID: 34829926]
[478]
Choi JM, Chung GE, Kang SJ, et al. Association between anxiety and depression and nonalcoholic fatty liver disease. Front Med 2021; 7: 585618.
[http://dx.doi.org/10.3389/fmed.2020.585618] [PMID: 33537324]
[479]
Manusov EG, Diego VP, Sheikh K, Laston S, Blangero J, Williams-Blangero S. Non-alcoholic fatty liver disease and depression: Evidence for genotype × environment interaction in mexican americans. Front Psychiatry 2022; 13: 936052.
[http://dx.doi.org/10.3389/fpsyt.2022.936052] [PMID: 35845438]
[480]
Xiao J, Lim LKE, Ng CH, et al. Is fatty liver associated with depression? a meta-analysis and systematic review on the prevalence, risk factors, and outcomes of depression and non-alcoholic fatty liver disease. Front Med 2021; 8: 691696.
[http://dx.doi.org/10.3389/fmed.2021.691696] [PMID: 34277666]
[481]
Rubio-Guerra AF, Rodriguez-Lopez L, Vargas-Ayala G, Huerta-Ramirez S, Serna DC, Lozano-Nuevo JJ. Depression increases the risk for uncontrolled hypertension. Exp Clin Cardiol 2013; 18(1): 10-2.
[PMID: 24294029]
[482]
Kretchy IA, Owusu-Daaku FT, Danquah SA. Mental health in hypertension: Assessing symptoms of anxiety, depression and stress on anti-hypertensive medication adherence. Int J Ment Health Syst 2014; 8(1): 25.
[http://dx.doi.org/10.1186/1752-4458-8-25] [PMID: 24987456]
[483]
Cohen BE, Edmondson D, Kronish IM. State of the art review: Depression, stress, anxiety, and cardiovascular disease. Am J Hypertens 2015; 28(11): 1295-302.
[http://dx.doi.org/10.1093/ajh/hpv047] [PMID: 25911639]
[484]
Carnovale C, Perrotta C, Baldelli S, et al. Antihypertensive drugs and brain function: Mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res 2023; 119(3): 647-67.
[http://dx.doi.org/10.1093/cvr/cvac110] [PMID: 35895876]
[485]
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13: 1053136.
[http://dx.doi.org/10.3389/fimmu.2022.1053136] [PMID: 36761172]
[486]
Yao B, Meng L, Hao M, Zhang Y, Gong T, Guo Z. Chronic stress: A critical risk factor for atherosclerosis. J Int Med Res 2019; 47(4): 1429-40.
[http://dx.doi.org/10.1177/0300060519826820] [PMID: 30799666]
[487]
Gao S, Wang X, Meng L, et al. Recent progress of chronic stress in the development of atherosclerosis. Oxid Med Cell Longev 2022; 2022: 1-10.
[http://dx.doi.org/10.1155/2022/4121173] [PMID: 35300174]
[488]
Riahi SM, Yousefi A, Saeedi F, Martin SS. Associations of emotional social support, depressive symptoms, chronic stress, and anxiety with hard cardiovascular disease events in the United States: the multi-ethnic study of atherosclerosis (MESA). BMC Cardiovasc Disord 2023; 23(1): 236.
[http://dx.doi.org/10.1186/s12872-023-03195-x] [PMID: 37142978]
[489]
Jee YH, Chang H, Jung KJ, Jee SH. Cohort study on the effects of depression on atherosclerotic cardiovascular disease risk in Korea. BMJ Open 2019; 9(6): e026913.
[http://dx.doi.org/10.1136/bmjopen-2018-026913] [PMID: 31227532]
[490]
Li Z, Tong X, Ma Y, Bao T, Yue J. Prevalence of depression in patients with sarcopenia and correlation between the two diseases: Systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2022; 13(1): 128-44.
[http://dx.doi.org/10.1002/jcsm.12908] [PMID: 34997702]
[491]
Chang KV, Hsu TH, Wu WT, Huang KC, Han DS. Is sarcopenia associated with depression? A systematic review and meta-analysis of observational studies. Age Ageing 2017; 46(5): 738-46.
[http://dx.doi.org/10.1093/ageing/afx094] [PMID: 28633395]
[492]
Gao K, Ma WZ, Huck S, et al. Association between sarcopenia and depressive symptoms in chinese older adults: Evidence from the China health and retirement longitudinal study. Front Med 2021; 8: 755705.
[http://dx.doi.org/10.3389/fmed.2021.755705] [PMID: 34869454]
[493]
Shiba T, Sato R, Sawaya Y, et al. Sarcopenia with depression presents a more severe disability than only sarcopenia among japanese older adults in need of long-term care. Medicina 2023; 59(6): 1095.
[http://dx.doi.org/10.3390/medicina59061095] [PMID: 37374299]
[494]
Fiske A, Wetherell JL, Gatz M. Depression in older adults. Annu Rev Clin Psychol 2009; 5(1): 363-89.
[http://dx.doi.org/10.1146/annurev.clinpsy.032408.153621] [PMID: 19327033]
[495]
Zenebe Y, Akele B. Prevalence and determinants of depression among old age: A systematic review and meta-analysis. Ann Gen Psychiatry 2021; 20(1): 55.
[http://dx.doi.org/10.1186/s12991-021-00375-x] [PMID: 34922595]
[496]
Szymkowicz SM, Gerlach AR, Homiack D, Taylor WD. Biological factors influencing depression in later life: Role of aging processes and treatment implications. Transl Psychiatry 2023; 13(1): 160.
[http://dx.doi.org/10.1038/s41398-023-02464-9] [PMID: 37160884]
[497]
Thapa DK, Visentin DC, Kornhaber R, Cleary M. Prevalence and factors associated with depression, anxiety, and stress symptoms among older adults: A cross-sectional population-based study. Nurs Health Sci 2020; 22(4): 1139-52.
[http://dx.doi.org/10.1111/nhs.12783] [PMID: 33026688]
[498]
Vishwakarma D, Gaidhane A, Bhoi SR. Depression and its associated factors among the elderly population in India: A review. Cureus 2023; 15(6): e41013.
[http://dx.doi.org/10.7759/cureus.41013] [PMID: 37519597]
[499]
Wong TS, Li G, Li S, et al. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8(1): 177.
[http://dx.doi.org/10.1038/s41392-023-01427-2] [PMID: 37137892]
[500]
Stratz C, Anakwue J, Bhatia H, Pitz S, Fiebich BL. Anti-inflammatory effects of 5-HT3 receptor antagonists in interleukin-1beta stimulated primary human chondrocytes. Int Immunopharmacol 2014; 22(1): 160-6.
[http://dx.doi.org/10.1016/j.intimp.2014.06.003] [PMID: 24975660]
[501]
Irving H, Turek I, Kettle C, Yaakob N. Tapping into 5-HT3 receptors to modify metabolic and immune responses. Int J Mol Sci 2021; 22(21): 11910.
[http://dx.doi.org/10.3390/ijms222111910] [PMID: 34769340]
[502]
Lu J, Wu W. Cholinergic modulation of the immune system – A novel therapeutic target for myocardial inflammation. Int Immunopharmacol 2021; 93: 107391.
[http://dx.doi.org/10.1016/j.intimp.2021.107391] [PMID: 33548577]
[503]
Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol Psychiatry 2022; 28(8): 3243-56.
[PMID: 35854107]
[504]
Jamu IM, Okamoto H. Recent advances in understanding adverse effects associated with drugs targeting the serotonin receptor, 5-HT GPCR. Front Global Women’s Health 2022; 3: 1012463.
[http://dx.doi.org/10.3389/fgwh.2022.1012463] [PMID: 36619589]
[505]
Ślifirski G, Król M, Turło J. 5-HT receptors and the development of new antidepressants. Int J Mol Sci 2021; 22(16): 9015.
[http://dx.doi.org/10.3390/ijms22169015] [PMID: 34445721]
[506]
Lin J, Liu W, Guan J, et al. Latest updates on the serotonergic system in depression and anxiety. Front Synaptic Neurosci 2023; 15: 1124112.
[http://dx.doi.org/10.3389/fnsyn.2023.1124112] [PMID: 37228487]
[507]
Wilson DR, Warise L. Cytokines and their role in depression. Perspect Psychiatr Care 2008; 44(4): 285-9.
[http://dx.doi.org/10.1111/j.1744-6163.2008.00188.x] [PMID: 18826467]
[508]
Sacramento PM, Monteiro C, Dias ASO, et al. Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4+ T-cell subsets in multiple sclerosis patients. Eur J Immunol 2018; 48(8): 1376-88.
[http://dx.doi.org/10.1002/eji.201847525] [PMID: 29719048]
[509]
Ramírez LA, Pérez-Padilla EA, García-Oscos F, Salgado H, Atzori M, Pineda JC. A new theory of depression based on the serotonin/kynurenine relationship and the hypothalamicpituitary-adrenal axis. Biomédica 2018; 38(3): 437-50.
[PMID: 30335249]
[510]
Köhler-Forsberg O, N Lydholm C, Hjorthøj C, Nordentoft M, Mors O, Benros ME. Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: Meta-analysis of clinical trials. Acta Psychiatr Scand 2019; 139(5): 404-19.
[http://dx.doi.org/10.1111/acps.13016] [PMID: 30834514]
[511]
Simon MS, Arteaga-Henríquez G, Fouad Algendy A, Siepmann T, Illigens BMW. Anti-inflammatory treatment efficacy in major depressive disorder: A systematic review of meta-analyses. Neuropsychiatr Dis Treat 2023; 19: 1-25.
[http://dx.doi.org/10.2147/NDT.S385117] [PMID: 36636142]
[512]
Fanibunda SE, Deb S, Maniyadath B, et al. Serotonin regulates mitochondrial biogenesis and function in rodent cortical neurons via the 5-HT2A receptor and SIRT1-PGC-1α axis. Proc Natl Acad Sci 2019; 116(22): 11028-37.
[http://dx.doi.org/10.1073/pnas.1821332116] [PMID: 31072928]
[513]
Tatum MC, Ooi FK, Chikka MR, et al. Neuronal serotonin release triggers the heat shock response in C. Elegans in the absence of temperature increase. Curr Biol 2015; 25(2): 163-74.
[http://dx.doi.org/10.1016/j.cub.2014.11.040] [PMID: 25557666]
[514]
Yang Y, Huang H, Xu Z, Duan J. Serotonin and its receptor as a new antioxidant therapeutic target for diabetic kidney disease. J Diabetes Res 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/7680576] [PMID: 28929122]
[515]
Battal D, Yalin S, Eker ED, et al. Possible role of selective serotonin reuptake inhibitor sertraline on oxidative stress responses. Eur Rev Med Pharmacol Sci 2014; 18(4): 477-84.
[PMID: 24610613]
[516]
Zhang FF, Peng W, Sweeney JA, Jia ZY, Gong QY. Brain structure alterations in depression: Psychoradiological evidence. CNS Neurosci Ther 2018; 24(11): 994-1003.
[http://dx.doi.org/10.1111/cns.12835] [PMID: 29508560]
[517]
Han KM, Ham BJ. How inflammation affects the brain in depression: A review of functional and structural MRI studies. J Clin Neurol 2021; 17(4): 503-15.
[http://dx.doi.org/10.3988/jcn.2021.17.4.503] [PMID: 34595858]
[518]
Goldsmith DR, Bekhbat M, Mehta ND, Felger JC. Inflammation-related functional and structural dysconnectivity as a pathway to psychopathology. Biol Psychiatry 2023; 93(5): 405-18.
[http://dx.doi.org/10.1016/j.biopsych.2022.11.003] [PMID: 36725140]
[519]
Ermakov EA, Mednova IA, Boiko AS, Buneva VN, Ivanova SA. Chemokine dysregulation and neuroinflammation in schizophrenia: A systematic review. Int J Mol Sci 2023; 24(3): 2215.
[http://dx.doi.org/10.3390/ijms24032215] [PMID: 36768537]
[520]
Patlola SR, Donohoe G, McKernan DP. The relationship between inflammatory biomarkers and cognitive dysfunction in patients with schizophrenia: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121: 110668.
[http://dx.doi.org/10.1016/j.pnpbp.2022.110668] [PMID: 36283512]
[521]
Messina A, Concerto C, Rodolico A, Petralia A, Caraci F, Signorelli MS. Is it time for a paradigm shift in the treatment of schizophrenia? the use of inflammation-reducing and neuroprotective drugs-a review. Brain Sci 2023; 13(6): 957.
[http://dx.doi.org/10.3390/brainsci13060957] [PMID: 37371435]
[522]
Kronfol Z, Remick DG. Cytokines and the brain: Implications for clinical psychiatry. Am J Psychiat 2000; 157(5): 683-94.
[http://dx.doi.org/10.1176/appi.ajp.157.5.683] [PMID: 10784457]
[523]
Abg Abd Wahab DY, Gau CH, Zakaria R, et al. Review on cross talk between neurotransmitters and neuroinflammation in striatum and cerebellum in the mediation of motor behaviour. BioMed Res Int 2019; 2019: 1-10.
[http://dx.doi.org/10.1155/2019/1767203] [PMID: 31815123]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy