Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

The Dosage Recommendation of Cyclosporin in Children with Hemophagocytic Lymphohistiocytosis based on Population Pharmacokinetic Model

Author(s): Yang Yang, Ya-Feng Li, Ke Hu, Shi-Jia Zhang, Jia-Fang Cui, Xue-Ting Huang, Su-Mei He*, Dong-Dong Wang* and Xiao Chen*

Volume 29, Issue 37, 2023

Published on: 07 December, 2023

Page: [2996 - 3004] Pages: 9

DOI: 10.2174/0113816128286290231124055116

Price: $65

Abstract

Objectives: Cyclosporin is one of the therapeutic regimens for hemophagocytic lymphohistiocytosis (HLH); however, the optimal dosage of cyclosporine in children with HLH is unknown. It has been found that piperacillin-tazobactam affects the cyclosporine pharmacokinetic process in pediatric HLH patients. Thus, the purpose of the present study was to recommend cyclosporin dosage for pediatric HLH with and without piperacillin- tazobactam.

Methods: A previously established cyclosporine population pharmacokinetic model for pediatric HLH patients has been used in this study to recommend optimal dosage based on Monte Carlo simulation. The pediatric HLH patients have been included in eight weight groups (5, 10, 20, 30, 40, 50, 60, 70 kg) for sixteen dosages (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 mg/kg), split into one dose or two doses.

Results: The optimal cyclosporin dosages for children having HLH without piperacillin-tazobactam have been found to be 15, 13, 12, 11, 10, and 9 mg/kg, split into two doses for weights of 5-7, 7-10, 10-20, 20-28, 28-45, and 45-70 kg, respectively. For children with HLH, optimal cyclosporin dosages with piperacillin-tazobactam have been found to be 8 and 7 mg/kg, split into two doses for weights of 5-20 and 20-70 kg, respectively.

Conclusion: It is the first time that the cyclosporin dosage regimens for HLH in children have been developed based on Monte Carlo simulation, and the initial dosage optimizations of cyclosporine in pediatric HLH patients have been recommended.

Keywords: Cyclosporine, dosage recommendation, pediatric hemophagocytic lymphohistiocytosis, piperacillin-tazobactam, Monte Carlo simulation, pharmacokinetic model.

« Previous
[1]
Amber T, Tabassum S. Cyclosporin in dermatology: A practical compendium. Dermatol Ther 2020; 33(6): e13934.
[http://dx.doi.org/10.1111/dth.13934] [PMID: 32602210]
[2]
Guaguère E, Steffan J, Olivry T. Cyclosporin A: A new drug in the field of canine dermatology. Vet Dermatol 2004; 15(2): 61-74.
[http://dx.doi.org/10.1111/j.1365-3164.2004.00376.x] [PMID: 15030555]
[3]
Leclerc V, Ducher M, Ceraulo A, Bertrand Y, Bleyzac N. A clinical decision support tool to find the best initial intravenous cyclosporine regimen in pediatric hematopoietic stem cell transplantation. J Clin Pharmacol 2021; 61(11): 1485-92.
[http://dx.doi.org/10.1002/jcph.1924] [PMID: 34105165]
[4]
Hibi T, Tanabe M, Hoshino K, et al. Cyclosporine A-based immunotherapy in adult living donor liver transplantation: Accurate and improved therapeutic drug monitoring by 4-hr intravenous infusion. Transplantation 2011; 92(1): 100-5.
[http://dx.doi.org/10.1097/TP.0b013e31821dcae3] [PMID: 21546866]
[5]
Kraeuter M, Helmschrott M, Erbel C, et al. Conversion to generic cyclosporine A in stable chronic patients after heart transplantation. Drug Des Devel Ther 2013; 7: 1421-6.
[PMID: 24348018]
[6]
Schachtner T, Otto NM, Reinke P. Cyclosporine use and male gender are independent determinants of avascular necrosis after kidney transplantation: A cohort study. Nephrol Dial Transplant 2018; 33(11): 2060-6.
[http://dx.doi.org/10.1093/ndt/gfy148] [PMID: 29868874]
[7]
Sumethkul K, Kitumnuaypong T, Angthararak S, Pichaiwong W. Low-dose cyclosporine for active lupus nephritis: A dose titration approach. Clin Rheumatol 2019; 38(8): 2151-9.
[http://dx.doi.org/10.1007/s10067-019-04469-6] [PMID: 30937637]
[8]
Goumenos DS, Katopodis KP, Passadakis P, et al. Corticosteroids and ciclosporin A in idiopathic membranous nephropathy: Higher remission rates of nephrotic syndrome and less adverse reactions than after traditional treatment with cytotoxic drugs. Am J Nephrol 2007; 27(3): 226-31.
[http://dx.doi.org/10.1159/000101367] [PMID: 17389782]
[9]
Kitano Y, Yoshikawa N, Tanaka R, Nakamura H, Ninomiya M, Ito H. Ciclosporin treatment in children with steroid-dependent nephrotic syndrome. Pediatr Nephrol 1990; 4(5): 474-7.
[http://dx.doi.org/10.1007/BF00869823] [PMID: 2242308]
[10]
Tanaka R, Yoshikawa N, Kitano Y, Ito H, Nakamura H. Longterm ciclosporin treatment in children with steroid-dependent nephrotic syndrome. Pediatr Nephrol 1993; 7(3): 249-52.
[http://dx.doi.org/10.1007/BF00853209] [PMID: 8518091]
[11]
Trottestam H, Horne A, Aricò M, et al. Chemoimmunotherapy for hemophagocytic lymphohistiocytosis: Long-term results of the HLH-94 treatment protocol. Blood 2011; 118(17): 4577-84.
[http://dx.doi.org/10.1182/blood-2011-06-356261] [PMID: 21900192]
[12]
Stéphan JL, Donadieu J, Ledeist F, Blanche S, Griscelli C, Fischer A. Treatment of familial hemophagocytic lymphohistiocytosis with antithymocyte globulins, steroids, and cyclosporin A. Blood 1993; 82(8): 2319-23.
[http://dx.doi.org/10.1182/blood.V82.8.2319.2319] [PMID: 8400285]
[13]
Loechelt BJ, Egeler M, Filipovich AH, Jyonouchi H, Shapiro RS. Immunosuppression: Preliminary results of alternative maintenance therapy for familial hemophagocytic lymphohistiocytosis (FHL). Med Pediatr Oncol 1994; 22(5): 325-8.
[http://dx.doi.org/10.1002/mpo.2950220505] [PMID: 8127256]
[14]
Thompson PA, Allen CE, Horton T, Jones JY, Vinks AA, McClain KL. Severe neurologic side effects in patients being treated for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 2009; 52(5): 621-5.
[http://dx.doi.org/10.1002/pbc.21838] [PMID: 19137570]
[15]
Patocka J, Nepovimova E, Kuca K, Wu W, Cyclosporine A. Chemistry and toxicity - A review. Curr Med Chem 2020.
[16]
Umpiérrez M, Guevara N, Ibarra M, Fagiolino P, Vázquez M, Maldonado C. Development of a population pharmacokinetic model for cyclosporine from therapeutic drug monitoring data. BioMed Res Int 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/3108749] [PMID: 33928146]
[17]
Capolongo G, Damiano S, Suzumoto Y, et al. Cyclosporin-induced hypertension is associated with the up-regulation of Na+-K+-2Cl-cotransporter (NKCC2). Nephrol Dial Transplant 2023; gfad161.
[http://dx.doi.org/10.1093/ndt/gfad161] [PMID: 37463050]
[18]
Gao ZX, Zhou R, Li MY, et al. Activation of Kir4.1/Kir5.1 contributes to the cyclosporin A-induced stimulation of the renal NaCl cotransporter and hyperkalemic hypertension. Acta Physiol 2023; 238(2): e13948.
[http://dx.doi.org/10.1111/apha.13948] [PMID: 36764674]
[19]
Esteva-Font C, Ars E, Guillen-Gomez E, et al. Ciclosporin-induced hypertension is associated with increased sodium transporter of the loop of Henle (NKCC2). Nephrol Dial Transplant 2007; 22(10): 2810-6.
[http://dx.doi.org/10.1093/ndt/gfm390] [PMID: 17595192]
[20]
Capone D, Stanziale P, Gentile A, Imperatore P, Pellegrino T, Basile V. Effects of simvastatin and pravastatin on hyperlipidemia and cyclosporin blood levels in renal transplant recipients. Am J Nephrol 1999; 19(3): 411-5.
[http://dx.doi.org/10.1159/000013487] [PMID: 10393380]
[21]
Spinelli GA, Felipe CR, Machado PG, et al. Relationship of cyclosporin and sirolimus blood concentrations regarding the incidence and severity of hyperlipidemia after kidney transplantation. Braz J Med Biol Res 2006; 39(1): 19-30.
[http://dx.doi.org/10.1590/S0100-879X2006000100003] [PMID: 16400461]
[22]
Hodel K, Mordasini RC, Brunner FP, Thiel G. Cyclosporin A and hyperlipidemia after kidney transplantation. Prospective study. Schweiz Med Wochenschr 1986; 116(26): 885-8.
[PMID: 3526534]
[23]
Kaur S, Vaishnavi C, Ray P, Kochhar R, Prasad KK. Effect of biotherapeutics on cyclosporin-induced Clostridium difficile infection in mice. J Gastroenterol Hepatol 2010; 25(4): 832-8.
[http://dx.doi.org/10.1111/j.1440-1746.2009.06135.x] [PMID: 20074161]
[24]
Worm HC, Wirnsberger GH, Mauric A, Holzer H. High prevalence of Chlamydia pneumoniae infection in cyclosporin A-induced post-transplant gingival overgrowth tissue and evidence for the possibility of persistent infection despite short-term treatment with azithromycin. Nephrol Dial Transplant 2004; 19(7): 1890-4.
[http://dx.doi.org/10.1093/ndt/gfh095] [PMID: 15128877]
[25]
Abou-Jaoude M, Ghantous I, Almawi WY. Tacrolimus (FK506) versus cyclosporin a microemulsion (neoral) maintenance immunosuppression: Effects on graft survival and function, infection, and metabolic profile following kidney transplantation (KT). Mol Immunol 2003; 39(17-18): 1095-100.
[http://dx.doi.org/10.1016/S0161-5890(03)00070-1] [PMID: 12835083]
[26]
Durnian JM, Stewart RM, Tatham R, Batterbury M, Kaye SB. Cyclosporin-A associated malignancy. Clin Ophthalmol 2007; 1(4): 421-30.
[PMID: 19668519]
[27]
Paul C, Hornig F. Risk of malignancy associated with cyclosporin use in psoriasis. Dermatology 1999; 198(3): 320-1.
[PMID: 10419287]
[28]
Green C, Hawk JLM. Cutaneous malignancy related to cyclosporin A therapy. Clin Exp Dermatol 1993; 18(1): 30-1.
[http://dx.doi.org/10.1111/j.1365-2230.1993.tb00961.x] [PMID: 8440049]
[29]
Kutlay S, Savaş S, Yalçin P, Ataman S, Ergin S. Central nervous system toxicity of cyclosporin A treatment in rheumatoid arthritis. Br J Rheumatol 1997; 36(3): 397-9.
[http://dx.doi.org/10.1093/rheumatology/36.3.397] [PMID: 9133978]
[30]
Porschke H, Strenge H, Stauch C. Polyneuropathy and central nervous system diseases before and after heart transplantation. Is cyclosporin neurotoxic?. Dtsch Med Wochenschr 1991; 116(42): 1577-82.
[http://dx.doi.org/10.1055/s-2008-1063791] [PMID: 1935623]
[31]
Bösmüller C, Steurer W, Königsrainer A, Willeit J, Margreiter R. Increased risk of central nervous system toxicity in patients treated with ciclosporin and imipenem/cilastatin. Nephron J 1991; 58(3): 362-4.
[http://dx.doi.org/10.1159/000186453] [PMID: 1896102]
[32]
Schönfeld B, Szabadi A, Pintér E, Kun J, Bán Á. Can gingival hyperplasia caused by cyclosporin A be prevented by removing dental plaque? Orv Hetil 2022; 163(42): 1663-9.
[PMID: 36244010]
[33]
Martín JM, Mateo E, Jordá E. Azithromycin for the treatment of ciclosporin-induced gingival hyperplasia. Actas Dermo-Sifiliográficas 2016; 107(9): 780.
[http://dx.doi.org/10.1016/j.adengl.2016.08.004] [PMID: 26996332]
[34]
V’lckova-Laskoska MT. Cyclosporin A-induced gingival hyperplasia in psoriasis: Review of the literature and case reports. Acta Dermatovenerol Croat 2005; 13(2): 108-13.
[PMID: 16324424]
[35]
Walker RG, Cottrell S, Sharp K, et al. Conversion of cyclosporine to tacrolimus in stable renal allograft recipients: Quantification of effects on the severity of gingival enlargement and hirsutism and patient-reported outcomes. Nephrology 2007; 12(6): 607-14.
[http://dx.doi.org/10.1111/j.1440-1797.2007.00884.x] [PMID: 17995589]
[36]
Vergoulas G, Eleftheriadis T, Avdelidou A, et al. Body dysmorphic disorder due to hirsutism in a patient treated with cyclosporin. Nephrol Dial Transplant 2005; 20(2): 473.
[http://dx.doi.org/10.1093/ndt/gfh635] [PMID: 15673709]
[37]
Liu APY, Cheuk DKL, Lee AHY, et al. Cyclosporin A for persistent or chronic immune thrombocytopenia in children. Ann Hematol 2016; 95(11): 1881-6.
[http://dx.doi.org/10.1007/s00277-016-2791-y] [PMID: 27525725]
[38]
Faheem SA, Hazem RM, Elsayed NM, Ahmed YM, Saeed NM. Niclosamide modulates cyclosporin A-induced hepatotoxicity in a mouse model: PPAR-γ and Wnt/β-catenin crosstalk. Int Immunopharmacol 2023; 117: 109941.
[http://dx.doi.org/10.1016/j.intimp.2023.109941] [PMID: 37012891]
[39]
Faheem SA, El- Sayed NM, Moustafa YM, Saeed NM, Hazem RM. Pyrvinium pamoate ameliorates cyclosporin A- induced hepatotoxicity via the modulation of Wnt/β-catenin signaling and upregulation of PPAR-γ. Int Immunopharmacol 2022; 104: 108538.
[http://dx.doi.org/10.1016/j.intimp.2022.108538] [PMID: 35074592]
[40]
Akool ES. Molecular mechanisms of the protective role of wheat germ oil against cyclosporin A-induced hepatotoxicity in rats. Pharm Biol 2015; 53(9): 1311-7.
[http://dx.doi.org/10.3109/13880209.2014.980584] [PMID: 25858514]
[41]
Davidson A, Dick G, Pritchard-Jones K, Pinkerton R. EVE/cyclosporin (etoposide, vincristine, epirubicin with high-dose cyclosporin)-chemotherapy selected for multidrug resistance modulation. Eur J Cancer 2002; 38(18): 2422-7.
[http://dx.doi.org/10.1016/S0959-8049(02)00493-8] [PMID: 12460787]
[42]
Oellerich M, Schütz E, Armstrong VW. Monitoring of cyclosporin and azathioprine in organ transplantation. Drug Metabol Drug Interact 1997; 14(1): 17-32.
[http://dx.doi.org/10.1515/DMDI.1997.14.1.17] [PMID: 9713575]
[43]
Sun H, Peng Z, Liu K, Liu S. Norepinephrine alleviates cyclosporin A-induced nephrotoxicity by enhancing the expression of SFRP1. Open Med 2023; 18(1): 20230769.
[http://dx.doi.org/10.1515/med-2023-0769] [PMID: 37588659]
[44]
Xia Z, Zhang C, Guo C, et al. Nanoformulation of a carbon monoxide releasing molecule protects against cyclosporin A-induced nephrotoxicity and renal fibrosis via the suppression of the NLRP3 inflammasome mediated TGF-β/Smad pathway. Acta Biomater 2022; 144: 42-53.
[http://dx.doi.org/10.1016/j.actbio.2022.03.024] [PMID: 35304324]
[45]
Liu X, Li G, Liu X, et al. Clinical nephrotoxicity induced by cyclosporin A combined with hormone therapy for nephrotic syndrome. Pak J Pharm Sci 2021; 34(6(Special)): 2441-5.
[PMID: 35039257]
[46]
Han C, Jiang Y, Li W, Liu Y. Astragalus membranaceus and Salvia miltiorrhiza ameliorates cyclosporin A-induced chronic nephrotoxicity through the “gut-kidney axis”. J Ethnopharmacol 2021; 269: 113768.
[http://dx.doi.org/10.1016/j.jep.2020.113768] [PMID: 33383113]
[47]
Wang DD, Ye QF, Chen X, Xu H, Li ZP. Population pharmacokinetics and initial dosing regimen optimization of cyclosporin in pediatric hemophagocytic lymphohistiocytosis patients. Xenobiotica 2020; 50(4): 435-41.
[http://dx.doi.org/10.1080/00498254.2019.1651419] [PMID: 31382792]
[48]
Jung YS, Jin BH, Park MS, Kim CO, Chae D. Population PHARMACOKINETIC-PHARMACODYNAMIC modeling of clopidogrel for dose regimen optimization based on CYP2C19 phenotypes: A proof of concept study. CPT Pharmacomet Syst Pharmacol 2023; 13053.
[http://dx.doi.org/10.1002/psp4.13053] [PMID: 37775990]
[49]
Dvořáčková E, Šíma M, Zajacová A, et al. Dosing optimization of posaconazole in lung-transplant recipients based on population pharmacokinetic model. Antibiotics 2023; 12(9): 1399.
[http://dx.doi.org/10.3390/antibiotics12091399] [PMID: 37760696]
[50]
Li A, Mak WY, Ruan T, et al. Population pharmacokinetics of Amisulpride in Chinese patients with schizophrenia with external validation: The impact of renal function. Front Pharmacol 2023; 14: 1215065.
[http://dx.doi.org/10.3389/fphar.2023.1215065] [PMID: 37731733]
[51]
He S, Zhao J, Bian J, et al. Population pharmacokinetics and pharmacogenetics analyses of dasatinib in Chinese patients with chronic myeloid leukemia. Pharm Res 2023; 40(10): 2413-22.
[http://dx.doi.org/10.1007/s11095-023-03603-z] [PMID: 37726405]
[52]
Kang SW, Jo HG, Kim D, et al. Population pharmacokinetics and model-based dosing optimization of teicoplanin in elderly critically ill patients with pneumonia. J Crit Care 2023; 78: 154402.
[http://dx.doi.org/10.1016/j.jcrc.2023.154402] [PMID: 37634293]
[53]
He S, Shao Q, Zhao J, et al. Population pharmacokinetics and pharmacogenetics analyses of imatinib in Chinese patients with chronic myeloid leukemia in a real-world situation. Cancer Chemother Pharmacol 2023; 92(5): 399-410.
[http://dx.doi.org/10.1007/s00280-023-04581-0] [PMID: 37624393]
[54]
Chen X, Wang D, Zhu L, et al. Population pharmacokinetics and initial dose optimization of sirolimus improving drug blood level for seizure control in pediatric patients with tuberous sclerosis complex. Front Pharmacol 2021; 12: 647232.
[http://dx.doi.org/10.3389/fphar.2021.647232] [PMID: 33995061]
[55]
Ehl S, Astigarraga I, von Bahr Greenwood T, et al. Recommendations for the use of etoposide-based therapy and bone marrow transplantation for the treatment of HLH: Consensus statements by the hlh steering committee of the histiocyte society. J Allergy Clin Immunol Pract 2018; 6(5): 1508-17.
[http://dx.doi.org/10.1016/j.jaip.2018.05.031] [PMID: 30201097]
[56]
Wang DD, Mei YQ, Yang L, et al. Optimization of initial dose regimen of tacrolimus in paediatric lung transplant recipients based on Monte Carlo simulation. J Clin Pharm Ther 2022; 47(10): 1659-66.
[http://dx.doi.org/10.1111/jcpt.13717] [PMID: 35716040]
[57]
Locatelli F, Jordan MB, Allen C, et al. Emapalumab in children with primary hemophagocytic lymphohistiocytosis. N Engl J Med 2020; 382(19): 1811-22.
[http://dx.doi.org/10.1056/NEJMoa1911326] [PMID: 32374962]
[58]
Han X, Ye Q, Zhang W, Tang Y, Xu X, Zhang T. Cytokine profiles as novel diagnostic markers of Epstein-Barr virus–associated hemophagocytic lymphohistiocytosis in children. J Crit Care 2017; 39: 72-7.
[http://dx.doi.org/10.1016/j.jcrc.2017.02.018] [PMID: 28222313]
[59]
Ramos-Casals M, Brito-Zerón P, López-Guillermo A, Khamashta MA, Bosch X. Adult haemophagocytic syndrome. Lancet 2014; 383(9927): 1503-16.
[http://dx.doi.org/10.1016/S0140-6736(13)61048-X] [PMID: 24290661]
[60]
Knaak C, Schuster FS, Spies C, et al. Hemophagocytic lymphohistiocytosis in critically Ill patients. Shock 2020; 53(6): 701-9.
[http://dx.doi.org/10.1097/SHK.0000000000001454] [PMID: 31626037]
[61]
Machowicz R, Janka G, Wiktor-Jedrzejczak W. Similar but not the same: Differential diagnosis of HLH and sepsis. Crit Rev Oncol Hematol 2017; 114: 1-12.
[http://dx.doi.org/10.1016/j.critrevonc.2017.03.023] [PMID: 28477737]
[62]
Xi Y, Bai Y. Diagnostic value of red blood cell distribution width, platelet distribution width, and red blood cell distribution width to platelet ratio in children with hemophagocytic lymphohistiocytosis. J Clin Lab Anal 2021; 35(9): e23909.
[http://dx.doi.org/10.1002/jcla.23909] [PMID: 34273201]
[63]
Canna SW, Marsh RA. Pediatric hemophagocytic lymphohistiocytosis. Blood 2020; 135(16): 1332-43.
[http://dx.doi.org/10.1182/blood.2019000936] [PMID: 32107531]
[64]
Liang Y, Wu Z, Zhao L, et al. Therapeutic drug monitoring and pharmacokinetic analysis of cyclosporine in a pediatric patient with hemophagocytic lymphohistiocytosis complicated by diabetes insipidus: A grand round. Ther Drug Monit 2021; 43(3): 303-6.
[http://dx.doi.org/10.1097/FTD.0000000000000875] [PMID: 33560100]
[65]
in ’t Veld AE, Jansen MAA, Huisman BW, et al. Monitoring of ex vivo cyclosporin a activity in healthy volunteers using t cell function assays in relation to whole blood and cellular pharmacokinetics. Pharmaceutics 2022; 14(9): 1958.
[http://dx.doi.org/10.3390/pharmaceutics14091958] [PMID: 36145707]
[66]
Gaies E, Ben Sassi M, Charfi R, et al. Therapeutic durg monitoring of cyclosporin using area under the curve in nephrotic syndrome. Tunis Med 2019; 97(2): 360-4.
[PMID: 31539095]
[67]
Ni S, Zhao W, Wang J, et al. Population pharmacokinetics of ciclosporin in Chinese children with aplastic anemia: Effects of weight, renal function and stanozolol administration. Acta Pharmacol Sin 2013; 34(7): 969-75.
[http://dx.doi.org/10.1038/aps.2013.9] [PMID: 23624757]
[68]
Hinchliffe E, Adaway JE, Keevil BG. Simultaneous measurement of cyclosporin A and tacrolimus from dried blood spots by ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 883-884: 102-7.
[http://dx.doi.org/10.1016/j.jchromb.2011.05.016] [PMID: 21680259]
[69]
Sugioka N, Kokuhu T, Okamoto M, et al. Effect of plasma lipid on pharmacokinetics of ciclosporin and its relationship with plasma prednisolone level in renal transplant patients. J Pharm Pharmacol 2010; 58(9): 1193-200.
[http://dx.doi.org/10.1211/jpp.58.9.0005] [PMID: 16945177]
[70]
Wang DD, He SM, Yang Y, et al. Effects of cimetidine on ciclosporin population pharmacokinetics and initial dose optimization in aplastic anemia patients. Eur J Pharm Sci 2022; 174: 106183.
[http://dx.doi.org/10.1016/j.ejps.2022.106183] [PMID: 35398292]
[71]
Chen X, Wang D, Zheng F, et al. Effects of posaconazole on tacrolimus population pharmacokinetics and initial dose in children with Crohn’s disease undergoing hematopoietic stem cell transplantation. Front Pharmacol 2022; 13: 758524.
[http://dx.doi.org/10.3389/fphar.2022.758524] [PMID: 35496296]
[72]
Chen X, Wang D, Lan J, et al. Effects of voriconazole on population pharmacokinetics and optimization of the initial dose of tacrolimus in children with chronic granulomatous disease undergoing hematopoietic stem cell transplantation. Ann Transl Med 2021; 9(18): 1477.
[http://dx.doi.org/10.21037/atm-21-4124] [PMID: 34734029]
[73]
Elkayal O, Spriet I, Uyttebroeck A, et al. A population pharmacokinetic modeling and simulation study of posaconazole oral suspension in immunocompromised pediatric patients: A short communication. Ther Drug Monit 2021; 43(4): 512-8.
[http://dx.doi.org/10.1097/FTD.0000000000000877] [PMID: 33560094]
[74]
Woillard JB, Bouchet S, Fayon M, Marquet P, Monchaud C, Bui S. A population pharmacokinetic modeling approach to determine the efficacy of intravenous amikacin in children with cystic fibrosis. Ther Drug Monit 2021; 43(4): 499-504.
[http://dx.doi.org/10.1097/FTD.0000000000000855] [PMID: 33346630]
[75]
Li Y, Lu J, Kang Y, et al. Nemonoxacin dosage adjustment in patients with severe renal impairment based on population pharmacokinetic and pharmacodynamic analysis. Br J Clin Pharmacol 2021; 87(12): 4636-47.
[http://dx.doi.org/10.1111/bcp.14881] [PMID: 33928669]
[76]
Huh KY, Hwang S, Park SY, et al. Population pharmacokinetic modelling and simulation to determine the optimal dose of nanoparticulated sorafenib to the reference sorafenib. Pharmaceutics 2021; 13(5): 629.
[http://dx.doi.org/10.3390/pharmaceutics13050629] [PMID: 33925058]
[77]
Por ED, Akers KS, Chung KK, Livezey JR, Selig DJ. Population pharmacokinetic modeling and simulations of imipenem in burn patients with and without continuous venovenous hemofiltration in the military health system. J Clin Pharmacol 2021; 61(9): 1182-94.
[http://dx.doi.org/10.1002/jcph.1865] [PMID: 33811332]
[78]
Jing Y, Kong Y, Hou X, et al. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients. J Clin Pharm Ther 2021; 46(4): 1117-28.
[http://dx.doi.org/10.1111/jcpt.13407] [PMID: 33768546]
[79]
Wang D, Chen X, Li Z. Cyclosporin population pharmacokinetics in pediatric refractory nephrotic syndrome based on real‑world studies: Effects of body weight and spirolactone administration. Exp Ther Med 2019; 17(4): 3015-20.
[http://dx.doi.org/10.3892/etm.2019.7325] [PMID: 30936972]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy