Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Antiviral Peptides Derived from Plants: Their Designs and Functions

Author(s): Haleh Feyzyab, Nikoo Fathi and Azam Bolhassani*

Volume 30, Issue 12, 2023

Published on: 27 November, 2023

Page: [975 - 985] Pages: 11

DOI: 10.2174/0109298665278148231106052509

Price: $65

conference banner
Abstract

In recent years, plant-derived bioactive compounds have been developed as antiviral agents. Plants synthesize a variety of compounds, especially peptides, which possess antimicrobial activity. Current studies have shown that some antimicrobial peptides have antiviral activity against a wide range of human DNA and RNA viruses and play an effective role in the treatment of human viral diseases. These peptides act through different mechanisms. They can integrate into the envelope of the target virus or cell membrane of the host, resulting in an unstable membrane. For instance, some peptides prevent the attachment of viral spike proteins to host cells. On the other hand, some peptides may alter the cellular pathways, including DNA replication or protein synthesis, leading to the suppression of viral infection. However, the antiviral activity of peptides can be affected by their chemical and structural properties. In several studies, the properties of antimicrobial (antiviral) peptides were altered by minor modifications, but these changes require tools to predict. Recently, computational approaches have been introduced to analyze the effects of structural modifications on the physicochemical properties, mechanism of action, stability, and activity of peptides. In this mini-review, we will describe the design and function of antiviral peptides derived from plants.

Keywords: Antimicrobial peptides, antiviral peptides, plant-derived peptides, computational approach, DNA replication, viral infection.

Graphical Abstract
[1]
Mammari, N.; Krier, Y.; Albert, Q.; Devocelle, M.; Varbanov, M. Plant-derived antimicrobial peptides as potential antiviral agents in systemic viral infections. Pharmaceutical, 2021, 14(8), 774.
[http://dx.doi.org/10.3390/ph14080774] [PMID: 34451871]
[2]
Vilas Boas, L.C.P.; Campos, M.L.; Berlanda, R.L.A.; de Carvalho Neves, N.; Franco, O.L. Antiviral peptides as promising therapeutic drugs. Cell. Mol. Life Sci., 2019, 76(18), 3525-3542.
[http://dx.doi.org/10.1007/s00018-019-03138-w] [PMID: 31101936]
[3]
Heydari, H.; Golmohammadi, R.; Mirnejad, R.; Tebyanian, H.; Fasihi-Ramandi, M.; Moosazadeh, M.M. Antiviral peptides against Coronaviridae family: A review. Peptides, 2021, 139, 170526.
[http://dx.doi.org/10.1016/j.peptides.2021.170526] [PMID: 33676968]
[4]
Owen, L.; Laird, K.; Shivkumar, M. Antiviral plant-derived natural products to combat RNA viruses: Targets throughout the viral life cycle. Lett. Appl. Microbiol., 2022, 75(3), 476-499.
[http://dx.doi.org/10.1111/lam.13637] [PMID: 34953146]
[5]
Jaiswal, M.; Singh, A.; Kumar, S. PTPAMP: Prediction tool for plant-derived antimicrobial peptides. Amino Acids, 2023, 55(1), 1-7.
[http://dx.doi.org/10.21203/rs.3.rs-1678740/v1]
[6]
Mani, S.; Bhatt, S.B.; Vasudevan, V.; Prabhu, D.; Rajamanikandan, S.; Velusamy, P.; Ramasamy, P.; Raman, P. The updated review on plant peptides and their applications in human health. Int. J. Pept. Res. Ther., 2022, 28(5), 135.
[http://dx.doi.org/10.1007/s10989-022-10437-7] [PMID: 35911180]
[7]
Ashaolu, T.J.; Nawaz, A.; Walayat, N.; Khalifa, I. Potential “biopeptidal” therapeutics for severe respiratory syndrome coronaviruses: a review of antiviral peptides, viral mechanisms, and prospective needs. Appl. Microbiol. Biotechnol., 2021, 105(9), 3457-3470.
[http://dx.doi.org/10.1007/s00253-021-11267-1] [PMID: 33876282]
[8]
Agarwal, G.; Gabrani, R. Antiviral peptides: Identification and validation. Int. J. Pept. Res. Ther., 2021, 27(1), 149-168.
[http://dx.doi.org/10.1007/s10989-020-10072-0] [PMID: 32427225]
[9]
Weidmann, J.; Craik, D.J. Discovery, structure, function, and applications of cyclotides: Circular proteins from plants. J. Exp. Bot., 2016, 67(16), 4801-4812.
[http://dx.doi.org/10.1093/jxb/erw210] [PMID: 27222514]
[10]
Henriques, S.T.; Huang, Y.H.; Rosengren, K.J.; Franquelim, H.G.; Carvalho, F.A.; Johnson, A.; Sonza, S.; Tachedjian, G.; Castanho, M.A.R.B.; Daly, N.L.; Craik, D.J. Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J. Biol. Chem., 2011, 286(27), 24231-24241.
[http://dx.doi.org/10.1074/jbc.M111.253393] [PMID: 21576247]
[11]
Conzelmann, C.; Muratspahić, E.; Tomašević, N.; Münch, J.; Gruber, C.W. In vitro inhibition of HIV-1 by cyclotide-enriched extracts of Viola tricolor. Front. Pharmacol., 2022, 13, 888961.
[http://dx.doi.org/10.3389/fphar.2022.888961] [PMID: 35712712]
[12]
Camargo Filho, I.; Cortez, D.A.G.; Ueda-Nakamura, T.; Nakamura, C.V.; Dias Filho, B.P. Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine, 2008, 15(3), 202-208.
[http://dx.doi.org/10.1016/j.phymed.2007.07.059] [PMID: 17890069]
[13]
Wong, J.H.; Ng, T.B. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides, 2005, 26(7), 1120-1126.
[http://dx.doi.org/10.1016/j.peptides.2005.01.003] [PMID: 15949629]
[14]
Ngai, P.H.K.; Ng, T.B. Phaseococcin, an antifungal protein with antiproliferative and anti-HIV-1 reverse transcriptase activities from small scarlet runner beans. Biochem. Cell Biol., 2005, 83(2), 212-220.
[http://dx.doi.org/10.1139/o05-037] [PMID: 15864329]
[15]
Uckun, F.M.; Rustamova, L.; Vassilev, A.O.; Tibbles, H.E.; Petkevich, A.S. CNS activity of Pokeweed anti-viral protein (PAP) in mice infected with lymphocytic choriomeningitis virus (LCMV). BMC Infect. Dis., 2005, 5(1), 9.
[http://dx.doi.org/10.1186/1471-2334-5-9] [PMID: 15725345]
[16]
Ishag, H.Z.A.; Li, C.; Huang, L.; Sun, M.; Ni, B.; Guo, C.; Mao, X. Inhibition of Japanese encephalitis virus infection in vitro and in vivo by pokeweed antiviral protein. Virus Res., 2013, 171(1), 89-96.
[http://dx.doi.org/10.1016/j.virusres.2012.10.032] [PMID: 23142554]
[17]
Domashevskiy, A.; Goss, D. Pokeweed antiviral protein, a ribosome inactivating protein: Activity, inhibition and prospects. Toxin, 2015, 7(2), 274-298.
[http://dx.doi.org/10.3390/toxins7020274] [PMID: 25635465]
[18]
Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther., 2022, 7(1), 48.
[http://dx.doi.org/10.1038/s41392-022-00904-4] [PMID: 35165272]
[19]
Ashraf, Z.; Gani, A.; Shah, A.; Gani, A.; Noor, N.; Hassan, I.; Masoodi, F.A. Bioactive compounds from plant sources as natural antivirals in combating RNA based viruses including COVID-19. J. Food Sci. Nutr.,, 2021, 7, 085.
[20]
Hall, A.; Troupin, A.; Londono-Renteria, B.; Colpitts, T. Garlic organosulfur compounds reduce inflamarion and oxidative stress during dengue virus infection. Viruses, 2017, 9(7), 159.
[http://dx.doi.org/10.3390/v9070159] [PMID: 28644404]
[21]
Fenwick, G.R.; Hanley, A.B.; Whitaker, J.R. The genus allium— part 1. CRC Crit. Rev. Food Sci. Nutr., 1985, 22(3), 199-271.
[http://dx.doi.org/10.1080/10408398509527415] [PMID: 3902370]
[22]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Naguyen, T.T.H.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[23]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavoniods: An overview. ScientificWorldJournal, 2013, •••, 1-16.
[24]
Cermelli, C.; Vinceti, M.; Scaltriti, E.; Bazzani, E.; Beretti, F.; Vivoli, G.; Portolani, M. Selenite inhibition of Coxsackie virus B5 replication: Implications on the etiology of Keshan disease. J. Trace Elem. Med. Biol., 2002, 16(1), 41-46.
[http://dx.doi.org/10.1016/S0946-672X(02)80007-4] [PMID: 11878751]
[25]
Pradeep, P.; Manju, V.; Ahsan, M.F. Antiviral potency of mushroom constituents. In: Springer Nature; , 2019. Singapore
[26]
Li, N.; Li, L.; Fang, J.C.; Wong, J.H.; Ng, T.B.; Jiang, Y.; Wang, C.R.; Zhang, N.Y.; Wen, T.Y.; Qu, L.Y.; Lv, P.Y.; Zhao, R.; Shi, B.; Wang, Y.P.; Wang, X.Y.; Liu, F. Isolation and identification of a novel polysaccharide–peptide complex with antioxidant, anti-proliferative and hypoglycaemic activities from the abalone mushroom. Biosci. Rep., 2012, 32(3), 221-228.
[http://dx.doi.org/10.1042/BSR20110012] [PMID: 21810081]
[27]
Wang, J.; Wang, H.X.; Ng, T.B. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides, 2007, 28(3), 560-565.
[http://dx.doi.org/10.1016/j.peptides.2006.10.004] [PMID: 17113195]
[28]
Abba, Y.; Hassim, H.; Hamzah, H.; Noordin, M.M. Antiviral activity of resveratrol against human and animal viruses. Adv. Virol., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/184241] [PMID: 26693226]
[29]
Lin, S.C.; Ho, C.T.; Chuo, W.H.; Li, S.; Wang, T.T.; Lin, C.C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 2017, 17(1), 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[30]
Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol., 2020, 92(5), 479-490.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[31]
Auinger, A.; Riede, L.; Bothe, G.; Busch, R.; Gruenwald, J. Yeast (1,3)-(1,6)-beta-glucan helps to maintain the body’s defence against pathogens: A double-blind, randomized, placebo-controlled, multicentric study in healthy subjects. Eur. J. Nutr., 2013, 52(8), 1913-1918.
[http://dx.doi.org/10.1007/s00394-013-0492-z] [PMID: 23340963]
[32]
Jesenak, M.; Majtan, J.; Rennerova, Z.; Kyselovic, J.; Banovcin, P.; Hrubisko, M. Immunomodulatory effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Int. Immunopharmacol., 2013, 15(2), 395-399.
[http://dx.doi.org/10.1016/j.intimp.2012.11.020] [PMID: 23261366]
[33]
Abbasifarid, E.; Bolhassani, A.; Irani, S.; Sotoodehnejadnematalahi, F. Synergistic effects of exosomal crocin or curcumin compounds and HPV L1-E7 polypeptide vaccine construct on tumor eradication in C57BL/6 mouse model. PLoS One, 2021, 16(10), e0258599.
[http://dx.doi.org/10.1371/journal.pone.0258599] [PMID: 34648579]
[34]
Soleymani, S.; Zabihollahi, R.; Shahbazi, S.; Bolhassani, A. Antiviral effects of saffron and its major ingredients. Curr. Drug Deliv., 2018, 15(5), 698-704.
[http://dx.doi.org/10.2174/1567201814666171129210654] [PMID: 29189153]
[35]
Sels, J.; Mathys, J.; De Coninck, B.M.A.; Cammue, B.P.A.; De Bolle, M.F.C. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol. Biochem., 2008, 46(11), 941-950.
[http://dx.doi.org/10.1016/j.plaphy.2008.06.011] [PMID: 18674922]
[36]
Barashkova, A.S.; Rogozhin, E.A. Isolation of antimicrobial peptides from different plant sources: Does a general extraction method exist? Plant Methods, 2020, 16(1), 143.
[http://dx.doi.org/10.1186/s13007-020-00687-1] [PMID: 33110440]
[37]
Hale, J.D.F.; Hancock, R.E.W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther., 2007, 5(6), 951-959.
[http://dx.doi.org/10.1586/14787210.5.6.951] [PMID: 18039080]
[38]
De Caleya, R.F.; Gonzalez-Pascual, B.; García-Olmedo, F.; Carbonero, P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl. Microbiol., 1972, 23(5), 998-1000.
[http://dx.doi.org/10.1128/am.23.5.998-1000.1972] [PMID: 5031563]
[39]
García-Olmedo, F.; Rodríguez-Palenzuela, P.; Molina, A.; Alamillo, J.M.; López-Solanilla, E.; Berrocal-Lobo, M.; Poza-Carrión, C. Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Lett., 2001, 498(2-3), 219-222.
[http://dx.doi.org/10.1016/S0014-5793(01)02456-5] [PMID: 11412861]
[40]
Tam, J.; Wang, S.; Wong, K.; Tan, W. Antimicrobial peptides from plants. Pharmaceutical, 2015, 8(4), 711-757.
[http://dx.doi.org/10.3390/ph8040711] [PMID: 26580629]
[41]
Souza Cândido, E.; Pinto, M.F.S.; Pelegrini, P.B.; Lima, T.B.; Silva, O.N.; Pogue, R.; Grossi-de-Sá, M.F.; Franco, O.L. Plant storage proteins with antimicrobial activity: Novel insights into plant defense mechanisms. FASEB J., 2011, 25(10), 3290-3305.
[http://dx.doi.org/10.1096/fj.11-184291] [PMID: 21746866]
[42]
Tang, S.S.; Prodhan, Z.H.; Biswas, S.K.; Le, C.F.; Sekaran, S.D. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry, 2018, 154, 94-105.
[http://dx.doi.org/10.1016/j.phytochem.2018.07.002] [PMID: 30031244]
[43]
Nawrot, R.; Barylski, J.; Nowicki, G.; Broniarczyk, J.; Buchwald, W.; Goździcka-Józefiak, A. Plant antimicrobial peptides. Folia Microbiol., 2014, 59(3), 181-196.
[http://dx.doi.org/10.1007/s12223-013-0280-4] [PMID: 24092498]
[44]
Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl. Microbiol., 2022, 132(3), 1573-1596.
[http://dx.doi.org/10.1111/jam.15314] [PMID: 34606679]
[45]
Guerra, Y.; Celi, D.; Cueva, P.; Perez-Castillo, Y.; Giampieri, F.; Alvarez-Suarez, J.M.; Tejera, E. Critical review of plant-derived compounds as possible inhibitors of SARS-CoV-2 proteases: A comparison with experimentally validated molecules. ACS Omega, 2022, 7(49), 44542-44555.
[http://dx.doi.org/10.1021/acsomega.2c05766] [PMID: 36530229]
[46]
Das, D.; Jaiswal, M.; Khan, F.N.; Ahamad, S.; Kumar, S. PlantPepDB: A manually curated plant peptide database. Sci. Rep., 2020, 10(1), 2194.
[http://dx.doi.org/10.1038/s41598-020-59165-2] [PMID: 32042035]
[47]
Maginnis, M.S. Virus-receptor interactions: The key to cellular invasion. J. Mol. Biol., 2018, 430(17), 2590-2611.
[http://dx.doi.org/10.1016/j.jmb.2018.06.024] [PMID: 29924965]
[48]
Nguyen, P.Q.T.; Ooi, J.S.G.; Nguyen, N.T.K.; Wang, S.; Huang, M.; Liu, D.X.; Tam, J.P. Antiviral cystine knot α-amylase inhibitors from alstonia scholaris. J. Biol. Chem., 2015, 290(52), 31138-31150.
[http://dx.doi.org/10.1074/jbc.M115.654855] [PMID: 26546678]
[49]
Lo, Y.S.; Lin, S.Y.; Wang, S.M.; Wang, C.T.; Chiu, Y.L.; Huang, T.H.; Hou, M.H. Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein. FEBS Lett., 2013, 587(2), 120-127.
[http://dx.doi.org/10.1016/j.febslet.2012.11.016] [PMID: 23178926]
[50]
Liang, X.; Zhang, X.; Lian, K.; Tian, X.; Zhang, M.; Wang, S.; Chen, C.; Nie, C.; Pan, Y.; Han, F.; Wei, Z.; Zhang, W. Antiviral effects of Bovine antimicrobial peptide against TGEV in vivo and in vitro. J. Vet. Sci., 2020, 21(5), e80.
[http://dx.doi.org/10.4142/jvs.2020.21.e80] [PMID: 33016025]
[51]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[52]
Li, Q.; Zhao, Z.; Zhou, D.; Chen, Y.; Hong, W.; Cao, L.; Yang, J.; Zhang, Y.; Shi, W.; Cao, Z.; Wu, Y.; Yan, H.; Li, W. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides, 2011, 32(7), 1518-1525.
[http://dx.doi.org/10.1016/j.peptides.2011.05.015] [PMID: 21620914]
[53]
Guo, N.; Zhang, B.; Hu, H.; Ye, S.; Chen, F.; Li, Z.; Chen, P.; Wang, C.; He, Q. Caerin1.1 suppresses the growth of porcine epidemic diarrhea virus in vitro via direct binding to the virus. Viruses, 2018, 10(9), 507.
[http://dx.doi.org/10.3390/v10090507] [PMID: 30231560]
[54]
Kim, J.; Yang, Y.L.; Jang, Y.S. Human β-defensin 2 is involved in CCR2-mediated Nod2 signal transduction, leading to activation of the innate immune response in macrophages. Immunobiology, 2019, 224(4), 502-510.
[http://dx.doi.org/10.1016/j.imbio.2019.05.004] [PMID: 31126693]
[55]
Kim, J.; Yang, Y.L.; Jang, S.H.; Jang, Y.S. Human β-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virol. J., 2018, 15(1), 124.
[http://dx.doi.org/10.1186/s12985-018-1035-2] [PMID: 30089512]
[56]
Grant, W.B.; Lahore, H.; Rockwell, M.S. The benefits of vitamin D supplementation for athletes: Better performance and reduced risk of COVID-19. Nutrients, 2020, 12(12), 3741.
[http://dx.doi.org/10.3390/nu12123741] [PMID: 33291720]
[57]
Craik, D.J.; Du, J. Cyclotides as drug design scaffolds. Curr. Opin. Chem. Biol., 2017, 38, 8-16.
[http://dx.doi.org/10.1016/j.cbpa.2017.01.018] [PMID: 28249194]
[58]
Akkouh, O.; Ng, T.; Singh, S.; Yin, C.; Dan, X.; Chan, Y.; Pan, W.; Cheung, R. Lectins with anti-HIV activity: A review. Molecules, 2015, 20(1), 648-668.
[http://dx.doi.org/10.3390/molecules20010648] [PMID: 25569520]
[59]
Lee, C. Griffithsin, a highly potent broad-spectrum antiviral lectin from red algae: From discovery to clinical application. Mar. Drugs, 2019, 17(10), 567.
[http://dx.doi.org/10.3390/md17100567] [PMID: 31590428]
[60]
Ishaq, N.; Bilal, M.; Iqbal, H. Medicinal potentialities of plant defensins: A review with applied perspectives. Medicine, 2019, 6(1), 29.
[http://dx.doi.org/10.3390/medicines6010029] [PMID: 30791451]
[61]
O’Keefe, B.R.; Giomarelli, B.; Barnard, D.L.; Shenoy, S.R.; Chan, P.K.S.; McMahon, J.B.; Palmer, K.E.; Barnett, B.W.; Meyerholz, D.K.; Wohlford-Lenane, C.L.; McCray, P.B., Jr Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J. Virol., 2010, 84(5), 2511-2521.
[http://dx.doi.org/10.1128/JVI.02322-09] [PMID: 20032190]
[62]
Wang, C.K.L.; Colgrave, M.L.; Gustafson, K.R.; Ireland, D.C.; Goransson, U.; Craik, D.J. Anti-HIV cyclotides from the Chinese medicinal herb Viola yedoensis. J. Nat. Prod., 2008, 71(1), 47-52.
[http://dx.doi.org/10.1021/np070393g] [PMID: 18081258]
[63]
Daly, N.L.; Gustafson, K.R.; Craik, D.J. The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1. FEBS Lett., 2004, 574(1-3), 69-72.
[http://dx.doi.org/10.1016/j.febslet.2004.08.007] [PMID: 15358541]
[64]
Gao, Y.; Cui, T.; Lam, Y. Synthesis and disulfide bond connectivity–activity studies of a kalata B1-inspired cyclopeptide against dengue NS2B–NS3 protease. Bioorg. Med. Chem., 2010, 18(3), 1331-1336.
[http://dx.doi.org/10.1016/j.bmc.2009.12.026] [PMID: 20042339]
[65]
Daly, N.L.; Clark, R.J.; Plan, M.R.; Craik, D.J. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif. Biochem. J., 2006, 393(3), 619-626.
[http://dx.doi.org/10.1042/BJ20051371] [PMID: 16207177]
[66]
Swanson, M.D.; Winter, H.C.; Goldstein, I.J.; Markovitz, D.M. A lectin isolated from bananas is a potent inhibitor of HIV replication. J. Biol. Chem., 2010, 285(12), 8646-8655.
[http://dx.doi.org/10.1074/jbc.M109.034926] [PMID: 20080975]
[67]
Corbeau, P.; Haran, M.; Binz, H.; Devaux, C. Jacalin, a lectin with anti-HIV-1 properties, and HIV-1 gp120 envelope protein interact with distinct regions of the CD4 molecule. Mol. Immunol., 1994, 31(8), 569-575.
[http://dx.doi.org/10.1016/0161-5890(94)90164-3] [PMID: 8196669]
[68]
Xu, H.; Li, C.; He, X.; Niu, K.; Peng, H.; Li, W.; Zhou, C.; Bao, J. Molecular modeling, docking and dynamics simulations of GNA-related lectins for potential prevention of influenza virus (H1N1). J. Mol. Model., 2012, 18(1), 27-37.
[http://dx.doi.org/10.1007/s00894-011-1022-7] [PMID: 21445708]
[69]
Wong, J.H.; Ng, T.B. Limenin, a defensin-like peptide with multiple exploitable activities from shelf beans. J. Pept. Sci., 2006, 12(5), 341-346.
[http://dx.doi.org/10.1002/psc.732] [PMID: 16285021]
[70]
Charan, R.D.; Munro, M.H.G.; O’Keefe, B.R.; Sowder, R.C.; McKee, T.C.; Currens, M.J.; Pannell, L.K.; Boyd, M.R. Isolation and characterization of Myrianthus holstii lectin, a potent HIV-1 inhibitory protein from the plant Myrianthus holstii(1). J. Nat. Prod., 2000, 63(8), 1170-1174.
[http://dx.doi.org/10.1021/np000039h] [PMID: 10978222]
[71]
López, S.; Armand-Úgon, M.; Bastida, J.; Viladomat, F.; Esté, J.A.; Stewart, D.; Codina, C. Anti-human immunodeficiency virus type 1 (HIV-1) activity of lectins from Narcissus species. Planta Med., 2003, 69(2), 109-112.
[http://dx.doi.org/10.1055/s-2003-37715] [PMID: 12624813]
[72]
Ding, J.; Bao, J.; Zhu, D.; Zhang, Y.; Wang, D.C. Crystal structures of a novel anti-HIV mannose-binding lectin from Polygonatum cyrtonema Hua with unique ligand-binding property and super-structure. J. Struct. Biol., 2010, 171(3), 309-317.
[http://dx.doi.org/10.1016/j.jsb.2010.05.009] [PMID: 20546901]
[73]
Sato, Y.; Hirayama, M.; Morimoto, K.; Yamamoto, N.; Okuyama, S.; Hori, K. High mannose-binding lectin with preference for the cluster of alpha1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. J. Biol. Chem., 2011, 286(22), 19446-19458.
[http://dx.doi.org/10.1074/jbc.M110.216655] [PMID: 21460211]
[74]
Farr Zuend, C.; Nomellini, J.F.; Smit, J.; Horwitz, M.S. Generation of a dual-target, safe, inexpensive microbicide that protects against HIV-1 and HSV-2 disease. Sci. Rep., 2018, 8(1), 2786.
[http://dx.doi.org/10.1038/s41598-018-21134-1] [PMID: 29434285]
[75]
Wong, J.H.; Ng, T.B. Purification of a trypsin-stable lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activity. Biochem. Biophys. Res. Commun., 2003, 301(2), 545-550. b
[http://dx.doi.org/10.1016/S0006-291X(02)03080-2] [PMID: 12565897]
[76]
Witvrouw, M.; Fikkert, V.; Hantson, A.; Pannecouque, C.; O’Keefe, B.R.; McMahon, J.; Stamatatos, L.; de Clercq, E.; Bolmstedt, A. Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A. J. Virol., 2005, 79(12), 7777-7784.
[http://dx.doi.org/10.1128/JVI.79.12.7777-7784.2005] [PMID: 15919930]
[77]
Panya, A.; Yongpitakwattana, P.; Budchart, P.; Sawasdee, N.; Krobthong, S.; Paemanee, A.; Roytrakul, S.; Rattanabunyong, S.; Choowongkomon, K.; Yenchitsomanus, P. Novel bioactive peptides demonstrating anti-dengue virus activity isolated from the Asian medicinal plant Acacia Catechu. Chem. Biol. Drug Des., 2019, 93(2), 100-109.
[http://dx.doi.org/10.1111/cbdd.13400] [PMID: 30225997]
[78]
Wong, J.H.; Ng, T.B. Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris). Int. J. Biochem. Cell Biol., 2005, 37(8), 1626-1632.
[http://dx.doi.org/10.1016/j.biocel.2005.02.022] [PMID: 15896669]
[79]
Wong, J.H.; Ng, T.B. Lunatusin, a trypsin-stable antimicrobial peptide from lima beans (Phaseolus lunatus L.). Peptides, 2005, 26(11), 2086-2092.
[http://dx.doi.org/10.1016/j.peptides.2005.03.004] [PMID: 16269344]
[80]
Ye, X.Y.; Ng, T.B.; Rao, P.F. Cicerin and arietin, novel chickpea peptides with different antifungal potencies. Peptides, 2002, 23(5), 817-822.
[http://dx.doi.org/10.1016/S0196-9781(02)00005-0] [PMID: 12084511]
[81]
Ye, X.Y.; Ng, T.B. Isolation of a new cyclophilin-like protein from chickpeas with mitogenic, antifungal and anti-HIV-1 reverse transcriptase activities. Life Sci., 2002, 70(10), 1129-1138.
[http://dx.doi.org/10.1016/S0024-3205(01)01473-4] [PMID: 11848297]
[82]
Gustafson, K.R.; Sowder, R.C., II; Henderson, L.E.; Parsons, I.C.; Kashman, Y.; Cardellina, J.H., II; McMahon, J.B.; Buckheit, R.W., Jr; Pannell, L.K.; Boyd, M.R. Circulins A and B. novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J. Am. Chem. Soc., 1994, 116(20), 9337-9338.
[http://dx.doi.org/10.1021/ja00099a064]
[83]
Lin, P.; Ng, T.B. Preparation and biological properties of a melibiose binding lectin from Bauhinia variegata seeds. J. Agric. Food Chem., 2008, 56(22), 10481-10486.
[http://dx.doi.org/10.1021/jf8016332] [PMID: 18942841]
[84]
Gordts, S.C.; Renders, M.; Férir, G.; Huskens, D.; Van Damme, E.J.M.; Peumans, W.; Balzarini, J.; Schols, D. NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles. J. Antimicrob. Chemother., 2015, 70(6), 1674-1685.
[http://dx.doi.org/10.1093/jac/dkv034] [PMID: 25700718]
[85]
Liu, M.Z.; Yang, Y.; Zhang, S.X.; Tang, L.; Wang, H.M.; Chen, C.J.; Shen, Z.F.; Cheng, K.D.; Kong, J.Q.; Wang, W. A cyclotide against influenza A H1N1 virus from Viola yedoensis.. Yao Xue Xue Bao, 2014, 49(6), 905-912.
[PMID: 25212039]
[86]
Maximiano, M.R.; Franco, O.L. Biotechnological applications of versatile plant lipid transfer proteins (LTPs). Peptides, 2021, 140, 170531.
[http://dx.doi.org/10.1016/j.peptides.2021.170531] [PMID: 33746031]
[87]
Ooi, L.S.M.; Ho, W.S.; Ngai, K.L.K.; Tian, L.; Chan, P.K.S.; Sun, S.S.M.; Ooi, V.E.C. Narcissus tazetta lectin shows strong inhibitory effects against respiratory syncytial virus, influenza A (H1N1, H3N2, H5N1) and B viruses. J. Biosci., 2010, 35(1), 95-103.
[http://dx.doi.org/10.1007/s12038-010-0012-8] [PMID: 20413914]
[88]
Parthasarathy, A.; Borrego, E.J.; Savka, M.A.; Dobson, R.C.J.; Hudson, A.O. Amino acid–derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J. Biol. Chem., 2021, 296, 100438.
[http://dx.doi.org/10.1016/j.jbc.2021.100438] [PMID: 33610552]
[89]
Kaur, R.; Neetu; Mudgal, R.; Jose, J.; Kumar, P.; Tomar, S. Glycan-dependent chikungunya viral infection divulged by antiviral activity of NAG specific chi-like lectin. Virology, 2019, 526, 91-98.
[http://dx.doi.org/10.1016/j.virol.2018.10.009] [PMID: 30388630]
[90]
Xu, X.C.; Zhang, Z.W.; Chen, Y.E.; Yuan, M.; Yuan, S.; Bao, J. Antiviral and antitumor activities of the lectin extracted from Aspidistra elatior. Z. Naturforsch. C J. Biosci., 2015, 70(1-2), 7-13.
[http://dx.doi.org/10.1515/znc-2014-4108] [PMID: 25854839]
[91]
Covés-Datson, E.M.; Dyall, J.; DeWald, L.E.; King, S.R.; Dube, D.; Legendre, M.; Nelson, E.; Drews, K.C.; Gross, R.; Gerhardt, D.M.; Torzewski, L.; Postnikova, E.; Liang, J.Y.; Ban, B.; Shetty, J.; Hensley, L.E.; Jahrling, P.B.; Olinger, G.G., Jr; White, J.M.; Markovitz, D.M. Inhibition of Ebola virus by a molecularly engineered Banana Lectin. PLoS Negl. Trop. Dis., 2019, 13(7), e0007595.
[http://dx.doi.org/10.1371/journal.pntd.0007595] [PMID: 31356611]
[92]
Zeng, Z.; Zhang, R.; Hong, W.; Cheng, Y.; Wang, H.; Lang, Y.; Ji, Z.; Wu, Y.; Li, W.; Xie, Y.; Cao, Z. Histidine-rich modification of a scorpionderived peptide improves bioavailability and inhibitory activity against HSV-1. Theranostics, 2018, 8(1), 199-211.
[http://dx.doi.org/10.7150/thno.21425] [PMID: 29290802]
[93]
Ye, X.Y.; Ng, T.B. Isolation of vulgin, a new antifungal polypeptide with mitogenic activity from the pinto bean. J. Pept. Sci., 2003, 9(2), 114-119.
[http://dx.doi.org/10.1002/psc.436] [PMID: 12630696]
[94]
Bokesch, H.R.; Charan, R.D.; Meragelman, K.M.; Beutler, J.A.; Gardella, R.; O’Keefe, B.R.; McKee, T.C.; McMahon, J.B. Isolation and characterization of anti-HIV peptides from Dorstenia contrajerva and Treculia obovoidea. FEBS Lett., 2004, 567(2-3), 287-290.
[http://dx.doi.org/10.1016/j.febslet.2004.04.085] [PMID: 15178338]
[95]
Bokesch, H.R.; Pannell, L.K.; Cochran, P.K.; Sowder, R.C., II; McKee, T.C.; Boyd, M.R. A novel anti-HIV macrocyclic peptide from Palicourea condensata. J. Nat. Prod., 2001, 64(2), 249-250.
[http://dx.doi.org/10.1021/np000372l] [PMID: 11430013]
[96]
Gerlach, S.L.; Burman, R.; Bohlin, L.; Mondal, D.; Göransson, U. Isolation, characterization, and bioactivity of cyclotides from the Micronesian plant Psychotria leptothyrsa. J. Nat. Prod., 2010, 73(7), 1207-1213.
[http://dx.doi.org/10.1021/np9007365] [PMID: 20575512]
[97]
Ye, X.Y.; Ng, T.B. Peptides from pinto bean and red bean with sequence homology to cowpea 10-kDa protein precursor exhibit antifungal, mitogenic, and HIV-1 reverse transcriptase-inhibitory activities. Biochem. Biophys. Res. Commun., 2001, 285(2), 424-429.
[http://dx.doi.org/10.1006/bbrc.2001.5194] [PMID: 11444860]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy