Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Bioinformatics and Experimental Study Revealed LINC00982/ miR-183-5p/ABCA8 Axis Suppresses LUAD Progression

Author(s): Defang Ding*, Jingyu Zhong, Yue Xing, Yangfan Hu, Xiang Ge and Weiwu Yao*

Volume 24, Issue 6, 2024

Published on: 22 November, 2023

Page: [654 - 667] Pages: 14

DOI: 10.2174/0115680096266700231107071222

Price: $65

conference banner
Abstract

Background: Lung adenocarcinoma (LUAD) is a major health challenge worldwide with an undesirable prognosis. LINC00982 has been implicated as a tumor suppressor in diverse human cancers; however, its role in LUAD has not been fully characterized.

Methods: Expression level and prognostic value of LINC00982 were investigated in pan-cancer and lung cancer from The Cancer Genome Atlas (TCGA) project. Differential expression analysis based on the LINC00982 expression level was performed in LUAD followed by gene set enrichment analysis (GSEA) and functional enrichment analyses. The association between LINC00982 expression and tumor immune microenvironment characteristics was evaluated. A potential ceRNA regulatory axis was identified and experimentally validated.

Results: We found that LINC00982 expression was downregulated and correlated with poor prognosis in LUAD. Enrichment analyses revealed that LINC00982 could inhibit DNA damage repair and cell proliferation, but enhance tumor metabolic reprogramming. We identified a competing endogenous RNA network involving LINC00982, miR-183-5p, and ATP-binding cassette subfamily A member 8 (ABCA8). Luciferase assays confirmed that miR-183-5p can interact with LINC00982 and ABCA8. Forced miR-183-5p expression reduced LINC00982 transcript levels and suppressed ABCA8 expression.

Conclusions: Our findings revealed the LINC00982/miR-183-5p/ABCA8 axis as a potential therapeutic target in LUAD.

Keywords: Lung adenocarcinoma (LUAD), LINC00982, miR-183-5p, ATP binding cassette subfamily a member 8 (ABCA8), ceRNA, bioinformatics.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Xu, J.Y.; Zhang, C.; Wang, X.; Zhai, L.; Ma, Y.; Mao, Y.; Qian, K.; Sun, C.; Liu, Z.; Jiang, S.; Wang, M.; Feng, L.; Zhao, L.; Liu, P.; Wang, B.; Zhao, X.; Xie, H.; Yang, X.; Zhao, L.; Chang, Y.; Jia, J.; Wang, X.; Zhang, Y.; Wang, Y.; Yang, Y.; Wu, Z.; Yang, L.; Liu, B.; Zhao, T.; Ren, S.; Sun, A.; Zhao, Y.; Ying, W.; Wang, F.; Wang, G.; Zhang, Y.; Cheng, S.; Qin, J.; Qian, X.; Wang, Y.; Li, J.; He, F.; Xiao, T.; Tan, M. Integrative proteomic characterization of human lung adenocarcinoma. Cell, 2020, 182(1), 245-261.e17.
[http://dx.doi.org/10.1016/j.cell.2020.05.043] [PMID: 32649877]
[3]
Liu, S.J.; Dang, H.X.; Lim, D.A.; Feng, F.Y.; Maher, C.A. Long noncoding RNAs in cancer metastasis. Nat. Rev. Cancer, 2021, 21(7), 446-460.
[http://dx.doi.org/10.1038/s41568-021-00353-1] [PMID: 33953369]
[4]
Hu, Q.; Ye, Y.; Chan, L.C.; Li, Y.; Liang, K.; Lin, A.; Egranov, S.D.; Zhang, Y.; Xia, W.; Gong, J.; Pan, Y.; Chatterjee, S.S.; Yao, J.; Evans, K.W.; Nguyen, T.K.; Park, P.K.; Liu, J.; Coarfa, C.; Donepudi, S.R.; Putluri, V.; Putluri, N.; Sreekumar, A.; Ambati, C.R.; Hawke, D.H.; Marks, J.R.; Gunaratne, P.H.; Caudle, A.S.; Sahin, A.A.; Hortobagyi, G.N.; Meric-Bernstam, F.; Chen, L.; Yu, D.; Hung, M.C.; Curran, M.A.; Han, L.; Lin, C.; Yang, L. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat. Immunol., 2019, 20(7), 835-851.
[http://dx.doi.org/10.1038/s41590-019-0400-7] [PMID: 31160797]
[5]
Li, G.; Kryczek, I.; Nam, J.; Li, X.; Li, S.; Li, J.; Wei, S.; Grove, S.; Vatan, L.; Zhou, J.; Du, W.; Lin, H.; Wang, T.; Subramanian, C.; Moon, J.J.; Cieslik, M.; Cohen, M.; Zou, W. LIMIT is an immunogenic lncRNA in cancer immunity and immunotherapy. Nat. Cell Biol., 2021, 23(5), 526-537.
[http://dx.doi.org/10.1038/s41556-021-00672-3] [PMID: 33958760]
[6]
Park, M.K.; Zhang, L.; Min, K.W.; Cho, J.H.; Yeh, C.C.; Moon, H.; Hormaechea-Agulla, D.; Mun, H.; Ko, S.; Lee, J.W.; Jathar, S.; Smith, A.S.; Yao, Y.; Giang, N.T.; Vu, H.H.; Yan, V.C.; Bridges, M.C.; Kourtidis, A.; Muller, F.; Chang, J.H.; Song, S.J.; Nakagawa, S.; Hirose, T.; Yoon, J.H.; Song, M.S. NEAT1 is essential for metabolic changes that promote breast cancer growth and metastasis. Cell Metab., 2021, 33(12), 2380-2397.e9.
[http://dx.doi.org/10.1016/j.cmet.2021.11.011] [PMID: 34879239]
[7]
Zhang, C.; Li, X.Y.; Luo, Z.Z.; Wu, T.W.; Hu, H. Upregulation of LINC00982 inhibits cell proliferation and promotes cell apoptosis by regulating the activity of PI3K/AKT signaling pathway in renal cancer. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(4), 1443-1450.
[http://dx.doi.org/10.26355/eurrev_201902_17101] [PMID: 30840265]
[8]
Xu, D.; Yu, J.; Zhuang, S.; Zhang, S.; Hong, Z.; Yuan, C. Overexpression of long non-coding RNA LINC00982 suppresses cell proliferation and tumor growth of papillary thyroid carcinoma through PI3K-ATK signaling pathway. Biosci. Rep., 2019, 39(7), BSR20191210.
[http://dx.doi.org/10.1042/BSR20191210] [PMID: 31262968]
[9]
Zheng, L.; Cao, J.; Liu, L.; Xu, H.; Chen, L.; Kang, L.; Gao, L. Long noncoding RNA LINC00982 upregulates CTSF expression to inhibit gastric cancer progression via the transcription factor HEY1. Am. J. Physiol. Gastrointest. Liver Physiol., 2021, 320(5), G816-G828.
[http://dx.doi.org/10.1152/ajpgi.00209.2020] [PMID: 33236952]
[10]
Lv, W.; Yu, X.; Li, W.; Feng, N.; Feng, T.; Wang, Y.; Lin, H.; Qian, B. Low expression of LINC00982 and PRDM16 is associated with altered gene expression, damaged pathways and poor survival in lung adenocarcinoma. Oncol. Rep., 2018, 40(5), 2698-2709.
[http://dx.doi.org/10.3892/or.2018.6645] [PMID: 30132554]
[11]
Cooper, J.R.; Abdullatif, M.B.; Burnett, E.C.; Kempsell, K.E.; Conforti, F.; Tolley, H.; Collins, J.E.; Davies, D.E. Long term culture of the A549 cancer cell line promotes multilamellar body formation and differentiation towards an alveolar type II pneumocyte phenotype. PLoS One, 2016, 11(10), e0164438.
[http://dx.doi.org/10.1371/journal.pone.0164438] [PMID: 27792742]
[12]
Katsumiti, A.; Ruenraroengsak, P.; Cajaraville, M.P.; Thorley, A.J.; Tetley, T.D. Immortalisation of primary human alveolar epithelial lung cells using a non-viral vector to study respiratory bioreactivity in vitro. Sci. Rep., 2020, 10(1), 20486.
[http://dx.doi.org/10.1038/s41598-020-77191-y] [PMID: 33235275]
[13]
Lengrand, J.; Pastushenko, I.; Vanuytven, S.; Song, Y.; Venet, D.; Sarate, R.M.; Bellina, M.; Moers, V.; Boinet, A.; Sifrim, A.; Rama, N.; Ducarouge, B.; Van Herck, J.; Dubois, C.; Scozzaro, S.; Lemaire, S.; Gieskes, S.; Bonni, S.; Collin, A.; Braissand, N.; Allard, J.; Zindy, E.; Decaestecker, C.; Sotiriou, C.; Salmon, I.; Mehlen, P.; Voet, T.; Bernet, A.; Blanpain, C. Pharmacological targeting of netrin-1 inhibits EMT in cancer. Nature, 2023, 620(7973), 402-408.
[http://dx.doi.org/10.1038/s41586-023-06372-2] [PMID: 37532929]
[14]
Lin, Y.C.; Boone, M.; Meuris, L.; Lemmens, I.; Van Roy, N.; Soete, A.; Reumers, J.; Moisse, M.; Plaisance, S.; Drmanac, R.; Chen, J.; Speleman, F.; Lambrechts, D.; Van de Peer, Y.; Tavernier, J.; Callewaert, N. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat. Commun., 2014, 5(1), 4767.
[http://dx.doi.org/10.1038/ncomms5767] [PMID: 25182477]
[15]
Liu, X.; Wei, W.; Li, X.; Shen, P.; Ju, D.; Wang, Z.; Zhang, R.; Yang, F.; Chen, C.; Cao, K.; Zhu, G.; Chen, H.; Chen, L.; Sui, J.; Zhang, E.; Wu, K.; Wang, F.; Zhao, L.; Xi, R. BMI1 and MEL18 promote colitis-associated cancer in mice via REG3B and STAT3. Gastroenterology, 2017, 153(6), 1607-1620.
[http://dx.doi.org/10.1053/j.gastro.2017.07.044] [PMID: 28780076]
[16]
Moutinho, M.; Coronel, I.; Tsai, A.P.; Di Prisco, G.V.; Pennington, T.; Atwood, B.K.; Puntambekar, S.S.; Smith, D.C.; Martinez, P.; Han, S.; Lee, Y.; Lasagna-Reeves, C.A.; Lamb, B.T.; Bissel, S.J.; Nho, K.; Landreth, G.E. TREM2 splice isoforms generate soluble TREM2 species that disrupt long-term potentiation. Genome Med., 2023, 15(1), 11.
[http://dx.doi.org/10.1186/s13073-023-01160-z] [PMID: 36805764]
[17]
Zhou, G.; Soufan, O.; Ewald, J.; Hancock, R.E.W.; Basu, N.; Xia, J. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res., 2019, 47(W1), W234-W241.
[http://dx.doi.org/10.1093/nar/gkz240] [PMID: 30931480]
[18]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[19]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[20]
Bagaev, A.; Kotlov, N.; Nomie, K.; Svekolkin, V.; Gafurov, A.; Isaeva, O.; Osokin, N.; Kozlov, I.; Frenkel, F.; Gancharova, O.; Almog, N.; Tsiper, M.; Ataullakhanov, R.; Fowler, N. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell, 2021, 39(6), 845-865.e7.
[http://dx.doi.org/10.1016/j.ccell.2021.04.014] [PMID: 34019806]
[21]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[22]
Li, R.; Qu, H.; Wang, S.; Chater, J.M.; Wang, X.; Cui, Y.; Yu, L.; Zhou, R.; Jia, Q.; Traband, R.; Wang, M.; Xie, W.; Yuan, D.; Zhu, J.; Zhong, W.D.; Jia, Z. CancerMIRNome: An interactive analysis and visualization database for miRNome profiles of human cancer. Nucleic Acids Res., 2022, 50(D1), D1139-D1146.
[http://dx.doi.org/10.1093/nar/gkab784] [PMID: 34500460]
[23]
Gong, J.; Liu, W.; Zhang, J.; Miao, X.; Guo, A.Y. lncRNASNP: A database of SNPs in lncRNAs and their potential functions in human and mouse. Nucleic Acids Res., 2015, 43(D1), D181-D186.
[http://dx.doi.org/10.1093/nar/gku1000] [PMID: 25332392]
[24]
Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res., 2020, 48(D1), D127-D131.
[http://dx.doi.org/10.1093/nar/gkz757] [PMID: 31504780]
[25]
Paraskevopoulou, M.D.; Georgakilas, G.; Kostoulas, N.; Vlachos, I.S.; Vergoulis, T.; Reczko, M.; Filippidis, C.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic Acids Res, 2013, 41, W169-W173.
[http://dx.doi.org/10.1093/nar/gkt393]
[26]
Li, J.; Han, L.; Roebuck, P.; Diao, L.; Liu, L.; Yuan, Y.; Weinstein, J.N.; Liang, H. TANRIC: An interactive open platform to explore the function of lncRNAs in cancer. Cancer Res., 2015, 75(18), 3728-3737.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0273] [PMID: 26208906]
[27]
Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514.
[http://dx.doi.org/10.1093/nar/gkaa407] [PMID: 32442275]
[28]
Yu, K.; Li, N.; Cheng, Q.; Zheng, J.; Zhu, M.; Bao, S.; Chen, M.; Shi, G. miR-96-5p prevents hepatic stellate cell activation by inhibiting autophagy via ATG7. J. Mol. Med., 2018, 96(1), 65-74.
[http://dx.doi.org/10.1007/s00109-017-1593-6] [PMID: 29051972]
[29]
Chen, Y.; Li, J.; Pu, L.; Hu, J.; Fang, L.; Zhou, F.; Zhang, H.; Yang, Y.; Rong, X.; Deng, S.; Hou, L. DNAJB4 suppresses breast cancer progression and promotes tumor immunity by regulating the Hippo signaling pathway. Discover Oncology, 2023, 14(1), 144.
[http://dx.doi.org/10.1007/s12672-023-00762-8] [PMID: 37548821]
[30]
Feng, Y.; Wang, K.; Qin, M.; Zhuang, Q.; Chen, Z. MiR-183-5p promotes migration and invasion of prostate cancer by targeting TET1. BMC Urol., 2023, 23(1), 116.
[http://dx.doi.org/10.1186/s12894-023-01286-7] [PMID: 37430206]
[31]
Jin, S.; Chen, L.; Wu, J.; Chen, M.; Wang, H.; Hu, H.; Yu, L.; Zeng, S. MiR-183-5p promotes renal cell carcinoma metastasis by targeting TET1. Int. J. Immunopathol. Pharmacol., 2023, 37, 03946320231184997.
[http://dx.doi.org/10.1177/03946320231184997] [PMID: 37584255]
[32]
Cui, X.; Chen, Y.; Zhao, L.; Ding, X. Extracellular vesicles derived from paclitaxel-sensitive nasopharyngeal carcinoma cells deliver miR-183-5p and impart paclitaxel sensitivity through a mechanism involving P-gp. Cell Biol. Toxicol., 2023, 39(6), 2953-2970.
[http://dx.doi.org/10.1007/s10565-023-09812-x] [PMID: 37296288]
[33]
Chen, B.; Jiang, J.; Li, T.; Jiang, H.; Liang, X.; Tang, Y. miR-183-5p overexpression orchestrates collective invasion in salivary adenoid cystic carcinoma through the FAT1/YAP1 signaling pathway. Biochem. Biophys. Res. Commun., 2023, 655, 127-137.
[http://dx.doi.org/10.1016/j.bbrc.2023.03.015] [PMID: 36934588]
[34]
Chen, J.; Zhou, D.; Liao, H.; Li, Y. miR-183-5p regulates ECM and EMT to promote non-small cell lung cancer progression by targeting LOXL4. J. Thorac. Dis., 2023, 15(4), 1734-1748.
[http://dx.doi.org/10.21037/jtd-23-329] [PMID: 37197500]
[35]
Trigueros-Motos, L.; van Capelleveen, J.C.; Torta, F.; Castaño, D.; Zhang, L.H.; Chai, E.C.; Kang, M.; Dimova, L.G.; Schimmel, A.W.M.; Tietjen, I.; Radomski, C.; Tan, L.J.; Thiam, C.H.; Narayanaswamy, P.; Wu, D.H.; Dorninger, F.; Yakala, G.K.; Barhdadi, A.; Angeli, V.; Dubé, M.P.; Berger, J.; Dallinga-Thie, G.M.; Tietge, U.J.F.; Wenk, M.R.; Hayden, M.R.; Hovingh, G.K.; Singaraja, R.R. ABCA8 regulates cholesterol efflux and high-density lipoprotein cholesterol levels. Arterioscler. Thromb. Vasc. Biol., 2017, 37(11), 2147-2155.
[http://dx.doi.org/10.1161/ATVBAHA.117.309574] [PMID: 28882873]
[36]
Liu, Y.; Castano, D.; Girolamo, F.; Trigueros-Motos, L.; Bae, H.G.; Neo, S.P.; Oh, J.; Narayanaswamy, P.; Torta, F.; Rye, K.A.; Jo, D.G.; Gunaratne, J.; Jung, S.; Virgintino, D.; Singaraja, R.R. Loss of ABCA8B decreases myelination by reducing oligodendrocyte precursor cells in mice. J. Lipid Res., 2022, 63(1), 100147.
[http://dx.doi.org/10.1016/j.jlr.2021.100147] [PMID: 34752805]
[37]
Lv, C.; Yang, H.; Yu, J.; Dai, X. ABCA8 inhibits breast cancer cell proliferation by regulating the AMP activated protein kinase/mammalian target of rapamycin signaling pathway. Environ. Toxicol., 2022, 37(6), 1423-1431.
[http://dx.doi.org/10.1002/tox.23495] [PMID: 35191604]
[38]
Yang, C.; Yuan, H.; Gu, J.; Xu, D.; Wang, M.; Qiao, J.; Yang, X.; Zhang, J.; Yao, M.; Gu, J.; Tu, H.; Gan, Y. ABCA8-mediated efflux of taurocholic acid contributes to gemcitabine insensitivity in human pancreatic cancer via the S1PR2-ERK pathway. Cell Death Discov., 2021, 7(1), 6.
[http://dx.doi.org/10.1038/s41420-020-00390-z] [PMID: 33431858]
[39]
Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer metabolism: Fatty acid oxidation in the limelight. Nat. Rev. Cancer, 2013, 13(4), 227-232.
[http://dx.doi.org/10.1038/nrc3483] [PMID: 23446547]
[40]
Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese, R.V., Jr. Cellular fatty acid metabolism and cancer. Cell Metab., 2013, 18(2), 153-161.
[http://dx.doi.org/10.1016/j.cmet.2013.05.017] [PMID: 23791484]
[41]
Röhrig, F.; Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer, 2016, 16(11), 732-749.
[http://dx.doi.org/10.1038/nrc.2016.89] [PMID: 27658529]
[42]
Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.O.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; Bescós, C.; Di Croce, L.; Benitah, S.A. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 2017, 541(7635), 41-45.
[http://dx.doi.org/10.1038/nature20791] [PMID: 27974793]
[43]
Peck, B.; Schulze, A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends Cancer, 2019, 5(11), 693-703.
[http://dx.doi.org/10.1016/j.trecan.2019.09.007] [PMID: 31735288]
[44]
Fu, S.; He, K.; Tian, C.; Sun, H.; Zhu, C.; Bai, S.; Liu, J.; Wu, Q.; Xie, D.; Yue, T.; Shen, Z.; Dai, Q.; Yu, X.; Zhu, S.; Liu, G.; Zhou, R.; Duan, S.; Tian, Z.; Xu, T.; Wang, H.; Bai, L. Impaired lipid biosynthesis hinders anti-tumor efficacy of intratumoral iNKT cells. Nat. Commun., 2020, 11(1), 438.
[http://dx.doi.org/10.1038/s41467-020-14332-x] [PMID: 31974378]
[45]
Wang, H.; Franco, F.; Tsui, Y.C.; Xie, X.; Trefny, M.P.; Zappasodi, R.; Mohmood, S.R.; Fernández-García, J.; Tsai, C.H.; Schulze, I.; Picard, F.; Meylan, E.; Silverstein, R.; Goldberg, I.; Fendt, S.M.; Wolchok, J.D.; Merghoub, T.; Jandus, C.; Zippelius, A.; Ho, P.C. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol., 2020, 21(3), 298-308.
[http://dx.doi.org/10.1038/s41590-019-0589-5] [PMID: 32066953]
[46]
Xu, S.; Chaudhary, O.; Rodriguez-Morales, P.; Sun, X.; Chen, D.; Zappasodi, R.; Xu, Z.; Pinto, A.F.M.; Williams, A.; Schulze, I.; Farsakoglu, Y.; Varanasi, S.K.; Low, J.S.; Tang, W.; Wang, H.; McDonald, B.; Tripple, V.; Downes, M.; Evans, R.M.; Abumrad, N.A.; Merghoub, T.; Wolchok, J.D.; Shokhirev, M.N.; Ho, P.C.; Witztum, J.L.; Emu, B.; Cui, G.; Kaech, S.M. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Immunity, 2021, 54(7), 1561-1577 e1567.
[http://dx.doi.org/10.1016/j.immuni.2021.05.003]
[47]
Ma, X.; Xiao, L.; Liu, L.; Ye, L.; Su, P.; Bi, E.; Wang, Q.; Yang, M.; Qian, J.; Yi, Q. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab., 2021, 33(5), 1001-1012.e5.
[http://dx.doi.org/10.1016/j.cmet.2021.02.015] [PMID: 33691090]
[48]
Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[49]
Rinn, J.L.; Chang, H.Y. Long noncoding RNAs: Molecular modalities to organismal functions. Annu. Rev. Biochem., 2020, 89(1), 283-308.
[http://dx.doi.org/10.1146/annurev-biochem-062917-012708] [PMID: 32569523]
[50]
Han, C.; Mo, K.; Jiang, L.; Wang, K.; Teng, L. miR-183-5p promotes proliferation, invasion, and glycolysis of thyroid carcinoma cells by targeting FOXO1. Mol. Cell. Biochem., 2022, 477(4), 1195-1206.
[http://dx.doi.org/10.1007/s11010-022-04357-9] [PMID: 35084673]
[51]
Wu, C.; Tuo, Y.; Hu, G.; Luo, J. miR-183-5p aggravates breast cancer development via mediation of RGS2. Comput. Math. Methods Med., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/9664195] [PMID: 34849149]
[52]
Luo, C.; Xin, H.; Zhou, Z.; Hu, Z.; Sun, R.; Yao, N.; Sun, Q.; Borjigin, U.; Wu, X.; Fan, J.; Huang, X.; Zhou, S.; Zhou, J. Tumor-derived exosomes induce immunosuppressive macrophages to foster intrahepatic cholangiocarcinoma progression. Hepatology, 2022, 76(4), 982-999.
[http://dx.doi.org/10.1002/hep.32387] [PMID: 35106794]
[53]
Wang, H.; Ma, Z.; Liu, X.; Zhang, C.; Hu, Y.; Ding, L.; Qi, P.; Wang, J.; Lu, S.; Li, Y. MiR-183-5p is required for non-small cell lung cancer progression by repressing PTEN. Biomed. Pharmacother., 2019, 111, 1103-1111.
[http://dx.doi.org/10.1016/j.biopha.2018.12.115] [PMID: 30841423]
[54]
Meng, F.; Zhang, L. miR-183-5p functions as a tumor suppressor in lung cancer through PIK3CA inhibition. Exp. Cell Res., 2019, 374(2), 315-322.
[http://dx.doi.org/10.1016/j.yexcr.2018.12.003] [PMID: 30528264]
[55]
He, R.Q.; Gao, L.; Ma, J.; Li, Z.Y.; Hu, X.H.; Chen, G. Oncogenic role of miR-183-5p in lung adenocarcinoma: A comprehensive study of qPCR, in�vitro experiments and bioinformatic analysis. Oncol. Rep., 2018, 40(1), 83-100.
[http://dx.doi.org/10.3892/or.2018.6429] [PMID: 29749535]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy