Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Matrix Metalloproteinases in Oral Cancer Pathogenesis and their Use in Therapy

Author(s): Stuti Maurya, Divya Prasad and Sayali Mukherjee*

Volume 24, Issue 1, 2024

Published on: 20 November, 2023

Page: [3 - 17] Pages: 15

DOI: 10.2174/0118715206270002231108071917

Price: $65

Abstract

Matrix metalloproteinases (MMPs) are proteolytic enzymes that aid in extracellular matrix (ECM) remodeling. MMPs destroy the extracellular matrix, causing tumor growth and metastasis. MMPs are involved in the spread and metastasis of oral cancer. High levels of MMPs and oral squamous cell carcinoma have been linked to cancer prognosis. Modern medicine aims to prevent the illness from spreading through early intervention and examining changes in MMP genes. MMP gene polymorphism has recently been identified as one of the factors predicting susceptibility or risk in the development of oral carcinoma. This review aims to provide insight into the function of MMP subtypes involved in cancer. The genetic polymorphism in MMP genes and its predictive value in risk evaluation have been elaborated. Novel personalized therapeutic approaches for oral cancer, like the use of MMP inhibitors, nanoparticle-mediated targeting of MMP, or gene silencing by microRNA, can be designed.

Keywords: Matrix metalloproteinases, oral cancer, SNP, microRNA, therapy, proteolytic enzymes, genetic polymorphism.

Graphical Abstract
[1]
Ali, J.; Sabiha, B.; Jan, H.U.; Haider, S.A.; Khan, A.A.; Ali, S.S. Genetic etiology of oral cancer. Oral Oncol., 2017, 70, 23-28.
[http://dx.doi.org/10.1016/j.oraloncology.2017.05.004] [PMID: 28622887]
[2]
Irani, S.; Barati, I.; Badiei, M. Periodontitis and oral cancer - current concepts of the etiopathogenesis. Oncol. Rev., 2020, 14(1), 465.
[http://dx.doi.org/10.4081/oncol.2020.465] [PMID: 32231765]
[3]
Marsh, D.; Suchak, K.; Moutasim, K.A.; Vallath, S.; Hopper, C.; Jerjes, W.; Upile, T.; Kalavrezos, N.; Violette, S.M.; Weinreb, P.H.; Chester, K.A.; Chana, J.S.; Marshall, J.F.; Hart, I.R.; Hackshaw, A.K.; Piper, K.; Thomas, G.J. Stromal features are predictive of disease mortality in oral cancer patients. J. Pathol., 2011, 223(4), 470-481.
[http://dx.doi.org/10.1002/path.2830] [PMID: 21294121]
[4]
Geum, D.H.; Roh, Y.C.; Yoon, S.Y.; Kim, H.G.; Lee, J.H.; Song, J.M.; Lee, J.Y.; Hwang, D.S.; Kim, Y.D.; Shin, S.H.; Chung, I.K.; Kim, U.K. The impact factors on 5-year survival rate in patients operated with oral cancer. J. Korean Assoc. Oral Maxillofac. Surg., 2013, 39(5), 207-216.
[http://dx.doi.org/10.5125/jkaoms.2013.39.5.207] [PMID: 24471047]
[5]
Huang, S.H.; Sullivan, O. B. Oral cancer: Current role of radiotherapy and chemotherapy. Med. Oral Patol. Oral Cir. Bucal, 2013, 18(2), e233-e240.
[http://dx.doi.org/10.4317/medoral.18772] [PMID: 23385513]
[6]
Ma, J.; Liu, Y.; Huang, X.L.; Zhang, Z.Y.; Myers, J.N.; Neskey, D.M.; Zhong, L.P. Induction chemotherapy decreases the rate of distant metastasis in patients with head and neck squamous cell carcinoma but does not improve survival or locoregional control: A meta-analysis. Oral Oncol., 2012, 48(11), 1076-1084.
[http://dx.doi.org/10.1016/j.oraloncology.2012.06.014] [PMID: 22800881]
[7]
McLean, N.; Tighiouart, M.; Muller, S. Primary mucosal melanoma of the head and neck. Comparison of clinical presentation and histopathologic features of oral and sinonasal melanoma. Oral Oncol., 2008, 44(11), 1039-1046.
[http://dx.doi.org/10.1016/j.oraloncology.2008.01.014] [PMID: 18396446]
[8]
Caruntu, A.; Caruntu, C. Recent advances in oral squamous cell carcinoma. J. Clin. Med., 2022, 11(21), 6406.
[http://dx.doi.org/10.3390/jcm11216406] [PMID: 36362637]
[9]
Monea, M.; Pop, A.M. The use of salivary levels of matrix metalloproteinases as an adjuvant method in the early diagnosis of oral squamous cell carcinoma: A narrative literature review. Curr. Issues Mol. Biol., 2022, 44(12), 6306-6322.
[http://dx.doi.org/10.3390/cimb44120430] [PMID: 36547091]
[10]
McRae, M.P.; Modak, S.S.; Simmons, G.W.; Trochesset, D.A.; Kerr, A.R.; Thornhill, M.H.; Redding, S.W.; Vigneswaran, N.; Kang, S.K.; Christodoulides, N.J.; Murdoch, C.; Dietl, S.J.; Markham, R.; McDevitt, J.T. Point-of-care oral cytology tool for the screening and assessment of potentially malignant oral lesions. Cancer Cytopathol., 2020, 128(3), 207-220.
[http://dx.doi.org/10.1002/cncy.22236] [PMID: 32032477]
[11]
Messadi, D.V. Diagnostic aids for detection of oral precancerous conditions. Int. J. Oral Sci., 2013, 5(2), 59-65.
[http://dx.doi.org/10.1038/ijos.2013.24] [PMID: 23743617]
[12]
Javaid, M.A.; Ahmed, A.S.; Durand, R.; Tran, S.D. Saliva as a diagnostic tool for oral and systemic diseases. J. Oral Biol. Craniofac. Res., 2016, 6(1), 67-76.
[http://dx.doi.org/10.1016/j.jobcr.2015.08.006] [PMID: 26937373]
[13]
Singh, S.; Krishna, A.; Kumar, V.; Pal, U.S. Molecular concept in human oral cancer. Natl. J. Maxillofac. Surg., 2015, 6(1), 9-15.
[http://dx.doi.org/10.4103/0975-5950.168235] [PMID: 26668446]
[14]
McAllister, S.S.; Weinberg, R.A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol., 2014, 16(8), 717-727.
[http://dx.doi.org/10.1038/ncb3015] [PMID: 25082194]
[15]
Vilen, S.T.; Salo, T.; Sorsa, T.; Nyberg, P. Fluctuating roles of matrix metalloproteinase-9 in oral squamous cell carcinoma. ScientificWorldJournal, 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/920595] [PMID: 23365550]
[16]
Iozzo, R.V.; Sanderson, R.D. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J. Cell. Mol. Med., 2011, 15(5), 1013-1031.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01236.x] [PMID: 21155971]
[17]
Fanjul-Fernández, M.; Folgueras, A.R.; Cabrera, S.; López-Otín, C. Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 3-19.
[http://dx.doi.org/10.1016/j.bbamcr.2009.07.004] [PMID: 19631700]
[18]
McCawley, L.J.; Matrisian, L.M. Matrix metalloproteinases: Multifunctional contributors to tumor progression. Mol. Med. Today, 2000, 6(4), 149-156.
[http://dx.doi.org/10.1016/S1357-4310(00)01686-5] [PMID: 10740253]
[19]
Hofmann, L.; Medyany, V. Ezić J.; Lotfi, R.; Niesler, B.; Röth, R.; Engelhardt, D.; Laban, S.; Schuler, P.J.; Hoffmann, T.K.; Brunner, C.; Jackson, E.K.; Theodoraki, M.N. Cargo and functional profile of saliva-derived exosomes reveal biomarkers specific for head and neck cancer. Front. Med., 2022, 9, 904295.
[http://dx.doi.org/10.3389/fmed.2022.904295] [PMID: 35899209]
[20]
Fields, G.B. The rebirth of matrix metalloproteinase inhibitors: Moving beyond the dogma. Cells, 2019, 8(9), 984.
[http://dx.doi.org/10.3390/cells8090984] [PMID: 31461880]
[21]
Itoh, Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol., 2015, 44-46, 207-223.
[http://dx.doi.org/10.1016/j.matbio.2015.03.004] [PMID: 25794647]
[22]
Amălinei, C.; Căruntu, I.D. Bălan, R.A. Biology of metalloproteinases. Rom. J. Morphol. Embryol., 2007, 48(4), 323-334.
[PMID: 18060181]
[23]
Laronha, H.; Caldeira, J. Structure and function of human matrix metalloproteinases. Cells, 2020, 9(5), 1076.
[http://dx.doi.org/10.3390/cells9051076] [PMID: 32357580]
[24]
Hannocks, M.J.; Zhang, X.; Gerwien, H.; Chashchina, A.; Burmeister, M.; Korpos, E.; Song, J.; Sorokin, L. The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol., 2019, 75-76, 102-113.
[http://dx.doi.org/10.1016/j.matbio.2017.11.007] [PMID: 29158162]
[25]
Hadi, T.; Boytard, L.; Silvestro, M.; Alebrahim, D.; Jacob, S.; Feinstein, J.; Barone, K.; Spiro, W.; Hutchison, S.; Simon, R.; Rateri, D.; Pinet, F.; Fenyo, D.; Adelman, M.; Moore, K.J.; Eltzschig, H.K.; Daugherty, A.; Ramkhelawon, B. Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nat. Commun., 2018, 9(1), 5022.
[http://dx.doi.org/10.1038/s41467-018-07495-1] [PMID: 30479344]
[26]
Rath, T.; Roderfeld, M.; Halwe, J.M.; Tschuschner, A.; Roeb, E.; Graf, J. Cellular sources of MMP-7, MMP-13 and MMP-28 in ulcerative colitis. Scand. J. Gastroenterol., 2010, 45(10), 1186-1196.
[http://dx.doi.org/10.3109/00365521.2010.499961] [PMID: 20568971]
[27]
Craig, V.J.; Polverino, F.; Laucho-Contreras, M.E.; Shi, Y.; Liu, Y.; Osorio, J.C.; Tesfaigzi, Y.; Pinto-Plata, V.; Gochuico, B.R.; Rosas, I.O.; Owen, C.A. Mononuclear phagocytes and airway epithelial cells: Novel sources of matrix metalloproteinase-8 (MMP-8) in patients with idiopathic pulmonary fibrosis. PLoS One, 2014, 9(5), e97485.
[http://dx.doi.org/10.1371/journal.pone.0097485] [PMID: 24828408]
[28]
Bradley, L.M.; Douglass, M.F.; Chatterjee, D.; Akira, S.; Baaten, B.J.G. Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling. PLoS Pathog., 2012, 8(4), e1002641.
[http://dx.doi.org/10.1371/journal.ppat.1002641] [PMID: 22496659]
[29]
McMahan, R.S.; Birkland, T.P.; Smigiel, K.S.; Vandivort, T.C.; Rohani, M.G.; Manicone, A.M.; McGuire, J.K.; Gharib, S.A.; Parks, W.C. Stromelysin-2 (MMP10) moderates inflammation by controlling macrophage activation. J. Immunol., 2016, 197(3), 899-909.
[http://dx.doi.org/10.4049/jimmunol.1600502] [PMID: 27316687]
[30]
Zhong, J.; Shan, W.; Zuo, Z. Norepinephrine inhibits migration and invasion of human glioblastoma cell cultures possibly via MMP-11 inhibition. Brain Res., 2021, 1756, 147280.
[http://dx.doi.org/10.1016/j.brainres.2021.147280] [PMID: 33515535]
[31]
Suh, H.S.; Choi, N.; Tarassishin, L.; Lee, S.C. Regulation of progranulin expression in human microglia and proteolysis of progranulin by matrix metalloproteinase-12 (MMP-12). PLoS One, 2012, 7(4), e35115.
[http://dx.doi.org/10.1371/journal.pone.0035115] [PMID: 22509390]
[32]
Jones, S.W.; Watkins, G.; Le Good, N.; Roberts, S.; Murphy, C.L.; Brockbank, S.M.V.; Needham, M.R.C.; Read, S.J.; Newham, P. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-α and MMP13. Osteoarthritis Cartilage, 2009, 17(4), 464-472.
[http://dx.doi.org/10.1016/j.joca.2008.09.012] [PMID: 19008124]
[33]
Cork, S.M.; Kaur, B.; Devi, N.S.; Cooper, L.; Saltz, J.H.; Sandberg, E.M.; Kaluz, S.; Van Meir, E.G. A proprotein convertase/MMP-14 proteolytic cascade releases a novel 40 kDa vasculostatin from tumor suppressor BAI1. Oncogene, 2012, 31(50), 5144-5152.
[http://dx.doi.org/10.1038/onc.2012.1] [PMID: 22330140]
[34]
Kaitu’u-Lino, T.J.; Palmer, K.; Tuohey, L.; Ye, L.; Tong, S. MMP-15 is upregulated in preeclampsia, but does not cleave endoglin to produce soluble endoglin. PLoS One, 2012, 7(6), e39864.
[http://dx.doi.org/10.1371/journal.pone.0039864] [PMID: 22768148]
[35]
Cao, L.; Chen, C.; Zhu, H.; Gu, X.; Deng, D.; Tian, X.; Liu, J.; Xiao, Q. MMP16 is a marker of poor prognosis in gastric cancer promoting proliferation and invasion. Oncotarget, 2016, 7(32), 51865-51874.
[http://dx.doi.org/10.18632/oncotarget.10177] [PMID: 27340864]
[36]
Sohail, A.; Sun, Q.; Zhao, H.; Bernardo, M.M.; Cho, J.A.; Fridman, R. MT4-(MMP17) and MT6-MMP (MMP25), A unique set of membrane-anchored matrix metalloproteinases: Properties and expression in cancer. Cancer Metastasis Rev., 2008, 27(2), 289-302.
[http://dx.doi.org/10.1007/s10555-008-9129-8] [PMID: 18286233]
[37]
Sugimoto, W.; Itoh, K.; Hirata, H.; Abe, Y.; Torii, T.; Mitsui, Y.; Budirahardja, Y.; Tanaka, N.; Kawauchi, K. MMP24 as a target of YAP is a potential prognostic factor in cancer patients. Bioengineering, 2020, 7(1), 18.
[http://dx.doi.org/10.3390/bioengineering7010018] [PMID: 32093160]
[38]
Bassiouni, W.; Ali, M.A.M.; Schulz, R. Multifunctional intracellular matrix metalloproteinases: Implications in disease. FEBS J., 2021, 288(24), 7162-7182.
[http://dx.doi.org/10.1111/febs.15701] [PMID: 33405316]
[39]
Fu, L.; Das, B.; Mathew, S.; Shi, Y.B. Genome-wide identification of Xenopus matrix metalloproteinases: Conservation and unique duplications in amphibians. BMC Genomics, 2009, 10(1), 81.
[http://dx.doi.org/10.1186/1471-2164-10-81] [PMID: 19222855]
[40]
Sainio, A.; Järveläinen, H. Extracellular matrix-cell interactions: Focus on therapeutic applications. Cell. Signal., 2020, 66, 109487.
[http://dx.doi.org/10.1016/j.cellsig.2019.109487] [PMID: 31778739]
[41]
Vincenti, M.P.; Brinckerhoff, C.E. Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: Can MMPs be good for you? J. Cell. Physiol., 2007, 213(2), 355-364.
[http://dx.doi.org/10.1002/jcp.21208] [PMID: 17654499]
[42]
Cooper, S.; Bowden, G. Ultraviolet B regulation of transcription factor families: roles of nuclear factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) in UVB-induced skin carcinogenesis. Curr. Cancer Drug Targets, 2007, 7(4), 325-334.
[http://dx.doi.org/10.2174/156800907780809714] [PMID: 17979627]
[43]
Theocharis, A.D.; Gialeli, C.; Bouris, P.; Giannopoulou, E.; Skandalis, S.S.; Aletras, A.J.; Iozzo, R.V.; Karamanos, N.K. Cell–matrix interactions: Focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer. FEBS J., 2014, 281(22), 5023-5042.
[http://dx.doi.org/10.1111/febs.12927] [PMID: 25333340]
[44]
Polette, M.; Nawrocki-Raby, B.; Gilles, C.; Clavel, C.; Birembaut, P. Tumour invasion and matrix metalloproteinases. Crit. Rev. Oncol. Hematol., 2004, 49(3), 179-186.
[http://dx.doi.org/10.1016/j.critrevonc.2003.10.008] [PMID: 15036258]
[45]
Hornebeck, W.; Emonard, H.; Monboisse, J.C.; Bellon, G. Matrix-directed regulation of pericellular proteolysis and tumor progression. Semin. Cancer Biol., 2002, 12(3), 231-241.
[http://dx.doi.org/10.1016/S1044-579X(02)00026-3] [PMID: 12083853]
[46]
Jabłońska-Trypuć, A.; Matejczyk, M.; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem., 2016, 31(S1), 177-183.
[47]
McCarrel, T.; Fortier, L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J. Orthop. Res., 2009, 27(8), 1033-1042.
[http://dx.doi.org/10.1002/jor.20853] [PMID: 19170097]
[48]
Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17(1), 463-516.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.463] [PMID: 11687497]
[49]
Bernardo, M.M.; Fridman, R. TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP. Biochem. J., 2003, 374(3), 739-745.
[http://dx.doi.org/10.1042/bj20030557] [PMID: 12755684]
[50]
Joo, C.K.; Seomun, Y. Matrix metalloproteinase (MMP) and TGF-β1-stimulated cell migration in skin and cornea wound healing. Cell Adhes. Migr., 2008, 2(4), 252-253.
[http://dx.doi.org/10.4161/cam.2.4.6772] [PMID: 19262153]
[51]
Koivisto, L.; Heino, J.; Häkkinen, L.; Larjava, H. Integrins in wound healing. Adv. Wound Care, 2014, 3(12), 762-783.
[http://dx.doi.org/10.1089/wound.2013.0436] [PMID: 25493210]
[52]
Brzozowska, E.; Deshmukh, S. Integrin Alpha v Beta 6 (αvβ6) and its implications in cancer treatment. Int. J. Mol. Sci., 2022, 23(20), 12346.
[http://dx.doi.org/10.3390/ijms232012346] [PMID: 36293202]
[53]
Schultz, G.S.; Wysocki, A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen., 2009, 17(2), 153-162.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00466.x] [PMID: 19320882]
[54]
Stamenkovic, I. Extracellular matrix remodelling: The role of matrix metalloproteinases. J. Pathol., 2003, 200(4), 448-464.
[http://dx.doi.org/10.1002/path.1400] [PMID: 12845612]
[55]
John, A.; Tuszynski, G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol. Oncol. Res., 2001, 7(1), 14-23.
[http://dx.doi.org/10.1007/BF03032599] [PMID: 11349215]
[56]
Bissell, M.J.; Kenny, P.A.; Radisky, D.C. Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: The role of extracellular matrix and its degrading enzymes. Cold Spring Harb. Symp. Quant. Biol., 2005, 70(0), 343-356.
[http://dx.doi.org/10.1101/sqb.2005.70.013] [PMID: 16869771]
[57]
Jiang, Y.; Goldberg, I.D.; Shi, Y.E. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 2002, 21(14), 2245-2252.
[http://dx.doi.org/10.1038/sj.onc.1205291] [PMID: 11948407]
[58]
Luchian, I.; Goriuc, A.; Sandu, D.; Covasa, M. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int. J. Mol. Sci., 2022, 23(3), 1806.
[http://dx.doi.org/10.3390/ijms23031806] [PMID: 35163727]
[59]
Reunanen, N.; Kähäri, V. Matrix metalloproteinases in cancer cell invasion. InMadame Curie Bioscience Database; Landes Bioscience, 2013.
[60]
Meng, W.; Hao, Y.; He, C.; Li, L.; Zhu, G. Exosome-orchestrated hypoxic tumor microenvironment. Mol. Cancer, 2019, 18(1), 57.
[http://dx.doi.org/10.1186/s12943-019-0982-6] [PMID: 30925935]
[61]
Nowacka, M.M.; Obuchowicz, E. Vascular endothelial growth factor (VEGF) and its role in the central nervous system: A new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides, 2012, 46(1), 1-10.
[http://dx.doi.org/10.1016/j.npep.2011.05.005] [PMID: 21719103]
[62]
Yuan, Y.; Jiang, Y.C.; Sun, C.K.; Chen, Q.M. Role of the tumor microenvironment in tumor progression and the clinical applications. Oncol. Rep., 2016, 35(5), 2499-2515.
[63]
Kuczynski, E.A.; Vermeulen, P.B.; Pezzella, F.; Kerbel, R.S.; Reynolds, A.R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol., 2019, 16(8), 469-493.
[http://dx.doi.org/10.1038/s41571-019-0181-9] [PMID: 30816337]
[64]
Tanis, T.; Cincin, Z.B.; Gokcen-Rohlig, B.; Bireller, E.S.; Ulusan, M.; Tanyel, C.R.; Cakmakoglu, B. The role of components of the extracellular matrix and inflammation on oral squamous cell carcinoma metastasis. Arch. Oral Biol., 2014, 59(11), 1155-1163.
[http://dx.doi.org/10.1016/j.archoralbio.2014.07.005] [PMID: 25090271]
[65]
Singer, C.F.; Kronsteiner, N.; Marton, E.; Kubista, M.; Cullen, K.J.; Hirtenlehner, K.; Seifert, M.; Kubista, E. MMP-2 and MMP-9 expression in breast cancer-derived human fibroblasts is differentially regulated by stromal-epithelial interactions. Breast Cancer Res. Treat., 2002, 72(1), 69-77.
[http://dx.doi.org/10.1023/A:1014918512569] [PMID: 12000221]
[66]
Kerkelä, E.; Saarialho-Kere, U. Matrix metalloproteinases in tumor progression: Focus on basal and squamous cell skin cancer. Exp. Dermatol., 2003, 12(2), 109-125.
[http://dx.doi.org/10.1034/j.1600-0625.2003.120201.x] [PMID: 12702139]
[67]
Lynch, C.C.; Matrisian, L.M. Matrix metalloproteinases in tumor-host cell communication. Differentiation, 2002, 70(9-10), 561-573.
[http://dx.doi.org/10.1046/j.1432-0436.2002.700909.x] [PMID: 12492497]
[68]
Juarez, J.; Clayman, G.; Nakajima, M.; Tanabe, K.K.; Saya, H.; Nicolson, G.L.; Boyd, D. Role and regulation of expression of 92-kDa type-IV collagenase (MMP-9) in 2 invasive squamous-cell-carcinoma cell lines of the oral cavity. Int. J. Cancer, 1993, 55(1), 10-18.
[http://dx.doi.org/10.1002/ijc.2910550104] [PMID: 7688350]
[69]
Chandolia, B.; Basu, S.K.; Kumar, M. Can MMP-9 be a prognosticator marker for oral squamous cell carcinoma? J. Clin. Diagn. Res., 2016, 10(1), ZC09-ZC13.
[http://dx.doi.org/10.7860/JCDR/2016/14128.7034] [PMID: 26894167]
[70]
Lawal, A.; Adisa, A.; Kolude, B.; Adeyemi, B. Immunohistochemical expression of MMP-2 and MMP-8 in oral squamous cell carcinoma. J. Clin. Exp. Dent., 2015, 7(2), e203-e207.
[http://dx.doi.org/10.4317/jced.52047] [PMID: 26155333]
[71]
Nabeshima, K.; Inoue, T.; Shimao, Y.; Sameshima, T. Matrix metalloproteinases in tumor invasion: Role for cell migration. Pathol. Int., 2002, 52(4), 255-264.
[http://dx.doi.org/10.1046/j.1440-1827.2002.01343.x] [PMID: 12031080]
[72]
Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci., 2016, 17(6), 868.
[http://dx.doi.org/10.3390/ijms17060868] [PMID: 27271600]
[73]
Kajdaniuk, D.; Marek, B.; Borgiel-Marek, H. Kos-Kudła, B. Transforming growth factor β1 (TGFbeta1) in physiology and pathology. Endokrynol. Pol., 2013, 64(5), 384-396.
[http://dx.doi.org/10.5603/EP.2013.0022] [PMID: 24186596]
[74]
Kusukawa, J.; Sasaguri, Y.; Morimatsu, M.; Kameyama, T. Expression of matrix metalloproteinase-3 in stage I and II squamous cell carcinoma of the oral cavity. J. Oral Maxillofac. Surg., 1995, 53(5), 530-534.
[http://dx.doi.org/10.1016/0278-2391(95)90065-9] [PMID: 7722722]
[75]
Pozo, P.; Valenzuela, M.A.; Melej, C.; Zaldívar, M.; Puente, J.; Martínez, B.; Gamonal, J. Longitudinal analysis of metalloproteinases, tissue inhibitors of metalloproteinases and clinical parameters in gingival crevicular fluid from periodontitis-affected patients. J. Periodontal Res., 2005, 40(3), 199-207.
[http://dx.doi.org/10.1111/j.1600-0765.2005.00786.x] [PMID: 15853964]
[76]
Giannobile, W.V.; Beikler, T.; Kinney, J.S.; Ramseier, C.A.; Morelli, T.; Wong, D.T. Saliva as a diagnostic tool for periodontal disease: Current state and future directions. Periodontol. 2000, 2009, 50(1), 52-64.
[http://dx.doi.org/10.1111/j.1600-0757.2008.00288.x] [PMID: 19388953]
[77]
Sahingur, S.E.; Yeudall, W.A. Chemokine function in periodontal disease and oral cavity cancer. Front. Immunol., 2015, 6, 214.
[http://dx.doi.org/10.3389/fimmu.2015.00214] [PMID: 25999952]
[78]
Yu, Saliva protein biomarkers to detect oral squamous cell carcinoma in a high-risk population in Taiwan. Proc. Natl. Acad. Sci., 2016, 113(45)
[79]
Bourboulia, D.; Stetler-Stevenson, W.G. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin. Cancer Biol., 2010, 20(3), 161-168.
[http://dx.doi.org/10.1016/j.semcancer.2010.05.002] [PMID: 20470890]
[80]
Kudo, Y.; Iizuka, S.; Yoshida, M.; Tsunematsu, T.; Kondo, T.; Subarnbhesaj, A.; Deraz, E.M.; Siriwardena, S.B.S.M.; Tahara, H.; Ishimaru, N.; Ogawa, I.; Takata, T. Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis. J. Biol. Chem., 2012, 287(46), 38716-38728.
[http://dx.doi.org/10.1074/jbc.M112.373159] [PMID: 22992737]
[81]
Ezhilarasan, D.; Lakshmi, T.; Subha, M.; Deepak, N.V.; Raghunandhakumar, S. The ambiguous role of sirtuins in head and neck squamous cell carcinoma. Oral Dis., 2022, 28(3), 559-567.
[http://dx.doi.org/10.1111/odi.13798] [PMID: 33570800]
[82]
Calderwood, S.K.; Khaleque, M.A.; Sawyer, D.B.; Ciocca, D.R. Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem. Sci., 2006, 31(3), 164-172.
[http://dx.doi.org/10.1016/j.tibs.2006.01.006] [PMID: 16483782]
[83]
Poincloux, R.; Lizárraga, F.; Chavrier, P. Matrix invasion by tumour cells: A focus on MT1-MMP trafficking to invadopodia. J. Cell Sci., 2009, 122(17), 3015-3024.
[http://dx.doi.org/10.1242/jcs.034561] [PMID: 19692588]
[84]
Chakraborty, S.; Suresh, T.N.R.; Mohiyuddin, A.S. Role of matrix metalloproteinase 9 in predicting lymph node metastases in oral squamous cell carcinoma. Cureus, 2023, 15(1), e33495.
[http://dx.doi.org/10.7759/cureus.33495] [PMID: 36756017]
[85]
Ribatti, D.; Nico, B.; Crivellato, E.; Vacca, A. Macrophages and tumor angiogenesis. Leukemia, 2007, 21(10), 2085-2089.
[http://dx.doi.org/10.1038/sj.leu.2404900] [PMID: 17878921]
[86]
Singh, R.D.; Haridas, N.; Patel, J.B.; Shah, F.D.; Shukla, S.N.; Shah, P.M.; Patel, P.S. Matrix metalloproteinases and their inhibitors: Correlation with invasion and metastasis in oral cancer. Indian J. Clin. Biochem., 2010, 25(3), 250-259.
[http://dx.doi.org/10.1007/s12291-010-0060-8] [PMID: 21731196]
[87]
Wróbel-Roztropiński, A.; Zieliińska-Kaźmierska, B.; Roztropiński, H.; Lucas-Grzelczyk, W.; Szemraj, J.; Józefowicz-Korczyńska, M. Expression of matrix metalloproteinases (MMPs) and their inhibitor (TIMP) genes on mRNA and protein levels in oral squamous cell carcinoma. Nowotwory. J. Oncol., 2021, 71(1), 1-8.
[http://dx.doi.org/10.5603/NJO.2021.0003]
[88]
Deryugina, E.I.; Quigley, J.P. Cell surface remodeling by plasmin: A new function for an old enzyme. J. Biomed. Biotechnol., 2012, 2012, 1-21.
[http://dx.doi.org/10.1155/2012/564259] [PMID: 23097597]
[89]
Gkouveris, I.; Nikitakis, N.; Aseervatham, J.; Rao, N.; Ogbureke, K. Matrix metalloproteinases in head and neck cancer: Current perspectives. Metalloproteinases Med., 2017, 4, 47-61.
[http://dx.doi.org/10.2147/MNM.S105770]
[90]
Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol., 2011, 3(12), a005058.
[http://dx.doi.org/10.1101/cshperspect.a005058] [PMID: 21917992]
[91]
Kucukguven, A.; Khalil, R.A. Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins. Curr. Drug Targets, 2013, 14(3), 287-324.
[PMID: 23316963]
[92]
Barillari, G.; Melaiu, O.; Gargari, M.; Pomella, S.; Bei, R.; Campanella, V. The multiple roles of CD147 in the development and progression of oral squamous cell carcinoma: An overview. Int. J. Mol. Sci., 2022, 23(15), 8336.
[http://dx.doi.org/10.3390/ijms23158336] [PMID: 35955471]
[93]
Zhou, L.; Zhang, S.; Huang, W.; Zhang, L.; Cai, Y.; Ke, W.; Cai, L.; Zou, J.; Chen, H. Functional analysis of polymorphism haplotypes of MGMT in residents of high background radiation area. Mutagenesis, 2023, 38(2), 109-119.
[http://dx.doi.org/10.1093/mutage/gead001] [PMID: 36852768]
[94]
Eisenhaber, F.; Asthana, S.; Sunyaev, S. Understanding the functional importance of human single nucleotide polymorphisms. In: Discovering Biomolecular Mechanisms with Computational Biology; Springer: Boston, MA, 2006; pp. 126-132.
[95]
Li, L.; Liu, J.; Qin, S.; Li, R. The association of polymorphisms in promoter region of MMP2 and MMP9 with recurrent spontaneous abortion risk in Chinese population. Medicine, 2018, 97(40), e12561.
[http://dx.doi.org/10.1097/MD.0000000000012561] [PMID: 30290617]
[96]
Zhang, J.; Jin, X.; Fang, S.; Wang, R.; Li, Y.; Wang, N.; Guo, W.; Wang, Y.; Wen, D.; Wei, L.; Dong, Z.; Kuang, G. The functional polymorphism in the matrix metalloproteinase-7 promoter increases susceptibility to esophageal squamous cell carcinoma, gastric cardiac adenocarcinoma and non-small cell lung carcinoma. Carcinogenesis, 2005, 26(10), 1748-1753.
[http://dx.doi.org/10.1093/carcin/bgi144] [PMID: 15930031]
[97]
Cao, Z.G.; Li, C.Z. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances oral squamous cell carcinoma susceptibility in a Chinese population. Oral Oncol., 2006, 42(1), 31-37.
[http://dx.doi.org/10.1016/j.oraloncology.2004.08.015] [PMID: 16256416]
[98]
Gao, J.; Ma, X.; Qu, T.; Xiao, G. Zinc dyshomeostasis in secretory compartments promotes tumor growth and invasion via cell autonomous and non-autonomous autophagy. Autophagy Reports, 2022, 1(1), 175-178.
[http://dx.doi.org/10.1080/27694127.2022.2062966]
[99]
Lin, S.C.; Lo, S.S.; Liu, C.J.; Chung, M.Y.; Huang, J.W.; Chang, K.W. Functional genotype in matrix metalloproteinases-2 promoter is a risk factor for oral carcinogenesis. J. Oral Pathol. Med., 2004, 33(7), 405-409.
[http://dx.doi.org/10.1111/j.1600-0714.2004.00231.x] [PMID: 15250832]
[100]
Battelli, M.G.; Polito, L.; Bortolotti, M.; Bolognesi, A. Xanthine oxidoreductase in cancer: More than a differentiation marker. Cancer Med., 2016, 5(3), 546-557.
[http://dx.doi.org/10.1002/cam4.601] [PMID: 26687331]
[101]
Dobrescu, R.; Schipor, S.; Manda, D.; Caragheorgheopol, A.; Badiu, C. Matrix metalloproteinase-9 (MMP-9) promoter-1562C/T functional polymorphism is associated with an increased risk to develop micropapillary thyroid carcinoma. Cancer Biomark., 2022, 1, 1-8.
[102]
Kumar, S.A.; Indu, S.; Gautami, D. Oral squamous cell carcinoma (OSCC) in humans: Etiological Factors, diagnostic and therapeutic relevance. Res. J. Biotechnol. Vol., 2020, 15, 10.
[103]
Slavich, G.M.; Mengelkoch, S.; Cole, S.W. Human social genomics: Concepts, mechanisms, and implications for health. Lifestyle Med., 2023, 4(2), e75.
[http://dx.doi.org/10.1002/lim2.75] [PMID: 37275556]
[104]
Castagnola, M.; Scarano, E.; Passali, G.C.; Messana, I.; Cabras, T.; Iavarone, F.; Di Cintio, G.; Fiorita, A.; De Corso, E.; Paludetti, G. Salivary biomarkers and proteomics: Future diagnostic and clinical utilities. Acta Otorhinolaryngol. Ital., 2017, 37(2), 94-101.
[http://dx.doi.org/10.14639/0392-100X-1598] [PMID: 28516971]
[105]
Roi, A.; Roi, C.I.; Negruțiu, M.L.; Riviș, M.; Sinescu, C.; Rusu, L.C. ;The challenges of OSCC diagnosis: Salivary cytokines as potential biomarkers. J. Clin. Med., 2020, 9(9), 2866.
[http://dx.doi.org/10.3390/jcm9092866] [PMID: 32899735]
[106]
Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci., 2020, 21(24), 9739.
[http://dx.doi.org/10.3390/ijms21249739] [PMID: 33419373]
[107]
Fane, M.; Weeraratna, A.T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer, 2020, 20(2), 89-106.
[http://dx.doi.org/10.1038/s41568-019-0222-9] [PMID: 31836838]
[108]
Bano, A.; Vats, R.; Yadav, P.; Bhardwaj, R. Exosomics in oral cancer diagnosis, prognosis, and therapeutics – An emergent and imperative non-invasive natural nanoparticle-based approach. Crit. Rev. Oncol. Hematol., 2022, 178, 103799.
[http://dx.doi.org/10.1016/j.critrevonc.2022.103799] [PMID: 36031170]
[109]
Vyas, K.; Rathod, M.; Patel, M.M. Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer. Nanomedicine, 2023, 49, 102662.
[http://dx.doi.org/10.1016/j.nano.2023.102662] [PMID: 36746272]
[110]
Carbone, D.; Parrino, B.; Cascioferro, S.; Pecoraro, C.; Giovannetti, E.; Di Sarno, V.; Musella, S.; Auriemma, G.; Cirrincione, G.; Diana, P. 1,2,4-oxadiazole topsentin analogs with antiproliferative activity against pancreatic cancer cells, targeting GSK3β kinase. ChemMedChem, 2021, 16(3), 537-554.
[http://dx.doi.org/10.1002/cmdc.202000752] [PMID: 33141472]
[111]
Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol., 2019, 9, 1370.
[http://dx.doi.org/10.3389/fonc.2019.01370] [PMID: 31921634]
[112]
Srivastava, S.; Rizvi, S.; Eba, A.; Fatima, K.; Raza, S.T. Proteomic and transcriptomic biomarkers for oral squamous cell Car-cinoma detection: Insights from saliva analysis. J. Clin. Images Med. Case Rep., 2023, 4(8), 2533.
[113]
Li, Y.Y.; Zhang, L.Y.; Xiang, Y.H.; Li, D.; Zhang, J. Matrix metalloproteinases and tissue inhibitors in multiple myeloma: Promote or inhibit? Front. Oncol., 2023, 13, 1127407.
[http://dx.doi.org/10.3389/fonc.2023.1127407] [PMID: 37823051]
[114]
li, M.; Yan, T.; Cai, Y.; Wei, Y.; Xie, Q. Expression of matrix metalloproteinases and their association with clinical characteristics of solid tumors. Gene, 2023, 850, 146927.
[http://dx.doi.org/10.1016/j.gene.2022.146927] [PMID: 36228865]
[115]
Anwar, S.; Ahmad, D.S.; Pratap, P.D.; Zehra, D.A. The Interplay of Matrix.,
[116]
Saeidi, V.; Doudican, N.; Carucci, J.A. Understanding the squamous cell carcinoma immune microenvironment. Front. Immunol., 2023, 14, 1084873.
[http://dx.doi.org/10.3389/fimmu.2023.1084873] [PMID: 36793738]
[117]
Jadczyk-Sorek, K.; Garczorz, W.; Bubała-Stachowicz, B.; Francuz, T.; Mrukwa-Kominek, E. Matrix metalloproteinases and the pathogenesis of recurrent corneal erosions and epithelial basement membrane dystrophy. Biology, 2023, 12(9), 1263.
[http://dx.doi.org/10.3390/biology12091263] [PMID: 37759662]
[118]
Dharavath, B.; Butle, A.; Pal, A.; Desai, S.; Upadhyay, P.; Rane, A.; Khandelwal, R.; Manavalan, S.; Thorat, R.; Sonawane, K.; Vaish, R.; Gera, P.; Bal, M.; D’Cruz, A.K.; Nair, S.; Dutt, A. Role of miR-944/MMP10/AXL- axis in lymph node metastasis in tongue cancer. Commun. Biol., 2023, 6(1), 57.
[http://dx.doi.org/10.1038/s42003-023-04437-6] [PMID: 36650344]
[119]
Kingsley, C.; Kourtidis, A. Critical roles of adherens junctions in diseases of the oral mucosa. Tissue Barriers, 2023, 11(2), 2084320.
[http://dx.doi.org/10.1080/21688370.2022.2084320] [PMID: 35659464]
[120]
Cascioferro, S.; Petri, G.L.; Parrino, B.; Carbone, D.; Funel, N.; Bergonzini, C.; Mantini, G.; Dekker, H.; Geerke, D.; Peters, G.J.; Cirrincione, G.; Giovannetti, E.; Diana, P. Imidazo[2,1-b] [1,3,4]thiadiazoles with antiproliferative activity against primary and gemcitabine-resistant pancreatic cancer cells. Eur. J. Med. Chem., 2020, 189, 112088.
[http://dx.doi.org/10.1016/j.ejmech.2020.112088] [PMID: 32007666]
[121]
Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol., 2017, 14(7), 399-416.
[http://dx.doi.org/10.1038/nrclinonc.2016.217] [PMID: 28117416]
[122]
Verhamme, I.M.; Leonard, S.E.; Perkins, R.C. Proteases: Pivot points in functional proteomics. Func. Proteom; Methods Protocol, 2019, pp. 313-392.
[http://dx.doi.org/10.1007/978-1-4939-8814-3_20]
[123]
Savita, J.K.; Kumar, B.N.Y.; Nayak, V.N. Matrix metalloproteinases in oral squamous cell carcinoma - A review. J. Adv. Clin. Res. Insights, 2018, 5(4), 124-126.
[http://dx.doi.org/10.15713/ins.jcri.227]
[124]
Fan, Y.; Chen, L.; Zheng, Y.; Li, A.; Lin, H.; Gao, J. >Nanoparticle-based activatable MRI probes for disease imaging and monitoring. Chem. Biomed. Imag., 2023, 1021, 3c00024.
[http://dx.doi.org/10.1021/cbmi.3c00024]
[125]
Langer, C.J. Role of targeted therapy in non-small cell lung cancer: Hype or hope? Expert Rev. Anticancer Ther., 2003, 3(4), 443-455.
[http://dx.doi.org/10.1586/14737140.3.4.443] [PMID: 12934657]
[126]
Jayatilaka, H.; Umanzor, F.G.; Shah, V.; Meirson, T.; Russo, G.; Starich, B.; Tyle, P.; Lee, J.S.H.; Khatau, S.; Gil-Henn, H.; Wirtz, D. Tumor cell density regulates matrix metalloproteinases for enhanced migration. Oncotarget, 2018, 9(66), 32556-32569.
[http://dx.doi.org/10.18632/oncotarget.25863] [PMID: 30220965]
[127]
Marder, G.; Greenwald, R.A. Potential applications of matrix metalloproteinase inhibitors in geriatric practice. Isr. Med. Assoc. J., 2003, 5(5), 361-364.
[PMID: 12811957]
[128]
Failes, T.W.; Cullinane, C.; Diakos, C.I.; Yamamoto, N.; Lyons, J.G.; Hambley, T.W. Studies of a cobalt(III) complex of the MMP inhibitor marimastat: A potential hypoxia-activated prodrug. Chemistry, 2007, 13(10), 2974-2982.
[http://dx.doi.org/10.1002/chem.200601137] [PMID: 17171733]
[129]
Alaseem, A.; Alhazzani, K.; Dondapati, P.; Alobid, S.; Bishayee, A.; Rathinavelu, A. Matrix metalloproteinases: A challenging paradigm of cancer management. In: Seminars in cancer biology; Academic Press, 2019; pp. 100-115.
[http://dx.doi.org/10.1016/j.semcancer.2017.11.008]
[130]
Rivera-Delgado, E.; Nam, J.K.; von Recum, H.A. Localized affinity-based delivery of prinomastat for cancer treatment. ACS Biomater. Sci. Eng., 2017, 3(3), 238-242.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00626] [PMID: 33465922]
[131]
Yang, J.S.; Lin, C.W.; Su, S.C.; Yang, S.F. Pharmacodynamic considerations in the use of matrix metalloproteinase inhibitors in cancer treatment. Expert Opin. Drug Metab. Toxicol., 2016, 12(2), 191-200.
[http://dx.doi.org/10.1517/17425255.2016.1131820] [PMID: 26852787]
[132]
Allen, J.L.; Hames, R.A.; Mastroianni, N.M.; Greenstein, A.E.; Weed, S.A. Evaluation of the matrix metalloproteinase 9 (MMP9) inhibitor Andecaliximab as an Anti-invasive therapeutic in Head and neck squamous cell carcinoma. Oral Oncol., 2022, 132, 106008.
[http://dx.doi.org/10.1016/j.oraloncology.2022.106008] [PMID: 35803110]
[133]
Pagès, G.; Pouysségur, J. Transcriptional regulation of the Vascular Endothelial Growth Factor gene-a concert of activating factors. Cardiovasc. Res., 2005, 65(3), 564-573.
[http://dx.doi.org/10.1016/j.cardiores.2004.09.032] [PMID: 15664382]
[134]
Ballav, S.; Lokhande, K.B.; Dabhi, I.; Inje, S.; Ranjan, A.; Swamy, K.V.; Basu, S. Designing novel quercetin derivatives as matrix metalloproteinase-9 inhibitors in colon carcinoma: An in vitro and in silico approach. J. Dental Res. Rev., 2020, 7(5), 30.
[135]
Fischer, T.; Riedl, R. Inhibitory antibodies designed for matrix metalloproteinase modulation. Molecules, 2019, 24(12), 2265.
[http://dx.doi.org/10.3390/molecules24122265] [PMID: 31216704]
[136]
Wang, D.; Qiu, C.; Zhang, H.; Wang, J.; Cui, Q.; Yin, Y. Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: From functions to targets. PLoS One, 2010, 5(9), e13067.
[http://dx.doi.org/10.1371/journal.pone.0013067] [PMID: 20927335]
[137]
Li, L.; Li, H. Role of microRNA-mediated MMP regulation in the treatment and diagnosis of malignant tumors. Cancer Biol. Ther., 2013, 14(9), 796-805.
[http://dx.doi.org/10.4161/cbt.25936] [PMID: 23917402]
[138]
Salmond, N.; Williams, K.C. Isolation and characterization of extracellular vesicles for clinical applications in cancer – time for standardization? Nanoscale Adv., 2021, 3(7), 1830-1852.
[http://dx.doi.org/10.1039/D0NA00676A] [PMID: 36133088]
[139]
Yu, X.; Li, Z. Micro RNA expression and its implications for diagnosis and therapy of tongue squamous cell carcinoma. J. Cell. Mol. Med., 2016, 20(1), 10-16.
[http://dx.doi.org/10.1111/jcmm.12650] [PMID: 26498914]
[140]
Ren, Z.H.; Wu, K.; Yang, R.; Liu, Z.Q.; Cao, W. Differential expression of matrix metalloproteinases and miRNAs in the metastasis of oral squamous cell carcinoma. BMC Oral Health, 2020, 20(1), 24.
[http://dx.doi.org/10.1186/s12903-020-1013-0] [PMID: 31996191]
[141]
Grünwald, B.; Schoeps, B.; Krüger, A. Recognizing the molecular multifunctionality and interactome of TIMP-1. Trends Cell Biol., 2019, 29(1), 6-19.
[http://dx.doi.org/10.1016/j.tcb.2018.08.006] [PMID: 30243515]
[142]
Ciccone, L.; Vandooren, J.; Nencetti, S.; Orlandini, E. Natural marine and terrestrial compounds as modulators of matrix metalloproteinases-2 (MMP-2) and MMP-9 in alzheimer’s disease. pharmaceuticals, 2021, 14(2), 86.
[http://dx.doi.org/10.3390/ph14020086] [PMID: 33498927]
[143]
Turunen, S.P.; Tatti-Bugaeva, O.; Lehti, K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11), 1974-1988.
[http://dx.doi.org/10.1016/j.bbamcr.2017.04.002] [PMID: 28390905]
[144]
Kumar, G.B.; Nair, B.G.; Perry, J.J.P.; Martin, D.B.C. Recent insights into natural product inhibitors of matrix metalloproteinases. MedChemComm, 2019, 10(12), 2024-2037.
[http://dx.doi.org/10.1039/C9MD00165D] [PMID: 32904148]
[145]
Montané, X.; Kowalczyk, O.; Reig-Vano, B.; Bajek, A.; Roszkowski, K.; Tomczyk, R.; Pawliszak, W.; Giamberini, M.; >Mocek-PPłóciniak, A.; Tylkowski, B. Current perspectives of the applications of polyphenols and flavonoids in cancer therapy. Molecules, 2020, 25(15), 3342.
[http://dx.doi.org/10.3390/molecules25153342] [PMID: 32717865]
[146]
Alabi, R.O.; Youssef, O.; Pirinen, M.; Elmusrati, M.; Mäkitie, A.A.; Leivo, I.; Almangush, A. Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review. Artif. Intell. Med., 2021, 115, 102060.
[http://dx.doi.org/10.1016/j.artmed.2021.102060] [PMID: 34001326]
[147]
Tseng, Y.J.; Wang, Y.C.; Hsueh, P.C.; Wu, C.C. Development and validation of machine learning-based risk prediction models of oral squamous cell carcinoma using salivary autoantibody biomarkers. BMC Oral Health, 2022, 22(1), 534.
[http://dx.doi.org/10.1186/s12903-022-02607-2] [PMID: 36424594]
[148]
Lin, H.; Chen, H.; Weng, L.; Shao, J.; Lin, J. Automatic detection of oral cancer in smartphone-based images using deep learning for early diagnosis. J. Biomed. Opt., 2021, 26(8), 086007.
[http://dx.doi.org/10.1117/1.JBO.26.8.086007] [PMID: 34453419]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy