Title:Integrated Network Pharmacology and Cellular Assay to Explore the
Mechanisms of Selenized Tripterine Phytosomes (Se@Tri-PTs) Alleviating
Podocyte Injury in Diabetic Nephropathy
Volume: 29
Issue: 38
Author(s): Shiping Zhu, Qiubo Liu, Yuling Chang, Chunhua Luo, Xingwang Zhang*Shengyun Sun*
Affiliation:
- Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangzhou, 511443, People’s Republic of China
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic
of China
Keywords:
Tripterine, phytosomes, network pharmacology, diabetic nephropathy, podocyte injury, autophagy.
Abstract:
Aim: This work aimed to elucidate the mechanisms of Se@Tri-PTs in alleviating podocyte injury
via network pharmacology and in vitro cellular assay.
Background: Selenized tripterine phytosomes (Se@Tri-PTs) have been confirmed to undertake synergistic
and sensitized effects on inflammation, which may be curatively promising for diabetic nephropathy (DN).
However, the mechanisms of Se@Tri-PTs in alleviating podocyte injury, a major contributor to DN, still remain
unclear.
Objective: The objective of the study was to find out the underlying mechanisms of Se@Tri-PTs in alleviating
podocyte injury in diabetic nephropathy.
Methods: The key components and targets of Tripterygium wilfordii (TW) significant for DN as well as the signaling pathways involved have been identified. A high glucose-induced podocyte injury model was established and verified by western blot. The protective concentration of Se@Tri-PTs was screened by CCK-8 assay. Podocytes cultured with high glucose were treated with Se@Tri-PTs under protective levels. The expression of key protective proteins, nephrin and desmin, in podocytes, was assayed by western blot. Further, autophagy- related proteins and factors, like NLRP3, Beclin-1, LC3II/LC3, P62, and SIRT1, were analyzed,
which was followed by apoptosis detection.
Results: Network pharmacology revealed that several monomeric components of TW, especially Tri, act on
DN through multiple targets and pathways, including the NLRP3-mediated inflammatory pathway. Se@Tri-PTs improved the viability of podocytes and alleviated their injury induced by high glucose at 5 μg/L or
above. High-glucose induction promoted the expression of NLRP3 in podocytes, while a low concentration of
Se@Tri-PTs suppressed the expression. A long-term exposure of high glucose significantly inhibited the autophagic activity of podocytes, as manifested by decreased Beclin-1 level, lower ratio of LC3 II/LC3 I, and
up- regulation of P62. This abnormality was efficiently reversed by Se@Tri-PTs. Importantly, the expression
of SIRT1 was up-regulated and podocyte apoptosis was reduced.
Conclusion: Se@Tri-PTs can alleviate podocyte injury associated with DN by modulating NLRP3 expression
through the pathway of SIRT1-mediated autophagy.