Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Natural Plant Products Mediated Prevention of Cancer Facilitated through Immune Suppression of Treg Cells

Author(s): Oishi Mukherjee, Sudeshna Rakshit, Geetha Shanmugan and Koustav Sarkar*

Volume 23, Issue 30, 2023

Published on: 03 November, 2023

Page: [2973 - 2986] Pages: 14

DOI: 10.2174/0115680266275768231027100120

Price: $65

conference banner
Abstract

Cancer is one of the leading causes of death, and numerous methods have been tested and used to figure out an optimum way of treatment. Besides targeted therapy, immunotherapy has proven to be effective by controlling certain immune cells. Traditional cancer therapy is met with the consequences of adverse side effects that have been a major issue for treatment; hence, a leap towards naturally occurring immunomodulators was taken to develop safer methods of treatment. One of the major immune cells responsible for the growth of tumors is regulatory T cells (Tregs). To maintain immunological homeostasis, Treg dampens abnormal immune responses to self and non-self-antigens. The transcription factor FoxP3 is responsible for their lineage specification and takes part in the production of immunosuppressive cytokines like IL10, IL35, and TGFb. This helps cancer cells to proliferate without the restriction of different immune cells like CD8+T cells, dendritic cells, monocytes/macrophages, B cells, and natural killer cells. Hence, targeting Tregs to provide unhindered immunosurveillance has proven to be a breakthrough in cancer immunotherapy. This review mainly focuses on some common naturally occurring immunomodulators derived from plant products that have earned their place as immunotherapeutic agents, along with some of their ability to suppress Tregs that can be used as an effective way to treat cancer.

Keywords: Regulatory T cell, Natural immunomodulators, Immunosuppression, Immunotherapy, Growth Factors, FoxP3, CD8+ T cells, Therapeutic target.

Graphical Abstract
[1]
Al Disi, S.S.; Anwar, M.A.; Eid, A.H. Anti-hypertensive herbs and their mechanisms of action: Part I. Front. Pharmacol., 2016, 6, 323.
[http://dx.doi.org/10.3389/fphar.2015.00323] [PMID: 26834637]
[2]
Zuzarte, M.; Girão, H.; Salgueiro, L. Aromatic plant-based functional foods: A natural approach to manage cardiovascular diseases. Molecules, 2023, 28(13), 5130.
[http://dx.doi.org/10.3390/molecules28135130] [PMID: 37446792]
[3]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[4]
Knochelmann, H.M.; Dwyer, C.J.; Bailey, S.R.; Amaya, S.M.; Elston, D.M.; Mazza-McCrann, J.M.; Paulos, C.M. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell. Mol. Immunol., 2018, 15(5), 458-469.
[http://dx.doi.org/10.1038/s41423-018-0004-4] [PMID: 29563615]
[5]
Cserni, G.; Chmielik, E.; Cserni, B.; Tot, T. The new TNM-based staging of breast cancer. Virchows Archiv. an international journal of pathology, 2018, 472(5), 697-703.
[http://dx.doi.org/10.1007/s00428-018-2301-9]
[6]
Khanam, N.; Kumar, R. Recent applications of artificial intelligence in early cancer detection. Curr. Med. Chem., 2022, 29(25), 4410-4435.
[http://dx.doi.org/10.2174/0929867329666220222154733] [PMID: 35196970]
[7]
Hamad, A.; DePuccio, M.; Reames, B.N.; Dave, A.; Kurien, N.; Cloyd, J.M.; Shen, C.; Pawlik, T.M.; Tsung, A.; McAlearney, A.S.; Ejaz, A. Disparities in stage-specific guideline-concordant cancer-directed treatment for patients with pancreatic adenocarcinoma. J. Gastrointest. Surg., 2021, 25(11), 2889-2901.
[http://dx.doi.org/10.1007/s11605-021-04984-5] [PMID: 33768427]
[8]
Patel, A.; West, H.J. What does my stage of cancer mean? JAMA Oncol., 2020, 6(8), 1308.
[http://dx.doi.org/10.1001/jamaoncol.2020.1592] [PMID: 32525509]
[9]
Hefferon, K. Reconceptualizing cancer immunotherapy based on plant production systems. Future Sci. OA, 2017, 3(3), FSO217.
[http://dx.doi.org/10.4155/fsoa-2017-0018] [PMID: 28884013]
[10]
Al Zein, M.; Boukhdoud, M.; Shammaa, H.; Mouslem, H.; El Ayoubi, L.M.; Iratni, R.; Issa, K.; Khachab, M.; Assi, H.I.; Sahebkar, A.; Eid, A.H. Immunotherapy and immunoevasion of colorectal cancer. Drug Discov. Today, 2023, 28(9), 103669.
[http://dx.doi.org/10.1016/j.drudis.2023.103669] [PMID: 37328052]
[11]
Emiloju, O.E.; Sinicrope, F.A. Neoadjuvant Immune Checkpoint Inhibitor Therapy for Localized Deficient Mismatch Repair Colorectal Cancer. JAMA Oncol., 2023.
[http://dx.doi.org/10.1001/jamaoncol.2023.3323] [PMID: 37676680]
[12]
Horsman, M.R.; Mortensen, L.S.; Petersen, J.B.; Busk, M.; Overgaard, J. Imaging hypoxia to improve radiotherapy outcome. Nat. Rev. Clin. Oncol., 2012, 9(12), 674-687.
[http://dx.doi.org/10.1038/nrclinonc.2012.171] [PMID: 23149893]
[13]
Arneth, B. Tumor microenvironment. Medicina, 2019, 56(1), 15.
[http://dx.doi.org/10.3390/medicina56010015] [PMID: 31906017]
[14]
LeBleu, V.S. Imaging the tumor microenvironment. Cancer J., 2015, 21(3), 174-178.
[http://dx.doi.org/10.1097/PPO.0000000000000118] [PMID: 26049696]
[15]
Wu, T.; Dai, Y. Tumor microenvironment and therapeutic response. Cancer Lett., 2017, 387, 61-68.
[http://dx.doi.org/10.1016/j.canlet.2016.01.043] [PMID: 26845449]
[16]
Jarosz-Biej, M.; Smolarczyk, R.; Cichoń, T.; Kułach, N. Tumor microenvironment as a “game changer” in cancer radiotherapy. Int. J. Mol. Sci., 2019, 20(13), 3212.
[http://dx.doi.org/10.3390/ijms20133212] [PMID: 31261963]
[17]
Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514.
[http://dx.doi.org/10.1093/nar/gkaa407] [PMID: 32442275]
[18]
Tang, R.; Zheleznyak, A.; Mixdorf, M.; Ghai, A.; Prior, J.; Black, K.C.L.; Shokeen, M.; Reed, N.; Biswas, P.; Achilefu, S. Osteotropic radiolabeled nanophotosensitizer for imaging and treating multiple myeloma. ACS Nano, 2020, 14(4), 4255-4264.
[http://dx.doi.org/10.1021/acsnano.9b09618] [PMID: 32223222]
[19]
Zhang, X.; Bu, X.; Jia, W.; Ying, Y.; Lv, S.; Jiang, G. Near-infrared light-activated oxygen generator a multidynamic photo-nanoplatform for effective anti-cutaneous squamous cell carcinoma treatment. Int. J. Nanomedicine, 2022, 17, 5761-5777.
[http://dx.doi.org/10.2147/IJN.S378321] [PMID: 36466785]
[20]
Shao, Q.; Gu, J.; Zhou, J.; Wang, Q.; Li, X.; Deng, Z.; Lu, L. Tissue tregs and maintenance of tissue homeostasis. Front. Cell Dev. Biol., 2021, 9, 717903.
[http://dx.doi.org/10.3389/fcell.2021.717903] [PMID: 34490267]
[21]
Vignali, D.A.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol., 2008, 8(7), 523-532.
[http://dx.doi.org/10.1038/nri2343] [PMID: 18566595]
[22]
Fontenot, J.D.; Gavin, M.A.; Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol., 2003, 4(4), 330-336.
[http://dx.doi.org/10.1038/ni904] [PMID: 12612578]
[23]
Gao, R.; Shi, G.P.; Wang, J. Functional diversities of regulatory T Cells in the context of cancer immunotherapy. Front. Immunol., 2022, 13, 833667.
[http://dx.doi.org/10.3389/fimmu.2022.833667] [PMID: 35371055]
[24]
Shevyrev, D.; Tereshchenko, V. Treg heterogeneity, function, and homeostasis. Front. Immunol., 2020, 10, 3100.
[http://dx.doi.org/10.3389/fimmu.2019.03100] [PMID: 31993063]
[25]
Kumar, P.; Saini, S.; Prabhakar, B.S. Cancer immunotherapy with check point inhibitor can cause autoimmune adverse events due to loss of Treg homeostasis. Semin. Cancer Biol., 2020, 64, 29-35.
[http://dx.doi.org/10.1016/j.semcancer.2019.01.006] [PMID: 30716481]
[26]
Bhattacharyya, S.; Md Sakib Hossain, D.; Mohanty, S.; Sankar Sen, G.; Chattopadhyay, S.; Banerjee, S.; Chakraborty, J.; Das, K.; Sarkar, D.; Das, T.; Sa, G. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cell. Mol. Immunol., 2010, 7(4), 306-315.
[http://dx.doi.org/10.1038/cmi.2010.11] [PMID: 20305684]
[27]
Huppert, L.A.; Green, M.D.; Kim, L.; Chow, C.; Leyfman, Y.; Daud, A.I.; Lee, J.C. Tissue-specific Tregs in cancer metastasis: Opportunities for precision immunotherapy. Cell. Mol. Immunol., 2022, 19(1), 33-45.
[http://dx.doi.org/10.1038/s41423-021-00742-4] [PMID: 34417572]
[28]
Ganesan, A. P.; Johansson, M.; Ruffell, B.; Yagui-Beltrán, A.; Lau, J.; Jablons, D. M.; Coussens, L. M. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma. J. immuno., 2013, 191(4), 2009-2017.
[http://dx.doi.org/10.4049/jimmunol.1301317]
[29]
Jantan, I.; Ahmad, W.; Bukhari, S.N.A. Corrigendum: Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front. Plant Sci., 2018, 9, 1178.
[http://dx.doi.org/10.3389/fpls.2018.01178] [PMID: 30131822]
[30]
Stohs, S.J.; Chen, O.; Ray, S.D.; Ji, J.; Bucci, L.R.; Preuss, H.G. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review. Molecules, 2020, 25(6), 1397.
[http://dx.doi.org/10.3390/molecules25061397] [PMID: 32204372]
[31]
Walle, T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci., 2011, 1215(1), 9-15.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05842.x] [PMID: 21261636]
[32]
Andreu Fernández, V.; Almeida Toledano, L.; Pizarro Lozano, N.; Navarro Tapia, E.; Gómez Roig, M.D.; De la Torre Fornell, R.; García Algar, Ó. Bioavailability of epigallocatechin gallate administered with different nutritional strategies in healthy volunteers. Antioxidants, 2020, 9(5), 440.
[http://dx.doi.org/10.3390/antiox9050440] [PMID: 32438698]
[33]
Rochdi, M.; Sabouraud, A.; Girre, C.; Venet, R.; Scherrmann, J.M. Pharmacokinetics and absolute bioavailability of colchicine after i. v. and oral administration in healthy human volunteers and elderly subjects. Eur. J. Clin. Pharmacol., 1994, 46(4), 351-354.
[http://dx.doi.org/10.1007/BF00194404] [PMID: 7957521]
[34]
Kaşıkcı, MB; Bağdatlıoğlu, N Bioavailability of quercetin. Current research in nutrition and food science journal, 2016, 4, 146-151.
[35]
Rollyson, W.D.; Stover, C.A.; Brown, K.C.; Perry, H.E.; Stevenson, C.D.; McNees, C.A.; Ball, J.G.; Valentovic, M.A.; Dasgupta, P. Bioavailability of capsaicin and its implications for drug delivery. J. Control. Release, 2014, 196, 96-105.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.027] [PMID: 25307998]
[36]
Yang, Z; Kulkarni, K; Zhu, W; Hu, M Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12(10), 1264-1280.
[http://dx.doi.org/10.2174/187152012803833107]
[37]
Mallick, A.; Barik, S.; Ghosh, S.; Roy, S.; Sarkar, K.; Bose, A.; Baral, R. Immunotherapeutic targeting of established sarcoma in Swiss mice by tumor-derived antigen-pulsed NLGP matured dendritic cells is CD8 + T-cell dependent. Immunotherapy, 2014, 6(7), 821-831.
[http://dx.doi.org/10.2217/imt.14.53] [PMID: 25290415]
[38]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin: Miniperspective. J. Med. Chem., 2017, 60(5), 1620-1637.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[39]
Rao, CV Regulation of COX and LOX by curcumin. The molecular targets and therapeutic uses of curcumin in health and disease, 2007, 213-226.
[http://dx.doi.org/10.1007/978-0-387-46401-5_9]
[40]
Pandey, A.; Vishnoi, K.; Mahata, S.; Tripathi, S.C.; Misra, S.P.; Misra, V.; Mehrotra, R.; Dwivedi, M.; Bharti, A.C. Berberine and curcumin target survivin and STAT3 in gastric cancer cells and synergize actions of standard chemotherapeutic 5-fluorouracil. Nutr. Cancer, 2015, 67(8), 1295-1306.
[http://dx.doi.org/10.1080/01635581.2015.1085581] [PMID: 26492225]
[41]
Afshari, A.R.; Sanati, M.; Kesharwani, P.; Sahebkar, A. Recent advances in curcumin-based combination nanomedicines for cancer therapy. J. Funct. Biomater., 2023, 14(8), 408.
[http://dx.doi.org/10.3390/jfb14080408] [PMID: 37623653]
[42]
Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[43]
Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; Borras, C. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015, 2015, 1-13.
[http://dx.doi.org/10.1155/2015/837042] [PMID: 26221416]
[44]
Doiphode, S.; Lokhande, K.B.; Ghosh, P.; Swamy, K.V.; Nagar, S. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) by resveratrol derivatives in cancer therapy: in silico approach. J. Biomol. Struct. Dyn., 2022, 1-6.
[http://dx.doi.org/10.1080/07391102.2022.2135599] [PMID: 36282056]
[45]
Farooqi, A.; Khalid, S.; Ahmad, A. Regulation of cell signaling pathways and miRNAs by resveratrol in different cancers. Int. J. Mol. Sci., 2018, 19(3), 652.
[http://dx.doi.org/10.3390/ijms19030652] [PMID: 29495357]
[46]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[47]
Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; Pintus, G. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci., 2020, 21(6), 2084.
[http://dx.doi.org/10.3390/ijms21062084] [PMID: 32197410]
[48]
Ahn, W.S.; Huh, S.W.; Bae, S.M.; Lee, I.P.; Lee, J.M.; Namkoong, S.E.; Kim, C.K.; Sin, J.I. A major constituent of green tea, EGCG, inhibits the growth of a human cervical cancer cell line, CaSki cells, through apoptosis, G(1) arrest, and regulation of gene expression. DNA Cell Biol., 2003, 22(3), 217-224.
[http://dx.doi.org/10.1089/104454903321655846] [PMID: 12804120]
[49]
Bettuzzi, S.; Brausi, M.; Rizzi, F.; Castagnetti, G.; Peracchia, G.; Corti, A. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: A preliminary report from a one-year proof-of-principle study. Cancer Res., 2006, 66(2), 1234-1240.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1145] [PMID: 16424063]
[50]
Cione, E.; La Torre, C.; Cannataro, R.; Caroleo, M.C.; Plastina, P.; Gallelli, L. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: from dietary sources to human microRNA modulation. Molecules, 2019, 25(1), 63.
[http://dx.doi.org/10.3390/molecules25010063] [PMID: 31878082]
[51]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[52]
Liang, Y.C.; Lin-shiau, S.Y.; Chen, C.F.; Lin, J.K. Suppression of extracellular signals and cell proliferation through EGF receptor binding by (−)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J. Cell. Biochem., 1997, 67(1), 55-65.
[http://dx.doi.org/10.1002/(SICI)1097-4644(19971001)67:1<55::AID-JCB6>3.0.CO;2-V] [PMID: 9328839]
[53]
Ahn, W. S.; Yoo, J.; Huh, S. W.; Kim, C. K.; Lee, J. M.; Namkoong, S. E.; Bae, S. M.; Lee, I. P. Protective effects of green tea extracts (polyphenon E and EGCG) on human cervical lesions. European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation, 2003, 12(5), 383-390.
[http://dx.doi.org/10.1097/00008469-200310000-00007]
[54]
Ahmad, N.; Feyes, D.K.; Agarwal, R.; Mukhtar, H.; Nieminen, A-L. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J. Natl. Cancer Inst., 1997, 89(24), 1881-1886.
[http://dx.doi.org/10.1093/jnci/89.24.1881] [PMID: 9414176]
[55]
Ann Beltz, L.; Kay Bayer, D.; Lynn Moss, A.; Mitchell Simet, I. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer. Agents Med. Chem., 2006, 6(5), 389-406.
[http://dx.doi.org/10.2174/187152006778226468] [PMID: 17017850]
[56]
Finkelstein, Y.; Aks, S.E.; Hutson, J.R.; Juurlink, D.N.; Nguyen, P.; Dubnov-Raz, G.; Pollak, U.; Koren, G.; Bentur, Y. Colchicine poisoning: The dark side of an ancient drug. Clin. Toxicol., 2010, 48(5), 407-414.
[http://dx.doi.org/10.3109/15563650.2010.495348] [PMID: 20586571]
[57]
Gracheva, I.A.; Shchegravina, E.S.; Schmalz, H.G.; Beletskaya, I.P.; Fedorov, A.Y. Colchicine alkaloids and synthetic analogues: Current progress and perspectives. J. Med. Chem., 2020, 63(19), 10618-10651.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00222] [PMID: 32432867]
[58]
Robinson, K.P.; Chan, J.J. Colchicine in dermatology: A review. Australas. J. Dermatol., 2018, 59(4), 278-285.
[http://dx.doi.org/10.1111/ajd.12795] [PMID: 29430631]
[59]
Deftereos, S.G.; Beerkens, F.J.; Shah, B.; Giannopoulos, G.; Vrachatis, D.A.; Giotaki, S.G.; Siasos, G.; Nicolas, J.; Arnott, C.; Patel, S.; Parsons, M.; Tardif, J.C.; Kovacic, J.C.; Dangas, G.D. Colchicine in cardiovascular disease: In-Depth review. Circulation, 2022, 145(1), 61-78.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.056171] [PMID: 34965168]
[60]
Zhang, T.; Chen, W.; Jiang, X.; Liu, L.; Wei, K.; Du, H.; Wang, H.; Li, J. Anticancer effects and underlying mechanism of Colchicine on human gastric cancer cell lines in vitro and in vivo. Biosci. Rep., 2019, 39(1), BSR20181802.
[http://dx.doi.org/10.1042/BSR20181802] [PMID: 30429232]
[61]
Huang, Z.; Xu, Y.; Peng, W. Colchicine induces apoptosis in HT-29 human colon cancer cells via the AKT and c-Jun N-terminal kinase signaling pathways. Mol. Med. Rep., 2015, 12(4), 5939-5944.
[http://dx.doi.org/10.3892/mmr.2015.4222] [PMID: 26299305]
[62]
Mons, S.; Veretout, F.; Carlier, M.F.; Erk, I.; Lepault, J.; Trudel, E.; Salesse, C.; Ducray, P.; Mioskowski, C.; Lebeau, L. The interaction between lipid derivatives of colchicine and tubulin: Consequences of the interaction of the alkaloid with lipid membranes. Biochim. Biophys. Acta Biomembr., 2000, 1468(1-2), 381-395.
[http://dx.doi.org/10.1016/S0005-2736(00)00279-0] [PMID: 11018681]
[63]
Florian, S.; Mitchison, T.J. Anti-microtubule drugs. Methods Mol. Biol., 2016, 1413, 403-421.
[http://dx.doi.org/10.1007/978-1-4939-3542-0_25] [PMID: 27193863]
[64]
Lin, Z.Y.; Wu, C.C.; Chuang, Y.H.; Chuang, W.L. Anti-cancer mechanisms of clinically acceptable colchicine concentrations on hepatocellular carcinoma. Life Sci., 2013, 93(8), 323-328.
[http://dx.doi.org/10.1016/j.lfs.2013.07.002] [PMID: 23871804]
[65]
Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. The role of quercetin in plants. Plant Physiol. Biochem., 2021, 166, 10-19.
[http://dx.doi.org/10.1016/j.plaphy.2021.05.023] [PMID: 34087741]
[66]
Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[67]
Wang, Z.X.; Ma, J.; Li, X.Y.; Wu, Y.; Shi, H.; Chen, Y.; Lu, G.; Shen, H.M.; Lu, G.D.; Zhou, J. Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and reactive oxygen species-dependent ferroptosis. Br. J. Pharmacol., 2021, 178(5), 1133-1148.
[http://dx.doi.org/10.1111/bph.15350] [PMID: 33347603]
[68]
Chou, C. C.; Yang, J. S.; Lu, H. F.; Ip, S. W.; Lo, C.; Wu, C. C.; Lin, J. P.; Tang, N. Y.; Chung, J. G.; Chou, M. J.; Teng, Y. H.; Chen, D. R. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res, 2010, 33(8), 1181-1191.
[69]
Bal, S.; Sharangi, A.B.; Upadhyay, T.K.; Khan, F.; Pandey, P.; Siddiqui, S.; Saeed, M.; Lee, H.J.; Yadav, D.K. Biomedical and antioxidant potentialities in chilli: Perspectives and way forward. Molecules, 2022, 27(19), 6380.
[http://dx.doi.org/10.3390/molecules27196380] [PMID: 36234927]
[70]
Fokkens, W.; Hellings, P.; Segboer, C. Capsaicin for rhinitis. Current allergy and asthma reports, 2016, 16(8), 60.
[http://dx.doi.org/10.1007/s11882-016-0638-1]
[71]
Jordt, S.E.; Julius, D. Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell, 2002, 108(3), 421-430.
[http://dx.doi.org/10.1016/S0092-8674(02)00637-2] [PMID: 11853675]
[72]
Zhang, L.L.; Yan Liu, D.; Ma, L.Q.; Luo, Z.D.; Cao, T.B.; Zhong, J.; Yan, Z.C.; Wang, L.J.; Zhao, Z.G.; Zhu, S.J.; Schrader, M.; Thilo, F.; Zhu, Z.M.; Tepel, M. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ. Res., 2007, 100(7), 1063-1070.
[http://dx.doi.org/10.1161/01.RES.0000262653.84850.8b] [PMID: 17347480]
[73]
Chen, M.; Xiao, C.; Jiang, W.; Yang, W.; Qin, Q.; Tan, Q.; Lian, B.; Liang, Z.; Wei, C. Capsaicin inhibits proliferation and induces apoptosis in breast cancer by down-regulating FBI-1-Mediated NF-κB pathway. Drug Des. Devel. Ther., 2021, 15, 125-140.
[http://dx.doi.org/10.2147/DDDT.S269901] [PMID: 33469265]
[74]
McCarty, M.F.; DiNicolantonio, J.J.; O’Keefe, J.H. Capsaicin may have important potential for promoting vascular and metabolic health: Table 1. Open Heart, 2015, 2(1), e000262.
[http://dx.doi.org/10.1136/openhrt-2015-000262] [PMID: 26113985]
[75]
Patowary, P.; Pathak, M. P.; Zaman, K.; Raju, P. S.; Chattopadhyay, P. Research progress of capsaicin responses to various pharmacological challenges. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2017, 96, 1501-1512.
[http://dx.doi.org/10.1016/j.biopha.2017.11.124]
[76]
Wu, D.; Jia, H.; Zhang, Z.; Li, S. Capsaicin suppresses breast cancer cell viability by regulating the CDK8/PI3K/Akt/Wnt/β‑catenin signaling pathway. Mol. Med. Rep., 2020, 22(6), 4868-4876.
[http://dx.doi.org/10.3892/mmr.2020.11585] [PMID: 33173974]
[77]
Zhu, M.; Yu, X.; Zheng, Z.; Huang, J.; Yang, X.; Shi, H. Capsaicin suppressed activity of prostate cancer stem cells by inhibition of Wnt/β-catenin pathway. Phytother. Res., 2020, 34(4), 817-824.
[http://dx.doi.org/10.1002/ptr.6563] [PMID: 31782192]
[78]
Morelli, M.B.; Marinelli, O.; Aguzzi, C.; Zeppa, L.; Nabissi, M.; Amantini, C.; Tomassoni, D.; Maggi, F.; Santoni, M.; Santoni, G. Unveiling the molecular mechanisms driving the capsaicin-induced immunomodulatory effects on PD-L1 expression in bladder and renal cancer cell lines. Cancers, 2022, 14(11), 2644.
[http://dx.doi.org/10.3390/cancers14112644] [PMID: 35681623]
[79]
Thoennissen, N.H.; O’Kelly, J.; Lu, D.; Iwanski, G.B.; La, D.T.; Abbassi, S.; Leiter, A.; Karlan, B.; Mehta, R.; Koeffler, H.P. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene, 2010, 29(2), 285-296.
[http://dx.doi.org/10.1038/onc.2009.335] [PMID: 19855437]
[80]
Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol., 2019, 10, 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336] [PMID: 31866857]
[81]
Thangavel, P.; Puga-Olguín, A.; Rodríguez-Landa, J.F.; Zepeda, R.C. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules, 2019, 24(21), 3892.
[http://dx.doi.org/10.3390/molecules24213892] [PMID: 31671813]
[82]
Mukund, V.; Mukund, D.; Sharma, V.; Mannarapu, M.; Alam, A. Genistein: Its role in metabolic diseases and cancer. Crit. Rev. Oncol. Hematol., 2017, 119, 13-22.
[http://dx.doi.org/10.1016/j.critrevonc.2017.09.004] [PMID: 29065980]
[83]
Liu, B.; Xu, L.; Yu, X.; Jiao, X.; Yan, J.; Li, W.; Guo, M. Genistein inhibited estradiol-induced vascular endothelial cell injury by downregulating the fak/focal adhesion pathway. cellular physiology and biochemistry. international journal of experimental cellular physiology, biochemistry, and pharmacology, 2018, 49(6), 2277-2292.
[http://dx.doi.org/10.1159/000493830]
[84]
Paul, R.; Prasad, M.; Sah, N.K. Anticancer biology of Azadirachta indica L (neem): A mini review. Cancer Biol. Ther., 2011, 12(6), 467-476.
[http://dx.doi.org/10.4161/cbt.12.6.16850] [PMID: 21743298]
[85]
Chakraborty, K.; Bose, A.; Pal, S.; Sarkar, K.; Goswami, S.; Ghosh, D.; Laskar, S.; Chattopadhyay, U.; Baral, R. Neem leaf glycoprotein restores the impaired chemotactic activity of peripheral blood mononuclear cells from head and neck squamous cell carcinoma patients by maintaining CXCR3/CXCL10 balance. Int. Immunopharmacol., 2008, 8(2), 330-340.
[http://dx.doi.org/10.1016/j.intimp.2007.10.015] [PMID: 18182249]
[86]
Saha, A.; Nandi, P.; Dasgupta, S.; Bhuniya, A.; Ganguly, N.; Ghosh, T.; Guha, I.; Banerjee, S.; Baral, R.; Bose, A. Neem leaf glycoprotein restrains VEGF production by direct modulation of HIF1α-Linked upstream and downstream cascades. Front. Oncol., 2020, 10, 260.
[http://dx.doi.org/10.3389/fonc.2020.00260] [PMID: 32211322]
[87]
Bhuniya, A.; Guha, I.; Ganguly, N.; Saha, A.; Dasgupta, S.; Nandi, P.; Das, A.; Ghosh, S.; Ghosh, T.; Haque, E.; Banerjee, S.; Bose, A.; Baral, R. NLGP attenuates murine melanoma and carcinoma metastasis by modulating cytotoxic CD8+ T Cells. Front. Oncol., 2020, 10, 201.
[http://dx.doi.org/10.3389/fonc.2020.00201] [PMID: 32211313]
[88]
Goswami, K.K.; Barik, S.; Sarkar, M.; Bhowmick, A.; Biswas, J.; Bose, A.; Baral, R. Targeting STAT3 phosphorylation by neem leaf glycoprotein prevents immune evasion exerted by supraglottic laryngeal tumor induced M2 macrophages. Mol. Immunol., 2014, 59(2), 119-127.
[http://dx.doi.org/10.1016/j.molimm.2014.01.015] [PMID: 24607970]
[89]
Kelly, S.A.; Gschmeissner, S.; East, N.; Balkwill, F.R. Enhancement of metastatic potential by gamma-interferon. Cancer Res., 1991, 51(15), 4020-4027.
[PMID: 1906780]
[90]
Lee, W.; Lee, G.R. Transcriptional regulation and development of regulatory T cells. Exp. Mol. Med., 2018, 50(3), e456.
[http://dx.doi.org/10.1038/emm.2017.313] [PMID: 29520112]
[91]
Wang, B.; Sun, J.; Li, X.; Zhou, Q.; Bai, J.; Shi, Y.; Le, G. Resveratrol prevents suppression of regulatory T-cell production, oxidative stress, and inflammation of mice prone or resistant to high-fat diet–induced obesity. Nutr. Res., 2013, 33(11), 971-981.
[http://dx.doi.org/10.1016/j.nutres.2013.07.016] [PMID: 24176237]
[92]
Liu, J.; Chen, D.; Nie, G.D.; Dai, Z. CD8+CD122+ T-Cells: A newly emerging regulator with central memory cell phenotypes. Front. Immunol., 2015, 6, 494.
[http://dx.doi.org/10.3389/fimmu.2015.00494] [PMID: 26539191]
[93]
Zhang, Q.; Huang, H.; Zheng, F.; Liu, H.; Qiu, F.; Chen, Y.; Liang, C.L.; Dai, Z. Resveratrol exerts antitumor effects by downregulating CD8 + CD122 + Tregs in murine hepatocellular carcinoma. OncoImmunology, 2020, 9(1), 1829346.
[http://dx.doi.org/10.1080/2162402X.2020.1829346] [PMID: 33150044]
[94]
Wong, C.P.; Nguyen, L.P.; Noh, S.K.; Bray, T.M.; Bruno, R.S.; Ho, E. Induction of regulatory T cells by green tea polyphenol EGCG. Immunol. Lett., 2011, 139(1-2), 7-13.
[http://dx.doi.org/10.1016/j.imlet.2011.04.009] [PMID: 21621552]
[95]
Chakraborty, T.; Bose, A.; Barik, S.; Goswami, K.K.; Banerjee, S.; Goswami, S.; Ghosh, D.; Roy, S.; Chakraborty, K.; Sarkar, K.; Baral, R. Neem leaf glycoprotein inhibits CD4 + CD25 + Foxp3 + Tregs to restrict murine tumor growth. Immunotherapy, 2011, 3(8), 949-969.
[http://dx.doi.org/10.2217/imt.11.81] [PMID: 21843083]
[96]
Liu, T.; Chi, H.; Chen, J.; Chen, C.; Huang, Y.; Xi, H.; Xue, J.; Si, Y. Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene, 2017, 631, 29-38.
[http://dx.doi.org/10.1016/j.gene.2017.08.008] [PMID: 28843521]
[97]
Espinoza, J.L.; Trung, L.Q.; Inaoka, P.T.; Yamada, K.; An, D.T.; Mizuno, S.; Nakao, S.; Takami, A. The repeated administration of resveratrol has measurable effects on circulating t-cell subsets in humans. Oxid. Med. Cell. Longev., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/6781872] [PMID: 28546852]
[98]
Ren, B.; Kwah, M.X.Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.L.; Wang, L.; Ong, P.S.; Goh, B.C. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett., 2021, 515, 63-72.
[http://dx.doi.org/10.1016/j.canlet.2021.05.001] [PMID: 34052324]
[99]
Lee, I.T.; Lin, C.C.; Lee, C.Y.; Hsieh, P.W.; Yang, C.M. Protective effects of (−)-epigallocatechin-3-gallate against TNF-α-induced lung inflammation via ROS-dependent ICAM-1 inhibition. J. Nutr. Biochem., 2013, 24(1), 124-136.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.009] [PMID: 22819551]
[100]
Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Alhumaydhi, F.A.; Alsahli, M.A.; Rahmani, A.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules, 2020, 25(14), 3146.
[http://dx.doi.org/10.3390/molecules25143146] [PMID: 32660101]
[101]
Sun, Y.; Lin, X.; Chang, H. Proliferation inhibition and apoptosis of breast cancer MCF-7 cells under the influence of colchicine. Journal of B.U.ON. : official journal of the Balkan Union of Oncology,, 2016, 21(3), 570-575.
[102]
Khorsandi, L.; Orazizadeh, M.; Niazvand, F.; Abbaspour, M.R.; Mansouri, E.; Khodadadi, A. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratisl. Med. J., 2017, 118(2), 123-128.
[http://dx.doi.org/10.4149/BLL_2017_025] [PMID: 28814095]
[103]
Naujokat, C.; McKee, D.L. The “Big Five” phytochemicals targeting cancer stem cells: Curcumin, EGCG, sulforaphane, resveratrol and genistein. Curr. Med. Chem., 2021, 28(22), 4321-4342.
[http://dx.doi.org/10.2174/1875533XMTA02OTAxz] [PMID: 32107991]
[104]
Singh, A.; Chatterjee, A.; Rakshit, S.; Shanmugam, G.; Mohanty, L.M.; Sarkar, K. Neem Leaf Glycoprotein in immunoregulation of cancer. Hum. Immunol., 2022, 83(11), 768-777.
[http://dx.doi.org/10.1016/j.humimm.2022.08.012] [PMID: 36055899]
[105]
Shehzad, A.; Wahid, F.; Lee, Y.S. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch. Pharm., 2010, 343(9), 489-499.
[http://dx.doi.org/10.1002/ardp.200900319] [PMID: 20726007]
[106]
Holcombe, R.F.; Nguyen, A.; Martinez; Stamos, M.J.; Moyer, M.P.; Planutis, K.; Hope; Holcombe, R.F. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag. Res., 2009, 1, 25-37.
[http://dx.doi.org/10.2147/CMAR.S4544] [PMID: 21188121]
[107]
Howells, L.M.; Berry, D.P.; Elliott, P.J.; Jacobson, E.W.; Hoffmann, E.; Hegarty, B.; Brown, K.; Steward, W.P.; Gescher, A.J. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics. Cancer Prev. Res., 2011, 4(9), 1419-1425.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0148] [PMID: 21680702]
[108]
Zhu, W.; Qin, W.; Zhang, K.; Rottinghaus, G.E.; Chen, Y.C.; Kliethermes, B.; Sauter, E.R. Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr. Cancer, 2012, 64(3), 393-400.
[http://dx.doi.org/10.1080/01635581.2012.654926] [PMID: 22332908]
[109]
Zhu, W.; Mei, H.; Jia, L.; Zhao, H.; Li, X.; Meng, X.; Zhao, X.; Xing, L.; Yu, J. Epigallocatechin-3-gallate mouthwash protects mucosa from radiation-induced mucositis in head and neck cancer patients: a prospective, non-randomised, phase 1 trial. Invest. New Drugs, 2020, 38(4), 1129-1136.
[http://dx.doi.org/10.1007/s10637-019-00871-8] [PMID: 31701429]
[110]
Zhao, H.; Zhu, W.; Jia, L.; Sun, X.; Chen, G.; Zhao, X.; Li, X.; Meng, X.; Kong, L.; Xing, L.; Yu, J. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br. J. Radiol., 2016, 89(1058), 20150665.
[http://dx.doi.org/10.1259/bjr.20150665] [PMID: 26607642]
[111]
Li, X.; Xing, L.; Zhang, Y.; Xie, P.; Zhu, W.; Meng, X.; Wang, Y.; Kong, L.; Zhao, H.; Yu, J. Phase II Trial of epigallocatechin-3-gallate in acute radiation-induced esophagitis for esophagus cancer. J. Med. Food, 2020, 23(1), 43-49.
[http://dx.doi.org/10.1089/jmf.2019.4445] [PMID: 31747326]
[112]
Garavito, A.Á.; Cardona, A.F.; Reveiz, L.; Ospina, E.; Yepes, A.; Ospina, V. Colchicine mouth washings to improve oral mucositis in patients with hematological malignancies: A clinical trial. Palliat. Support. Care, 2008, 6(4), 371-376.
[http://dx.doi.org/10.1017/S147895150800059X] [PMID: 19006592]
[113]
Kooshyar, M.M.; Mozafari, P.M.; Amirchaghmaghi, M.; Pakfetrat, A.; Karoos, P.; Mohasel, M.R.; Orafai, H.; Azarian, A.A. A randomized placebo- controlled double blind clinical trial of quercetin in the prevention and treatment of chemotherapy-induced oral mucositis. J. Clin. Diagn. Res., 2017, 11(3), ZC46-ZC50.
[http://dx.doi.org/10.7860/JCDR/2017/23975.9571] [PMID: 28511508]
[114]
Lazarevic, B.; Boezelijn, G.; Diep, L.M.; Kvernrod, K.; Ogren, O.; Ramberg, H.; Moen, A.; Wessel, N.; Berg, R.E.; Egge-Jacobsen, W.; Hammarstrom, C.; Svindland, A.; Kucuk, O.; Saatcioglu, F.; Taskèn, K.A.; Karlsen, S.J. Efficacy and safety of short-term genistein intervention in patients with localized prostate cancer prior to radical prostatectomy: A randomized, placebo-controlled, double-blind Phase 2 clinical trial. Nutr. Cancer, 2011, 63(6), 889-898.
[http://dx.doi.org/10.1080/01635581.2011.582221] [PMID: 21714686]
[115]
Hosseini, A.; Ghorbani, A. Cancer therapy with phytochemicals: Evidence from clinical studies. Avicenna J. Phytomed., 2015, 5(2), 84-97.
[PMID: 25949949]
[116]
Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy