Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Comparative Study of Liposomal and Ethosomal Formulations of Curcuma heyneana Rhizome Extract in a Transdermal Delivery System

Author(s): Idha Kusumawati*, Kresma Oky Kurniawan, Rohmania Rohmania, Bernasdito Ade Pratama, Yusuf Alif Pratama, Subhan Rullyansyah, Mega Ferdina Warsito, Retno Widyowati, Eka Pramyrtha Hestianah and Katsuyoshi Matsunami

Volume 13, Issue 2, 2025

Published on: 02 November, 2023

Page: [303 - 312] Pages: 10

DOI: 10.2174/0122117385252518231018161755

Price: $65

Abstract

Aims: This study aimed to develop an anti-aging nanoformulation with Curcuma heyneana extract as bioactive substance.

Background: Curcuma heyneana Valeton & Zipj extract has been proven in previous research to have antioxidant, anti-ageing, anti-inflammatory, and wound healing properties, which makes it a potential bioactive material for anti-ageing and sunscreen cosmetic products. Phytoantioxidants need to penetrate into deeper skin layers to ensure effectivity. Thus, a transdermal delivery system is needed to deliver the extract to a deeper skin layer.

Objectives: The objective of the study was to compare the permeability and anti-ageing activity of liposomal and ethosomal formulations of C. heynena rhizome ethanolic extract.

Methods: In this study, C. heyneana extract was loaded into a phospholipid vesicular system in the form of liposome and ethosome formulations using the ethanolic injection method. The anti-ageing activity was assessed by analyzing the epidermal thickness, number of sunburn cells, distance between collagen fibers, and number of fibroblasts. While the histologic specimen scoring was carried out for the in vivo penetration study.

Results: The ethosomal formulation had been found to have better penetration ability since it was able to reach the lower dermis area compared to the liposomes, which only reached the upper dermis. The ethosomal formulation of C. heyneana extract exhibited a better anti-ageing activity based on the parameters of epidermal thickness, sunburn cell count, fibroblast count, and the distance between collagen fibres in rat skin histology.

Conclusion: Ethosomes have been found to be a more proficient carrier system for transdermal delivery of C. heyneana extract compared to liposomes. Meanwhile, their penetration correlated with the effectivity of the formulation, suggesting that the vesicular system enhanced the penetration ability of the extract.

Keywords: Curcuma heyneana, transdermal delivery, phospholipid, ethosome, liposome, penetration, medicine.

Graphical Abstract
[1]
Aspollah Sukari M, Wah TS, Saad SM, et al. Bioactive sesquiterpenes from Curcuma ochrorhiza and Curcuma heyneana. Nat Prod Res 2010; 24(9): 838-45.
[http://dx.doi.org/10.1080/14786410903052951] [PMID: 20461629]
[2]
Widyowati R, Agil M. Chemical constituents and bioactivities of several indonesian plants typically used in Jamu. Chem Pharm Bull 2018; 66(5): 506-18.
[http://dx.doi.org/10.1248/cpb.c17-00983] [PMID: 29710047]
[3]
Marianne CJ, Chrestella J, Ginting MA, Dalimunthe A, Nasution R. Hepatoprotective activity combination of curanga fel-terrae lour leaves and Curcuma heyneana Val. and Zip. Rhizome in rat induced by combination of rifampicin and isoniazid. Int J Pharm Pharm Sci 2017; 9(5): 23-8.
[http://dx.doi.org/10.22159/ijpps.2017v9i5.16528]
[4]
Rahayu DUC, Adilah SN, Sugita P. Antioxidant activity of methanol extract from indonesian Curcuma heyneana rhizome. Eur J Pharm Med Res 2018; 5(3): 582-8.
[5]
Kusumawati I, Kurniawan KO, Rullyansyah S, et al. Anti-aging properties of Curcuma heyneana valeton & Zipj: A scientific approach to its use in javanese tradition. J Ethnopharmacol 2018; 225: 64-70.
[http://dx.doi.org/10.1016/j.jep.2018.06.038] [PMID: 30008394]
[6]
Fadus MC, Lau C, Bikhchandani J, Lynch HT. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J Tradit Complement Med 2017; 7(3): 339-46.
[http://dx.doi.org/10.1016/j.jtcme.2016.08.002] [PMID: 28725630]
[7]
Donglikar MM, Deore SL. Development and evaluation of herbal sunscreen. Pharmacogn J 2016; 9(1): 83-97.
[http://dx.doi.org/10.5530/pj.2017.1.15]
[8]
Diastuti H, Syah YM, Juliawaty LD, Singgih M. Antibacterial activity of germacrane type sesquiterpenes from Curcuma heyneana rhizomes. Indonesian J Chem 2014; 14(1): 32-6.
[http://dx.doi.org/10.22146/ijc.21264]
[9]
Chen J, Liu Y, Zhao Z, Qiu J. Oxidative stress in the skin: Impact and related protection. Int J Cosmet Sci 2021; 43(5): 495-509.
[http://dx.doi.org/10.1111/ics.12728] [PMID: 34312881]
[10]
Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - A review. Int J Cosmet Sci 2005; 27(1): 17-34.
[http://dx.doi.org/10.1111/j.1467-2494.2004.00241.x] [PMID: 18492178]
[11]
D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci 2013; 14(6): 12222-48.
[http://dx.doi.org/10.3390/ijms140612222] [PMID: 23749111]
[12]
Li CC, Lin YT, Chen YT, Sie SF, Chen-Yang YW. Improvement in UV protection retention capability and reduction in skin penetration of benzophenone-3 with mesoporous silica as drug carrier by encapsulation. J Photochem Photobiol B 2015; 148: 277-83.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.04.027] [PMID: 25985148]
[13]
Wang SQ, Osterwalder U, Jung K. Ex vivo evaluation of radical sun protection factor in popular sunscreens with antioxidants. J Am Acad Dermatol 2011; 65(3): 525-30.
[http://dx.doi.org/10.1016/j.jaad.2010.07.009] [PMID: 21624700]
[14]
Jadoon S, Karim S, Asad MHH. Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. Oxid Med Cell Longev 2015; 2015: 17.
[http://dx.doi.org/10.1155/2015/709628]
[15]
Kusumawati I, Indrayanto G. Natural antioxidants in cosmetics. Studies Nat Prod Chem 2013; 40: 485-505.
[http://dx.doi.org/10.1016/B978-0-444-59603-1.00015-1]
[16]
Firman K, Kinoshita T, Itai A, Sankawa U. Terpenoids from curcuma heyneana. Phytochemistry 1988; 27(12): 3887-91.
[http://dx.doi.org/10.1016/0031-9422(88)83038-3]
[17]
Ataie A, Sabetkasaei M, Haghparast A, Moghaddam AH, Kazeminejad B. Neuroprotective effects of the polyphenolic antioxidant agent, Curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat. Pharmacol Biochem Behav 2010; 96(4): 378-85.
[http://dx.doi.org/10.1016/j.pbb.2010.06.009] [PMID: 20619287]
[18]
Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Nanodelivery of natural antioxidants: An anti-aging perspective. Front Bioeng Biotechnol 2020; 7(January): 447.
[http://dx.doi.org/10.3389/fbioe.2019.00447] [PMID: 31998711]
[19]
Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, D’Arcangelo D, et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed Res Int 2019; 2019: 8748253.
[http://dx.doi.org/10.1155/2019/8748253]
[20]
Freitas JV, Praça FSG. Trans -resveratrol and beta-carotene from sunscreens penetrate viable skin layers and reduce cutaneous penetration of UV- Fi lters. Int J Pharm 2015; 484: 131-7.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.062] [PMID: 25724133]
[21]
Zhang J, Tang Q, Xu X, Li N. Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery. Int J Pharm 2013; 448(1): 168-74.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.021] [PMID: 23524117]
[22]
Karataş A, Turhan F. Phyto-phospholipid complexes as drug delivery system for herbal extracts / molecules. Turkey J Pharm Sci 2015; 12(1): 93-102.
[23]
Bilia AR, Bergonzi MC, Guccione C, Manconi M, Fadda AM, Sinico C. Vesicles and micelles: Two versatile vectors for the delivery of natural products. J Drug Deliv Sci Technol 2015; xxx: 1-15.
[http://dx.doi.org/10.1016/j.jddst.2015.09.007]
[24]
Singh RP, Gangadharappa HV, Mruthunjaya K. Phospholipids: Unique carriers for drug delivery systems. J Drug Deliv Sci Technol 2017; 39: 166-79.
[http://dx.doi.org/10.1016/j.jddst.2017.03.027]
[25]
Ahmadi Ashtiani HR, Bishe P, Lashgari N-A, Nilforoushzadeh MA, Zare S. Liposomes in cosmetics. J Skin Stem Cell 2016; 3(3): 1-6.
[http://dx.doi.org/10.5812/jssc.65815]
[26]
Medina O, Zhu Y, Kairemo K. Targeted liposomal drug delivery in cancer. Curr Pharm Des 2004; 10(24): 2981-9.
[http://dx.doi.org/10.2174/1381612043383467] [PMID: 15379663]
[27]
Tampucci S, Burgalassi S, Chetoni P, Monti D. Cutaneous permeation and penetration of sunscreens: Formulation strategies and in vitro methods. Cosmetics 2017; 5(1): 1-17.
[http://dx.doi.org/10.3390/cosmetics5010001]
[28]
Betz G, Aeppli A, Menshutina N, Leuenberger H. In vivo comparison of various liposome formulations for cosmetic application. Int J Pharm 2005; 296(1-2): 44-54.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.032] [PMID: 15885454]
[29]
Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: Reviewing three decades of research. Int J Pharm 2007; 332(1-2): 1-16.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.005] [PMID: 17222523]
[30]
Mukherjee S, Raghuraman H, Chattopadhyay A. Membrane localization and dynamics of nile red: Effect of cholesterol. Biochim Biophys Acta Biomembr 2007; 1768(1): 59-66.
[http://dx.doi.org/10.1016/j.bbamem.2006.07.010] [PMID: 16934217]
[31]
Monteiro MS, Ozzetti RA, Vergnanini AL, et al. Evaluation of octyl p-methoxycinnamate included in liposomes and cyclodextrins in anti-solar preparations: Preparations, characterizations and in vitro penetration studies. Int J Nanomedicine 2012; 7: 3045-58.
[PMID: 22787399]
[32]
Tiwari R, Ansari VA, Singh S, Akhtar J. Liposomes : The novel aprroach in cosmeceuticals. World J Pharm Pharm Sci 2015; 4(06): 1616-40.
[33]
Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol 2015; 6(September): 219.
[http://dx.doi.org/10.3389/fphar.2015.00219] [PMID: 26483690]
[34]
Benson H. Transdermal drug delivery: Penetration enhancement techniques. Curr Drug Deliv 2005; 2(1): 23-33.
[http://dx.doi.org/10.2174/1567201052772915] [PMID: 16305405]
[35]
Larese Filon F, Mauro M, Adami G, Bovenzi M, Crosera M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul Toxicol Pharmacol 2015; 72(2): 310-22.
[http://dx.doi.org/10.1016/j.yrtph.2015.05.005] [PMID: 25979643]
[36]
Monti D, Tampucci S, Chetoni P, et al. Permeation and distribution of ferulic acid and its α-cyclodextrin complex from different formulations in hairless rat skin. AAPS PharmSciTech 2011; 12(2): 514-20.
[http://dx.doi.org/10.1208/s12249-011-9609-y] [PMID: 21491181]
[37]
Morabito K, Shapley NC, Steeley KG, Tripathi A. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int J Cosmet Sci 2011; 33(5): 385-90.
[http://dx.doi.org/10.1111/j.1468-2494.2011.00654.x] [PMID: 21507015]
[38]
Morganti P. Use and potential of nanotechnology in cosmetic dermatology. Clin Cosmetic Investig Dermatol 2010; 3: 5-13.
[http://dx.doi.org/10.2147/CCID.S4506]
[39]
Maestrelli F, González-Rodríguez ML, Rabasco AM, Mura P. Effect of preparation technique on the properties of liposomes encapsulating ketoprofen–cyclodextrin complexes aimed for transdermal delivery. Int J Pharm 2006; 312(1-2): 53-60.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.047] [PMID: 16469460]
[40]
Lemeshow S, Hosmer DW, Klar J, Lwanga SK. Adequacy of Sample Size in Health Studies. Singapore: John Wiley & Sons Ltd 1990.
[41]
Reichman J. Handbook of Optical Filters for Fluorescence Microscopy. Brattleboro, Vermont, USA: Chroma Technology Corp 1998.
[42]
Weber GF, Menko AS. Color image acquisition using a monochrome camera and standard fluorescence filter cubes. Biotechniques 2005; 38(1): 52-56, 54, 56.
[http://dx.doi.org/10.2144/05381BM06] [PMID: 15679085]
[43]
Kolmakov K, Belov VN, Bierwagen J, et al. Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy. Chemistry 2010; 16(1): 158-66.
[http://dx.doi.org/10.1002/chem.200902309] [PMID: 19950338]
[44]
Hewlings S, Kalman D. Curcumin: A review of its effects on human health. Foods 2017; 6(10): 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[45]
Jantarat C, Sirathanarun P, Boonmee S, Meechoosin W, Wangpittaya H. Effect of piperine on skin permeation of curcumin from a bacterially derived cellulose-composite double-layer membrane for transdermal curcumin delivery. Sci Pharm 2018; 86(3): 39.
[http://dx.doi.org/10.3390/scipharm86030039] [PMID: 30216984]
[46]
Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J Adv Pharm Technol Res 2010; 1(3): 274-82.
[http://dx.doi.org/10.4103/0110-5558.72415] [PMID: 22247858]
[47]
Madhavi BB, Vennela KS, Masana P, Madipoju B. Enhanced transdermal drug penetration Of. Malays J Pharm Sci 2013; 11(1): 49-58.
[48]
Swarnlata Saraf GJ. Topical delivery of curcuma longa extract loaded nanosized ethosomes to combat facial wrinkles research article. J Pharm Drug Deliv Res 2014; 3(1)
[http://dx.doi.org/10.4172/2325-9604.1000118]
[49]
Panahi Y, Fazlolahzadeh O, Atkin SL, et al. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J Cell Physiol 2019; 234(2): 1165-78.
[http://dx.doi.org/10.1002/jcp.27096] [PMID: 30073647]
[50]
Kozubek A, Gubernator J, Przeworska E, Stasiuk M. Liposomal drug delivery, a novel approach: PLARosomes. Acta Biochim Pol 2000; 47(3): 639-49.
[http://dx.doi.org/10.18388/abp.2000_3985] [PMID: 11310966]
[51]
Maitani Y, Soeda H, Junping W, Takayama K. Modified ethanol injection method for liposomes containing β-sitosterol β-D-Glucoside. J Liposome Res 2001; 11(1): 115-25.
[http://dx.doi.org/10.1081/LPR-100103174] [PMID: 19530923]
[52]
Rutherford H. Structural investigations of liposomes : Effect of phospholipid hydrocarbon length and the incorporation of sphingomyelin. Thesis [Masters] University of Saskatchewan 2011.
[53]
Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: State of the art. J Colloid Sci, Biotechnol 2012; 1(2): 147-68.
[http://dx.doi.org/10.1166/jcsb.2012.1020]
[54]
Luan J, Zhang D, Hao L, et al. Design and characterization of Amoitone B-loaded nanostructured lipid carriers for controlled drug release. Drug Deliv 2013; 20(8): 324-30.
[http://dx.doi.org/10.3109/10717544.2013.835007] [PMID: 24032657]
[55]
Ruozi B, Belletti D, Tombesi A, et al. AFM, ESEM, TEM, and CLSM in liposomal characterization: A comparative study. Int J Nanomedicine 2011; 6: 557-63.
[http://dx.doi.org/10.2147/IJN.S14615] [PMID: 21468358]
[56]
Płaczek M, Kosela M. Microscopic methods in analysis of submicron phospholipid dispersions. Acta Pharm 2016; 66(1): 1-22.
[http://dx.doi.org/10.1515/acph-2016-0003] [PMID: 26959541]
[57]
Robson AL, Dastoor PC, Flynn J, et al. Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front Pharmacol 2018; 9(FEB): 80.
[http://dx.doi.org/10.3389/fphar.2018.00080] [PMID: 29467660]
[58]
Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018; 10(2): 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[59]
Badran M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery. Dig J Nanomater Biostruct 2014; 9(1): 83-91.
[60]
Putri DCA, Dwiastuti R, Marchaban M, Nugroho AK. Optimization of mixing temperature and sonication duration in liposome preparation. J Pharmaceut Sci Commun 2017; 14(2): 79-85.
[http://dx.doi.org/10.24071/jpsc.142728]
[61]
Bhattacharjee S. DLS and zeta potential - What they are and what they are not? J Control Release 2016; 235: 337-51.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.017] [PMID: 27297779]
[62]
Zandi G, Lotfipour F, Ghanbarzadeh S, Medghalchi M, Hamishehkar H. A comparative study on the potentials of nanoliposomes and nanoethosomes for Fluconazole delivery. J Drug Deliv Sci Technol 2018; 44: 264-9.
[http://dx.doi.org/10.1016/j.jddst.2018.01.003]
[63]
Fore J. A review of skin and the effects of aging on skin structure and function. Ostomy Wound Manage 2006; 52(9): 24-35.
[PMID: 16980727]
[64]
Laethem AV, Claerhout S, Garmyn M, Agostinis P. The sunburn cell: Regulation of death and survival of the keratinocyte. Int J Biochem Cell Biol 2005; 37(8): 1547-53.
[http://dx.doi.org/10.1016/j.biocel.2005.02.015] [PMID: 15896663]
[65]
Sharma MR, Mitrani R, Werth VP. Effect of TNFα blockade on UVB-induced inflammatory cell migration and collagen loss in mice. J Photochem Photobiol B 2020; 213(September): 112072.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.112072] [PMID: 33181431]
[66]
Rapini RP. Clinical and pathologic findings with differential diagnostic lists. In: Rapini RP, Ed. Practical Dermatopathology. Edinburgh: Mosby 2005; pp. 1-43.s.
[http://dx.doi.org/10.1016/B978-0-323-01198-3.50005-X]
[67]
Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J Control Release 2000; 65(3): 403-18.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[68]
Dayan N, Touitou E. Carriers for skin delivery of trihexyphenidyl HCl: Ethosomes vs. liposomes. Biomaterials 2000; 21(18): 1879-85.
[http://dx.doi.org/10.1016/S0142-9612(00)00063-6] [PMID: 10919691]
[69]
Ainbinder D, Touitou E. Testosterone ethosomes for enhanced transdermal delivery. Drug Deliv 2005; 12(5): 297-303.
[http://dx.doi.org/10.1080/10717540500176910] [PMID: 16188729]
[70]
Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M. Ethosomes for skin delivery of ammonium glycyrrhizinate: In vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release 2005; 106(1-2): 99-110.
[http://dx.doi.org/10.1016/j.jconrel.2005.04.007] [PMID: 15935505]
[71]
Sinico C, Fadda AM. Vesicular carriers for dermal drug delivery. Expert Opin Drug Deliv 2009; 6(8): 813-25.
[http://dx.doi.org/10.1517/17425240903071029] [PMID: 19569979]
[72]
El Maghraby GMM, Williams AC, Barry BW. Skin delivery of 5-fluorouracil from ultradeformable and standard liposomes in-vitro. J Pharm Pharmacol 2010; 53(8): 1069-77.
[http://dx.doi.org/10.1211/0022357011776450] [PMID: 11518016]
[73]
Verma D, Verma S, Blume G, Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 2003; 258(1-2): 141-51.
[http://dx.doi.org/10.1016/S0378-5173(03)00183-2] [PMID: 12753761]
[74]
Geusens B, Strobbe T, Bracke S, et al. Lipid-mediated gene delivery to the skin. Eur J Pharm Sci 2011; 43(4): 199-211.
[http://dx.doi.org/10.1016/j.ejps.2011.04.003] [PMID: 21515366]
[75]
Kim JK, Zeb A, Qureshi OS, Kim H-S, Cha J-H, Kim HS. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomedicine 2016; 11: 3813-24.
[http://dx.doi.org/10.2147/IJN.S109565] [PMID: 27540293]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy