Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

General Research Article

An Efficient Suppression of EGFR and B-Raf mRNA Overexpression in the Lung of Benzo[a]pyrene-induced mice by Cationic Lipo-ATRA Nanoformulation

Author(s): Berlin Grace Viswanathan Mariammal*, David Wilson Devarajan, Siddikuzzaman, Viswanathan Singaram, Ragavi Ravichandran, Guruvayoorappan Chandrasekharan and Kathirvelan Chinnadurai

Volume 19, Issue 1, 2025

Published on: 01 November, 2023

Page: [131 - 139] Pages: 9

DOI: 10.2174/0118722105246143231016105620

Price: $65

Abstract

Background: The molecular drug all-trans retinoic acid (ATRA) acts on cancer cells via different molecular pathways, but its poor bioavailability in cancer cells limits its potency. Recently few patents have been published for the development of liposome-based drug for enhanced action. This study was, therefore, carried out to analyse the oncogene expressions in the lung tissue of benzo[ a]pyrene (B[a]P)-induced mice and compare between free ATRA and cationic liposome nanoformulation (lipo-ATRA) treatments.

Objective: This study was designed to analyse the changes in the expression levels of epidermal growth factor receptor (EGFR) and B-Raf in the lung tissues of B[a]P-induced mice during the cancer development stage itself and to find the suppressive effect of free ATRA and lipo-ATRA.

Methods: Lung cancer was induced in mice by oral ingestion of 50mg/kg body weight B[a]P weekly twice for four consecutive weeks. Then, the mice were treated with free and lipo-ATRA (0.60 mg/kg) for 30 days via i.v injection. The EGFR and B-Raf gene expressions were analyzed in lung cells by reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative polymerase chain reaction (qPCR).

Results: The RT-PCR gene band density and the relative quantity (RQ) values from qPCR revealed both EGFR and B-Raf genes to be significantly overexpressed in B[a]P control mice while having very low or no expression in normal mice. This indicates that they function as oncogenes in B[a]P-induced lung carcinogenesis. The lipo-ATRA treatment has shown a highly significant increase in RQ values for both EGFR and BRaf when compared to the free ATRA treatment.

Conclusion: The study results have revealed the cationic lipo-ATRA treatment to have enhanced the bioavailability of ATRA in lung tissue due to its significant suppression action on EGFR-mediated oncogenes’ expressions. Furthermore, the EGFR and BRaf could be the molecular targets of ATRA action in lung carcinogenesis.

Keywords: Benzo[a]pyrene, BRaf, EGFR, lipo-ATRA, lung cancer, RT, qPCR.

Graphical Abstract
[1]
Lotan R, Xu XC, Lippman SM, et al. Suppression of retinoic acid receptor-β in premalignant oral lesions and its up-regulation by isotretinoin. N Engl J Med 1995; 332(21): 1405-11.
[http://dx.doi.org/10.1056/NEJM199505253322103] [PMID: 7723796]
[2]
Hong WK. Retinoids and human cancer The Retinoids: Biology. (2nd ed.). Chemistry and Medicine 1994; pp. 597-630.
[3]
Chen J, Li Q. Implication of retinoic acid receptor selective signaling in myogenic differentiation. Sci Rep 2016; 6(1): 18856.
[http://dx.doi.org/10.1038/srep18856] [PMID: 26830006]
[4]
Balmer JE, Blomhoff R. Gene expression regulation by retinoic acid. J Lipid Res 2002; 43(11): 1773-808.
[http://dx.doi.org/10.1194/jlr.R100015-JLR200] [PMID: 12401878]
[5]
Amann PM, Eichmüller SB, Schmidt J, Bazhin AV. Regulation of gene expression by retinoids. Curr Med Chem 2011; 18(9): 1405-12.
[http://dx.doi.org/10.2174/092986711795029618] [PMID: 21366525]
[6]
DiSepio D, Ghosn C, Eckert RL, et al. Identification and characterization of a retinoid-induced class II tumor suppressor/growth regulatory gene. Proc Natl Acad Sci 1998; 95(25): 14811-5.
[http://dx.doi.org/10.1073/pnas.95.25.14811] [PMID: 9843971]
[7]
Pagliarini R, Shao W, Sellers WR. Oncogene addiction: Pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep 2015; 16(3): 280-96.
[http://dx.doi.org/10.15252/embr.201439949] [PMID: 25680965]
[8]
Oikonomou E, Koustas E, Goulielmaki M, Pintzas A. BRAF vs RAS oncogenes: Are mutations of the same pathway equal? differential signalling and therapeutic implications. Oncotarget 2014; 5(23): 11752-77.
[http://dx.doi.org/10.18632/oncotarget.2555] [PMID: 25361007]
[9]
Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 2018; 17(1): 58.
[http://dx.doi.org/10.1186/s12943-018-0782-4] [PMID: 29455648]
[10]
Kometani T, Yoshino I, Miura N, et al. Benzo[a]pyrene promotes proliferation of human lung cancer cells by accelerating the epidermal growth factor receptor signaling pathway. Cancer Lett 2009; 278(1): 27-33.
[http://dx.doi.org/10.1016/j.canlet.2008.12.017] [PMID: 19181443]
[11]
Zito G, Naselli F, Saieva L, et al. Retinoic acid affects lung adenocarcinoma growth by inducing differentiation via GATA6 activation and EGFR and Wnt inhibition. Sci Rep 2017; 7(1): 4770.
[http://dx.doi.org/10.1038/s41598-017-05047-z] [PMID: 28684780]
[12]
Grace BVM, Viswanathan S. Pharmacokinetics and therapeutic efficiency of a novel cationic liposome nano-formulated all trans retinoic acid in lung cancer mice model. J Drug Deliv Sci Technol 2017; 39: 223-36.
[13]
Rodgman A, Perfetti TA. The chemical components of tobacco and tobacco smoke. (2nd ed.). CRC press 2016; pp. 2332-3091.
[14]
Schwartz AG, Prysak GM, Bock CH, Cote ML. The molecular epidemiology of lung cancer. Carcinogenesis 2006; 28(3): 507-18.
[http://dx.doi.org/10.1093/carcin/bgl253] [PMID: 17183062]
[15]
Shields PG. Epidemiology of tobacco carcinogenesis. Curr Oncol Rep 2000; 2(3): 257-62.
[http://dx.doi.org/10.1007/s11912-000-0076-y] [PMID: 11122851]
[16]
Yoshino I, Kometani T, Shoji F, et al. Induction of epithelial-mesenchymal transition-related genes by benzo[a]pyrene in lung cancer cells. Cancer 2007; 110(2): 369-74.
[http://dx.doi.org/10.1002/cncr.22728] [PMID: 17559143]
[17]
Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16(1): 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[18]
Inamura K, Ninomiya H, Ishikawa Y, Matsubara O. Is the epidermal growth factor receptor status in lung cancers reflected in clinicopathologic features? Arch Pathol Lab Med 2010; 134(1): 66-72.
[http://dx.doi.org/10.5858/2008-0586-RAR1.1] [PMID: 20073607]
[19]
Suzuki M, Shigematsu H, Hiroshima K, et al. Epidermal growth factor receptor expression status in lung cancer correlates with its mutation. Hum Pathol 2005; 36(10): 1127-34.
[http://dx.doi.org/10.1016/j.humpath.2005.08.007] [PMID: 16226114]
[20]
Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer 2006; 118(2): 257-62.
[http://dx.doi.org/10.1002/ijc.21496] [PMID: 16231326]
[21]
Barr S, Thomson S, Buck E, et al. Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions. Clin Exp Metastasis 2008; 25(6): 685-93.
[http://dx.doi.org/10.1007/s10585-007-9121-7] [PMID: 18236164]
[22]
Beeram M, Patnaik A, Rowinsky EK. Raf: A strategic target for therapeutic development against cancer. J Clin Oncol 2005; 23(27): 6771-90.
[http://dx.doi.org/10.1200/JCO.2005.08.036] [PMID: 16170185]
[23]
Guo YJ, Pan W-W, Liu S-B, Shen Z-F, Xu Y, Hu L-L. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 2020; 19(3): 1997-2007.
[PMID: 32104259]
[24]
Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417(6892): 949-54.
[http://dx.doi.org/10.1038/nature00766] [PMID: 12068308]
[25]
Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell Mol Life Sci 2008; 65(10): 1566-84.
[http://dx.doi.org/10.1007/s00018-008-7440-8] [PMID: 18259690]
[26]
Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350(21): 2129-39.
[http://dx.doi.org/10.1056/NEJMoa040938] [PMID: 15118073]
[27]
Swinson DEB, Cox G, O’Byrne KJ. Coexpression of epidermal growth factor receptor with related factors is associated with a poor prognosis in non-small-cell lung cancer. Br J Cancer 2004; 91(7): 1301-7.
[http://dx.doi.org/10.1038/sj.bjc.6602149] [PMID: 15365565]
[28]
Burdick AD, Davis JW II, Liu KJ, et al. Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Res 2003; 63(22): 7825-33.
[PMID: 14633709]
[29]
Zimmermann G, Furlong EE, Suyama K, Scott MP. Mes2, a MADF-containing transcription factor essential for Drosophila development. Dev Dyn 2006; 235(12): 3387-95.
[http://dx.doi.org/10.1002/dvdy.20970] [PMID: 17029287]
[30]
Peyssonnaux C, Eychène A. The Raf/MEK/ERK pathway: New concepts of activation. Biol Cell 2001; 93(1-2): 53-62.
[http://dx.doi.org/10.1016/S0248-4900(01)01125-X] [PMID: 11730323]
[31]
Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 2015; 16(5): 281-98.
[http://dx.doi.org/10.1038/nrm3979] [PMID: 25907612]
[32]
Namba H, Nakashima M, Hayashi T, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 2003; 88(9): 4393-7.
[http://dx.doi.org/10.1210/jc.2003-030305] [PMID: 12970315]
[33]
Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: A new perspective. Cancer 2014; 120(22): 3446-56.
[http://dx.doi.org/10.1002/cncr.28864] [PMID: 24948110]
[34]
Lv X, Wang D, Ma Y, Long Z. Analysis of the oncogene BRAF mutation and the correlation of the expression of wild-type BRAF and CREB1 in endometriosis. Int J Mol Med 2018; 41(3): 1349-56.
[PMID: 29286077]
[35]
Alexandrov K, Rojas M, Rolando C. DNA damage by benzo(a)pyrene in human cells is increased by cigarette smoke and decreased by a filter containing rosemary extract, which lowers free radicals. Cancer Res 2006; 66(24): 11938-45.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3277] [PMID: 17178892]
[36]
Ramya D. Siddikuzzaman, Grace VMB. Effect of all- trans retinoic acid (ATRA) on syndecan-1 expression and its chemoprotective effect in benzo(α)pyrene-induced lung cancer mice model. Immunopharmacol Immunotoxicol 2012; 34(6): 1020-7.
[http://dx.doi.org/10.3109/08923973.2012.693086] [PMID: 22686587]
[37]
Tari AM, Lim SJ, Hung MC, Esteva FJ, Lopez-Berestein G. Her2/neu induces all-transretinoic acid (ATRA) resistance in breast cancer cells. Oncogene 2002; 21(34): 5224-32.
[http://dx.doi.org/10.1038/sj.onc.1205660] [PMID: 12149644]
[38]
Coyle KM. Retinoid signaling in cancer and its promise for therapy. J Carcinog Mutag 2013; S7: 006.
[39]
Siddikuzzaman Guruvayoorappan C. Berlin Grace VM. All trans retinoic acid and cancer. Immunopharmacol Immunotoxicol 2011; 33(2): 241-9.
[http://dx.doi.org/10.3109/08923973.2010.521507] [PMID: 20929432]
[40]
Bhat-Nakshatri P, Goswami CP, Badve S, Sledge GW Jr, Nakshatri H. Identification of FDA-approved drugs targeting breast cancer stem cells along with biomarkers of sensitivity. Sci Rep 2013; 3(1): 2530.
[http://dx.doi.org/10.1038/srep02530] [PMID: 23982413]
[41]
Lainey E, Wolfromm A, Sukkurwala AQ, et al. EGFR inhibitors exacerbate differentiation and cell cycle arrest induced by retinoic acid and vitamin D 3 in acute myeloid leukemia cells. Cell Cycle 2013; 12(18): 2978-91.
[http://dx.doi.org/10.4161/cc.26016] [PMID: 23974111]
[42]
Sah JF, Eckert RL, Chandraratna RAS, Rorke EA. Retinoids suppress epidermal growth factor-associated cell proliferation by inhibiting epidermal growth factor receptor-dependent ERK1/2 activation. J Biol Chem 2002; 277(12): 9728-35.
[http://dx.doi.org/10.1074/jbc.M110897200] [PMID: 11788593]
[43]
Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 2004; 328(1): 1-16.
[http://dx.doi.org/10.1016/j.gene.2003.12.005] [PMID: 15019979]
[44]
Zheng ZS, Polakowska R, Johnson A, Lowell AG. Transcriptional control of epidermal growth factor receptor by retinoic acid. Cell Growth Different: Mol Biol J Am Assoc Cancer Res 1992; 3(4): 225-32.
[45]
Viswanathan S, Berlin Grace VM. Reduced RAR-β gene expression in Benzo(a)Pyrene induced lung cancer mice is upregulated by DOTAP lipo-ATRA treatment. Gene 2018; 668: 18-26.
[http://dx.doi.org/10.1016/j.gene.2018.05.051] [PMID: 29777906]
[46]
Ramya D. Siddikuzzaman, Manjamalai A, Berlin Grace VM. Chemoprotective effect of all-trans retinoic acid (ATRA) on oxidative stress and lung metastasis induced by benzo(a)pyrene. Immunopharmacol Immunotoxicol 2012; 34(2): 317-25.
[http://dx.doi.org/10.3109/08923973.2011.604087] [PMID: 22066884]
[47]
Ravichandran R, Viswanathan S, Berlin Grace VM, Bonati L, Narayanan J. Ameliorating effect of lipo-ATRA treatment on the expression of TIG3 and its suppressing effect on PPARγ gene expression in lung cancer animal model. Mol Cell Biochem 2019; 460(1-2): 105-12.
[http://dx.doi.org/10.1007/s11010-019-03574-z] [PMID: 31300983]
[48]
Liu TX, Zhang JW, Tao J, et al. Gene expression networks underlying retinoic acid–induced differentiation of acute promyelocytic leukemia cells. Blood 2000; 96(4): 1496-504.
[http://dx.doi.org/10.1182/blood.V96.4.1496] [PMID: 10942397]
[49]
Giuli MV, Hanieh PN, Giuliani E, et al. Current trends in ATRA delivery for cancer therapy. Pharmaceutics 2020; 12(8): 707.
[http://dx.doi.org/10.3390/pharmaceutics12080707] [PMID: 32731612]
[50]
Pei Kan. Ae-June Wang, Won-Ko Chen, Chih-Wan Tsao. Liposome for incorporating large amounts of hydrophobic substances. US Patent 20020058060A1 2002.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy