Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Bioactive Peptides: Potential Impact on the Treatment of Gastrointestinal Cancers

Author(s): Ghazaleh Pourali, Danial Kazemi, Roozbeh Pourali, Nafise Rahmani, Erfan Razzaghi, Mina Maftooh, Hamid Fiuji, Elnaz Ghorbani, Majid Khazaei, Gordon A. Ferns, Seyed Mahdi Hassanian* and Amir Avan*

Volume 29, Issue 31, 2023

Published on: 24 October, 2023

Page: [2450 - 2460] Pages: 11

DOI: 10.2174/0113816128261378231019201709

Price: $65

conference banner
Abstract

We have reviewed the potential use of bioactive peptides in the treatment of gastrointestinal (GI) malignancies, which are a significant cause of morbidity and mortality globally. Conventional therapies, such as surgery, chemotherapy, and radiotherapy, are associated with numerous side effects that may lead to longterm complications. Bioactive peptides are short-chain amino acids that can be extracted from natural sources or synthesized, and they have various potential health benefits, including anti-inflammatory, anti-hypertensive, antioxidant, antimicrobial, and anti-cancer properties. Bioactive peptides can be acquired from animal or plant sources, and can be classified based on their function, such as ACE-inhibiting, antimicrobial, and electrolyte- regulating peptides. Recent studies have demonstrated the promising role of bioactive peptides in tumor suppression, especially when combined with conventional therapies. In this study, we have reviewed the beneficial properties of bioactive peptides and their role in suppressing tumor activity. The mechanisms of bioactive peptides in tumor suppression are discussed. We have further reviewed the findings of preclinical and clinical studies that have investigated the application of bioactive peptides in the treatment of GI cancers. This review highlights the potential use of bioactive peptides as a promising treatment method for GI malignancies to increase the quality of life of GI cancer patients.

Keywords: Gastrointestinal, malignancies, bioactive peptides, gastrointestinal cancers, chemotherapy, amino acids.

[1]
Marqués-Lespier JM, González-Pons M, Cruz-Correa M. Current perspectives on gastric cancer. Gastroenterol Clin North Am 2016; 45(3): 413-28.
[http://dx.doi.org/10.1016/j.gtc.2016.04.002] [PMID: 27546840]
[2]
Arnold M, Abnet CC, Neale RE, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 2020; 159(1): 335-349.e15.
[http://dx.doi.org/10.1053/j.gastro.2020.02.068] [PMID: 32247694]
[3]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[4]
Hong MZ, Li JM, Chen ZJ, Lin XY, Pan JS, Gong LL. Global burden of major gastrointestinal cancers and its association with socioeconomics, 1990–2019. Front Oncol 2022; 12: 942035.
[http://dx.doi.org/10.3389/fonc.2022.942035] [PMID: 36387124]
[5]
Lv XP. Gastrointestinal tract cancers: Genetics, heritability and germ line mutations. Oncol Lett 2017; 13(3): 1499-508.
[http://dx.doi.org/10.3892/ol.2017.5629] [PMID: 28454282]
[6]
Axelrad JE, Lichtiger S, Yajnik V. Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment. World J Gastroenterol 2016; 22(20): 4794-801.
[http://dx.doi.org/10.3748/wjg.v22.i20.4794] [PMID: 27239106]
[7]
Platz EA, Willett WC, Colditz GA, Rimm EB, Spiegelman D, Giovannucci E. Proportion of colon cancer risk that might be preventable in a cohort of middle-aged US men. Cancer Causes Control 2000; 11(7): 579-88.
[http://dx.doi.org/10.1023/A:1008999232442] [PMID: 10977102]
[8]
Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: A quantitative overview of the epidemiological evidence. Int J Cancer 2009; 125(1): 171-80.
[http://dx.doi.org/10.1002/ijc.24343] [PMID: 19350627]
[9]
Cho YA, Lee J, Oh JH, et al. Genetic risk score, combined lifestyle factors and risk of colorectal Cancer. Cancer Res Treat 2019; 51(3): 1033-40.
[http://dx.doi.org/10.4143/crt.2018.447] [PMID: 30336659]
[10]
Middleton G, Cunningham D. Current options in the management of gastrointestinal cancer. Ann Oncol 1995; 6(S2): S17-26.
[http://dx.doi.org/10.1093/annonc/6.suppl_1.S17] [PMID: 8695539]
[11]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018]
[12]
Kimura Y, Oki E, Ando K, Saeki H, Kusumoto T, Maehara Y. Incidence of venous thromboembolism following laparoscopic surgery for gastrointestinal cancer: A single-center, prospective cohort study. World J Surg 2016; 40(2): 309-14.
[http://dx.doi.org/10.1007/s00268-015-3234-y] [PMID: 26316113]
[13]
Tohme S, Simmons RL, Tsung A. Surgery for cancer: A trigger for metastases. Cancer Res 2017; 77(7): 1548-52.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1536] [PMID: 28330928]
[14]
Singh Dahiya D, Kichloo A, Singh J, Albosta M, Lekkala M. Current immunotherapy in gastrointestinal malignancies: A review. J Investig Med 2021; 69(3): 689-96.
[http://dx.doi.org/10.1136/jim-2020-001654] [PMID: 33443046]
[15]
Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int J Mol Sci 2022; 23(3): 1445.
[http://dx.doi.org/10.3390/ijms23031445] [PMID: 35163367]
[16]
Quintal-Bojórquez N, Segura-Campos MR. Bioactive peptides as therapeutic adjuvants for cancer. Nutr Cancer 2021; 73(8): 1309-21.
[http://dx.doi.org/10.1080/01635581.2020.1813316] [PMID: 32865023]
[17]
Su X, Dong C, Zhang J, et al. Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer. Cell Biosci 2014; 4(1): 7-7.
[http://dx.doi.org/10.1186/2045-3701-4-7] [PMID: 24507386]
[18]
Moretto L, Tonolo F, Folda A, et al. Comparative analysis of the antioxidant capacity and lipid and protein oxidation of soy and oats beverages. Food Prod Process Nutr 2021; 3(1): 1-10.
[http://dx.doi.org/10.1186/s43014-020-00046-6]
[19]
Cavazos A, Gonzalez de Mejia E. Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Compr Rev Food Sci Food Saf 2013; 12(4): 364-80.
[http://dx.doi.org/10.1111/1541-4337.12017] [PMID: 33412684]
[20]
Dave LA, Montoya CA, Rutherfurd SM, Moughan PJ. Gastrointestinal endogenous proteins as a source of bioactive peptides- An in silico study. PLoS One 2014; 9(6): e98922-2.
[http://dx.doi.org/10.1371/journal.pone.0098922] [PMID: 24901416]
[21]
Dave LA. Gastrointestinal endogenous protein-derived bioactive peptides: An in vitro study of their gut modulatory potential. Int J Mol Sci 2016; 17(4): 482-2.
[http://dx.doi.org/10.3390/ijms17040482]
[22]
Ivanov VT, Karelin AA, Philippova MM, Nazimov IV, Pletnev VZ. Hemoglobin as a source of endogenous bioactive peptides: The concept of tissue-specific peptide pool. Biopolymers 1997; 43(2): 171-88.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1997)43:2<171::AID-BIP10>3.0.CO;2-O] [PMID: 9216253]
[23]
Nebbia S. Antimicrobial potential of food lactic acid bacteria: Bioactive peptide decrypting from caseins and bacteriocin production. Microorganisms 2020; 9(1): 65.
[http://dx.doi.org/10.3390/microorganisms9010065]
[24]
Al-sahlany G. Purification of bioactive peptide with antimicrobial properties produced by saccharomyces cerevisiae. Foods 2020; 9(3): 324.
[25]
Lu R, Fasano S, Madayiputhiya N, Morin NP, Nataro J, Fasano A. Isolation, identification, and characterization of small bioactive peptides from Lactobacillus GG conditional media that exert both anti-Gram-negative and Gram-positive bactericidal activity. J Pediatr Gastroenterol Nutr 2009; 49(1): 23-30.
[http://dx.doi.org/10.1097/MPG.0b013e3181924d1e] [PMID: 19465870]
[26]
Mohammadrezaei M, Navidshad B, Gheisari A, Toghyani M. Cottonseed meal bioactive peptides as an alternative to antibiotic growth promoters in broiler chicks. Int J Pept Res Ther 2021; 27(1): 329-40.
[http://dx.doi.org/10.1007/s10989-020-10086-8]
[27]
Klimesova K, Kverka M, Zakostelska Z, et al. Altered gut microbiota promotes colitis-associated cancer in IL-1 receptor-associated kinase M-deficient mice. Inflamm Bowel Dis 2013; 19(6): 1266-77.
[http://dx.doi.org/10.1097/MIB.0b013e318281330a] [PMID: 23567778]
[28]
Uronis JM, Mühlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One 2009; 4(6): e6026-6.
[http://dx.doi.org/10.1371/journal.pone.0006026] [PMID: 19551144]
[29]
Li J, Zhang A, Wu F, Wang X. Alterations in the gut microbiota and their metabolites in colorectal cancer: Recent progress and future prospects. Front Oncol 2022; 12: 841552.
[http://dx.doi.org/10.3389/fonc.2022.841552] [PMID: 35223525]
[30]
Pina AS, Roque ACA. Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme. J Mol Recognit 2009; 22(2): 162-8.
[http://dx.doi.org/10.1002/jmr.905] [PMID: 18816584]
[31]
Tini G, Sarocchi M, Tocci G, et al. Arterial hypertension in cancer: The elephant in the room. Int J Cardiol 2019; 281: 133-9.
[http://dx.doi.org/10.1016/j.ijcard.2019.01.082] [PMID: 30718135]
[32]
Liu G, Sun S, Guo B, et al. Bioactive peptide isolated from casein phosphopeptides promotes calcium uptake in vitro and in vivo. Food Funct 2018; 9(4): 2251-60.
[http://dx.doi.org/10.1039/C7FO01709J] [PMID: 29557438]
[33]
Cao Y, Miao J, Liu G, et al. Bioactive peptides isolated from casein phosphopeptides enhance calcium and magnesium uptake in caco-2 cell monolayers. J Agric Food Chem 2017; 65(11): 2307-14.
[http://dx.doi.org/10.1021/acs.jafc.6b05711] [PMID: 28218527]
[34]
Berardi R, Torniai M, Lenci E, Pecci F, Morgese F, Rinaldi S. Electrolyte disorders in cancer patients: A systematic review. J Cancer Metastasis Treat 2019; 2019: 79-9.
[http://dx.doi.org/10.20517/2394-4722.2019.008]
[35]
Wang W, de Mejia EG. A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Compr Rev Food Sci Food Saf 2005; 4(4): 63-78.
[http://dx.doi.org/10.1111/j.1541-4337.2005.tb00075.x] [PMID: 33430553]
[36]
Rougeot C, Rosinski-Chupin I, Mathison R, Rougeon F. Rodent submandibular gland peptide hormones and other biologically active peptides. Peptides 2000; 21(3): 443-55.
[http://dx.doi.org/10.1016/S0196-9781(00)00158-3] [PMID: 10793230]
[37]
Nong NTP, Hsu JL. Bioactive peptides: An understanding from current screening methodology. Processes 2022; 10(6): 1114.
[http://dx.doi.org/10.3390/pr10061114]
[38]
D’Agostino PA, Hancock JR, Provost LR. Analysis of bioactive peptides by liquid chromatography-high-resolution electrospray mass spectrometry. J Chromatogr A 1997; 767(1-2): 77-85.
[http://dx.doi.org/10.1016/S0021-9673(97)00017-4] [PMID: 9177006]
[39]
Cavaliere C, Anna LC, Giorgia LB, et al. Liquid chromatographic strategies for separation of bioactive compounds in food matrices. Molecules 2018; 23(12): 3091-1.
[http://dx.doi.org/10.3390/molecules23123091]
[40]
Molineau J, Hideux M, Hennig P, et al. Analysis of short-chain bioactive peptides by unified chromatography-electrospray ionization mass spectrometry. Part II. Comparison to reversed-phase ultra-high performance liquid chromatography. J Chromatogr A 2022; 1663: 462771-1.
[http://dx.doi.org/10.1016/j.chroma.2021.462771] [PMID: 34973481]
[41]
Coskun O. Separation techniques: Chromatography. North Clin Istanb 2016; 3(2): 156-60.
[PMID: 28058406]
[42]
Bazinet L, Firdaous L. Membrane processes and devices for separation of bioactive peptides. Recent Pat Biotechnol 2009; 3(1): 61-72.
[http://dx.doi.org/10.2174/187220809787172623] [PMID: 19149724]
[43]
Poulin JF, Amiot J, Bazinet L. Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane. J Biotechnol 2006; 123(3): 314-28.
[http://dx.doi.org/10.1016/j.jbiotec.2005.11.016] [PMID: 16412527]
[44]
Firdaous L, Dhulster P, Amiot J, et al. Concentration and selective separation of bioactive peptides from an alfalfa white protein hydrolysate by electrodialysis with ultrafiltration membranes. J Membr Sci 2009; 329(1-2): 60-7.
[http://dx.doi.org/10.1016/j.memsci.2008.12.012]
[45]
Cecile Urbain Marie G, Perreault V, Henaux L, et al. Impact of a high hydrostatic pressure pretreatment on the separation of bioactive peptides from flaxseed protein hydrolysates by electrodialysis with ultrafiltration membranes. Separ Purif Tech 2019; 211: 242-51.
[http://dx.doi.org/10.1016/j.seppur.2018.09.063]
[46]
Thuanthong M, De Gobba C, Sirinupong N, Youravong W, Otte J. Purification and characterization of angiotensin-converting enzyme-inhibitory peptides from Nile tilapia (Oreochromis niloticus) skin gelatine produced by an enzymatic membrane reactor. J Funct Foods 2017; 36: 243-54.
[http://dx.doi.org/10.1016/j.jff.2017.07.011]
[47]
Huang YP, Dias FFG, Leite Nobrega de Moura Bell JM, Barile D. A complete workflow for discovering small bioactive peptides in foods by LC-MS/MS: A case study on almonds. Food Chem 2022; 369: 130834.
[http://dx.doi.org/10.1016/j.foodchem.2021.130834] [PMID: 34482238]
[48]
Agyei D, Tsopmo A, Udenigwe CC. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal Bioanal Chem 2018; 410(15): 3463-72.
[http://dx.doi.org/10.1007/s00216-018-0974-1] [PMID: 29516135]
[49]
Suarez-Jimenez GM, Burgos-Hernandez A, Ezquerra-Brauer JM. Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals. Mar Drugs 2012; 10(5): 963-86.
[http://dx.doi.org/10.3390/md10050963]
[50]
Jabbari M, Barati M, Shabani M, et al. The association between consumption of dairy-originated digestion resistant and bioactive peptides and breast cancer risk: A case-control study. Nutr Cancer 2022; 74(7): 2426-35.
[http://dx.doi.org/10.1080/01635581.2021.2009884]
[51]
Zafari N, Velayati M, Damavandi S, et al. Metabolic pathways regulating colorectal cancer: A potential therapeutic approach. Curr Pharm Des 2022; 28(36): 2995-3009.
[http://dx.doi.org/10.2174/1381612828666220922111342] [PMID: 36154599]
[52]
Monteiro HP, Rodrigues EG, Amorim Reis AKC, et al. Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: A redox signaling perspective. Nitric Oxide 2019; 89: 1-13.
[http://dx.doi.org/10.1016/j.niox.2019.04.009] [PMID: 31009708]
[53]
Juhasz A, Markel S, Gaur S, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem 2017; 292(19): 7866-87.
[http://dx.doi.org/10.1074/jbc.M116.768283] [PMID: 28330872]
[54]
Zafari N, Velayati M, Fahim M, et al. Role of gut bacterial and non-bacterial microbiota in alcohol-associated liver disease: Molecular mechanisms, biomarkers, and therapeutic prospective. Life Sci 2022; 305: 120760.
[http://dx.doi.org/10.1016/j.lfs.2022.120760] [PMID: 35787997]
[55]
Qiao Y, Sun J, Ding Y, Le G, Shi Y. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl Microbiol Biotechnol 2013; 97(4): 1689-97.
[http://dx.doi.org/10.1007/s00253-012-4323-6] [PMID: 22948953]
[56]
Genua F, Raghunathan V, Jenab M, Gallagher WM, Hughes DJ. The role of gut barrier dysfunction and microbiome dysbiosis in colorectal cancer development. Front Oncol 2021; 11: 626349.
[http://dx.doi.org/10.3389/fonc.2021.626349] [PMID: 33937029]
[57]
Weng MT, Chiu YT, Wei PY, Chiang CW, Fang HL, Wei SC. Microbiota and gastrointestinal cancer. J Formos Med Assoc 2019; 118(S1): S32-41.
[http://dx.doi.org/10.1016/j.jfma.2019.01.002] [PMID: 30655033]
[58]
Hebels DGAJ, Briedé JJ, Khampang R, Kleinjans JCS, de Kok TMCM. Radical mechanisms in nitrosamine- and nitrosamide-induced whole-genome gene expression modulations in Caco-2 cells. Toxicol Sci 2010; 116(1): 194-205.
[http://dx.doi.org/10.1093/toxsci/kfq121] [PMID: 20403970]
[59]
Lorenzo JM, Munekata PES, Gómez B, et al. Bioactive peptides as natural antioxidants in food products – A review. Trends Food Sci Technol 2018; 79: 136-47.
[http://dx.doi.org/10.1016/j.tifs.2018.07.003]
[60]
Şanlıdere Aloğlu H, Öner Z. Determination of antioxidant activity of bioactive peptide fractions obtained from yogurt. J Dairy Sci 2011; 94(11): 5305-14.
[http://dx.doi.org/10.3168/jds.2011-4285] [PMID: 22032353]
[61]
Cruz-Huerta E, Fernández-Tomé S, Arques MC, et al. The protective role of the Bowman-Birk protease inhibitor in soybean lunasin digestion: The effect of released peptides on colon cancer growth. Food Funct 2015; 6(8): 2626-35.
[http://dx.doi.org/10.1039/C5FO00454C] [PMID: 26132418]
[62]
Souza LC, Camargo R, Demasi M, Santana JM, Sá CM, de Freitas SM. Effects of an anticarcinogenic Bowman-Birk protease inhibitor on purified 20S proteasome and MCF-7 breast cancer cells. PLoS One 2014; 9(1): e86600.
[http://dx.doi.org/10.1371/journal.pone.0086600] [PMID: 24475156]
[63]
Ibrahim HR, Isono H, Miyata T. Potential antioxidant bioactive peptides from camel milk proteins. Anim Nutr 2018; 4(3): 273-80.
[http://dx.doi.org/10.1016/j.aninu.2018.05.004] [PMID: 30175255]
[64]
Habib HM, Ibrahim WH, Schneider-Stock R, Hassan HM. Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities. Food Chem 2013; 141(1): 148-52.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.039] [PMID: 23768340]
[65]
Taniya MS, Mv R, Ps S, Krishnan G, S P. Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. Food Biosci 2020; 35: 100588-8.
[http://dx.doi.org/10.1016/j.fbio.2020.100588]
[66]
Su LY. Anticancer bioactive peptides suppress human colorectal tumor cell growth and induce apoptosis via modulating the PARP-p53-Mcl-1 signaling pathway. Acta Pharmacol Sin 2015; 36(12): 1514-9.
[67]
Su L, Xu G, Shen J, et al. Anticancer bioactive peptide suppresses human gastric cancer growth through modulation of apoptosis and the cell cycle. Oncol Rep 2010; 23(1): 3-9.
[PMID: 19956858]
[68]
Gifford JL, Hunter HN, Vogel HJ. Lactoferricin. Cell Mol Life Sci 2005; 62(22): 2588-98.
[http://dx.doi.org/10.1007/s00018-005-5373-z] [PMID: 16261252]
[69]
Yoo YC, Watanabe R, Koike Y, et al. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: Involvement of reactive oxygen species. Biochem Biophys Res Commun 1997; 237(3): 624-8.
[http://dx.doi.org/10.1006/bbrc.1997.7199] [PMID: 9299415]
[70]
Gupta N, Bhagyawant SS. Bioactive peptide of Cicer arietinum L. induces apoptosis in human endometrial cancer via DNA fragmentation and cell cycle arrest. 3 Biotech 2021; 11(2): 1-13.
[71]
de Mejia EG, Dia VP. The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis Rev 2010; 29(3): 511-28.
[http://dx.doi.org/10.1007/s10555-010-9241-4] [PMID: 20714786]
[72]
Lule VK, Garg S, Pophaly SD, Hitesh , Tomar SK. “Potential health benefits of lunasin: A multifaceted soy-derived bioactive peptide”. J Food Sci 2015; 80(3): R485-94.
[http://dx.doi.org/10.1111/1750-3841.12786] [PMID: 25627564]
[73]
Cicero AFG, Fogacci F, Colletti A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. Br J Pharmacol 2017; 174(11): 1378-94.
[http://dx.doi.org/10.1111/bph.13608] [PMID: 27572703]
[74]
Dia VP, Gonzalez de Mejia E. Lunasin potentiates the effect of oxaliplatin preventing outgrowth of colon cancer metastasis, binds to α5β1 integrin and suppresses FAK/ERK/NF-κB signaling. Cancer Lett 2011; 313(2): 167-80.
[http://dx.doi.org/10.1016/j.canlet.2011.09.002] [PMID: 21963225]
[75]
Gong F. A novel peptide from abalone (haliotis discus hannai) to suppress metastasis and vasculogenic mimicry of tumor cells and enhance anti-tumor effect in vitro. Mar Drugs 2019; 17(4): 244-4.
[76]
Patathananone S, Thammasirirak S, Daduang J, Gung Chung J, Temsiripong Y, Daduang S. Inhibition of HeLa cells metastasis by bioactive compounds in crocodile (C rocodylus siamensis) white blood cells extract. Environ Toxicol 2016; 31(11): 1329-36.
[http://dx.doi.org/10.1002/tox.22138] [PMID: 25855086]
[77]
Mook ORF, Frederiks WM, Van Noorden CJF. The role of gelatinases in colorectal cancer progression and metastasis. Biochim Biophys Acta 2004; 1705(2): 69-89.
[PMID: 15588763]
[78]
Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2(10): 727-39.
[http://dx.doi.org/10.1038/nrc905] [PMID: 12360276]
[79]
Gong F, Chen MF, Chen J, et al. Boiled abalone byproduct peptide exhibits anti-tumor activity in HT1080 cells and HUVECs by suppressing the metastasis and angiogenesis in vitro. J Agric Food Chem 2019; 67(32): 8855-67.
[http://dx.doi.org/10.1021/acs.jafc.9b03005] [PMID: 31343893]
[80]
Yamada KH, Kang H, Malik AB. Antiangiogenic therapeutic potential of peptides derived from the molecular motor kif13b that transports VEGFR2 to plasmalemma in endothelial cells. Am J Pathol 2017; 187(1): 214-24.
[http://dx.doi.org/10.1016/j.ajpath.2016.09.010] [PMID: 27863212]
[81]
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human gut microbiota and gastrointestinal cancer. Genomics Proteomics Bioinformatics 2018; 16(1): 33-49.
[http://dx.doi.org/10.1016/j.gpb.2017.06.002] [PMID: 29474889]
[82]
Ashaolu TJ. Soy bioactive peptides and the gut microbiota modulation. Appl Microbiol Biotechnol 2020; 104(21): 9009-17.
[http://dx.doi.org/10.1007/s00253-020-10799-2] [PMID: 32945899]
[83]
Xu Q, Hu M, Li M, et al. Dietary bioactive peptide alanyl-glutamine attenuates dextran sodium sulfate-induced colitis by modulating gut microbiota. Oxid Med Cell Longev 2021; 2021: 1-17.
[http://dx.doi.org/10.1155/2021/5543003] [PMID: 34046146]
[84]
Xu P, Lv D, Wang X, et al. Inhibitory effects of Bombyx mori antimicrobial peptide cecropins on esophageal cancer cells. Eur J Pharmacol 2020; 887: 173434.
[http://dx.doi.org/10.1016/j.ejphar.2020.173434] [PMID: 32763299]
[85]
Su LY, Xin HY, Liu YL, Zhang JL, Xin HW, Su XL. Anticancer bioactive peptide (ACBP) inhibits gastric cancer cells by upregulating growth arrest and DNA damage-inducible gene 45A (GADD45A). Tumour Biol 2014; 35(10): 10051-6.
[http://dx.doi.org/10.1007/s13277-014-2272-7] [PMID: 25015188]
[86]
Xing Z, Yu L, Li X, Su X. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by targeting miR-338-5p. Cell Biosci 2016; 6(1): 53.
[http://dx.doi.org/10.1186/s13578-016-0112-8] [PMID: 27688872]
[87]
Yu L, Yang L, An W, Su X. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells. J Cell Biochem 2014; 115(4): 697-711.
[http://dx.doi.org/10.1002/jcb.24711] [PMID: 24214799]
[88]
Su XL, Ouyang XH, Xu GH, Shen J, Wang ZY. Effect of ACBP-S on cell cycle and apoptosis in human gastric cancer cells. Zhonghua Zhong Liu Za Zhi 2008; 30(6): 422-7.
[PMID: 19024515]
[89]
Rahmani N, Pourali G, Hosseini N, et al. Probiotics as a therapeutic approach in colorectal cancer. Curr Cancer Drug Targets 2023; 23(10): 764-77.
[http://dx.doi.org/10.2174/1568009623666230413081513] [PMID: 37069719]
[90]
Luna Vital DA, González de Mejía E, Dia VP, Loarca-Piña G. Peptides in common bean fractions inhibit human colorectal cancer cells. Food Chem 2014; 157: 347-55.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.050] [PMID: 24679790]
[91]
Chen Q, Liang Y, Zhu C, Yan Y, Pang G. Effects of casein glycomacropeptide on the early development of primary colorectal cancer in rats. Food Sci Hum Wellness 2013; 2(3-4): 113-8.
[http://dx.doi.org/10.1016/j.fshw.2013.09.001]
[92]
Panzeri D, Guzzetti L, Sacco G, et al. Effectiveness of Vigna unguiculata seed extracts in preventing colorectal cancer. Food Funct 2020; 11(7): 5853-65.
[http://dx.doi.org/10.1039/D0FO00913J] [PMID: 32589172]
[93]
Kannan A, Hettiarachchy N, Johnson MG, Nannapaneni R. Human colon and liver cancer cell proliferation inhibition by peptide hydrolysates derived from heat-stabilized defatted rice bran. J Agric Food Chem 2008; 56(24): 11643-7.
[http://dx.doi.org/10.1021/jf802558v] [PMID: 19090710]
[94]
Fernández-Tomé S, Xu F, Han Y, Hernández-Ledesma B, Xiao H. Inhibitory effects of peptide lunasin in colorectal cancer HCT-116 cells and their tumorsphere-derived subpopulation. Int J Mol Sci 2020; 21(2): 537.
[http://dx.doi.org/10.3390/ijms21020537] [PMID: 31947688]
[95]
Li X, Xia L, Ouyang X, Suyila Q, Su L, Su X. Bioactive peptides sensitize cells to anticancer effects of oxaliplatin in human colorectal cancer xenografts in nude mice. Protein Pept Lett 2019; 26(7): 512-22.
[http://dx.doi.org/10.2174/0929866526666190405124955] [PMID: 30950338]
[96]
Yaghoubzadeh Z, Peyravii Ghadikolaii F, Kaboosi H, Safari R, Fattahi E. Antioxidant activity and anticancer effect of bioactive peptides from rainbow trout (Oncorhynchus mykiss) skin hydrolysate. Int J Pept Res Ther 2020; 26(1): 625-32.
[http://dx.doi.org/10.1007/s10989-019-09869-5]
[97]
González-Montoya M, Hernández-Ledesma B, Silván JM, Mora-Escobedo R, Martínez-Villaluenga C. Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chem 2018; 242: 75-82.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.035] [PMID: 29037738]
[98]
Zhang M, Mu TH. Contribution of different molecular weight fractions to anticancer effect of sweet potato protein hydrolysates by six proteases on HT-29 colon cancer cells. Int J Food Sci Technol 2018; 53(2): 525-32.
[http://dx.doi.org/10.1111/ijfs.13625]
[99]
Sánchez-Chino XM, Jiménez Martínez C, León-Espinosa EB, et al. Protective effect of chickpea protein hydrolysates on colon carcinogenesis associated with a hypercaloric diet. J Am Coll Nutr 2019; 38(2): 162-70.
[http://dx.doi.org/10.1080/07315724.2018.1487809] [PMID: 30211662]
[100]
Clemente A, Carmen Marín-Manzano M, Jiménez E, Carmen Arques M, Domoney C. The anti-proliferative effect of TI1B, a major Bowman–Birk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition. Br J Nutr 2012; 108(S1): S135-44.
[http://dx.doi.org/10.1017/S000711451200075X] [PMID: 22916809]
[101]
Cui L, Jin Y, Zou S, et al. The antitumor activity of hPRDX5 against pancreatic cancer and the possible mechanisms. Braz J Med Biol Res 2022; 55: e12324.
[http://dx.doi.org/10.1590/1414-431x2022e12324] [PMID: 36102418]
[102]
Pathania D, Kuang Y, Sechi M, Neamati N. Mechanisms underlying the cytotoxicity of a novel quinazolinedione-based redox modulator, QD232, in pancreatic cancer cells. Br J Pharmacol 2015; 172(1): 50-63.
[http://dx.doi.org/10.1111/bph.12855] [PMID: 25047070]
[103]
Sanna V, Nurra S, Pala N, et al. Targeted nanoparticles for the delivery of novel bioactive molecules to pancreatic cancer cells. J Med Chem 2016; 59(11): 5209-20.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01571] [PMID: 27139920]
[104]
Chevalier MT, García MC, Gonzalez D, et al. Preparation, characterization and in vitro evaluation of ε-polylysine-loaded polymer blend microparticles for potential pancreatic cancer therapy. J Microencapsul 2017; 34(6): 582-91.
[http://dx.doi.org/10.1080/02652048.2017.1370028] [PMID: 28868953]
[105]
Ossum CG. Effect of Protein Hydrolysates on Pancreatic Cancer Cells. Marine Ingredients Conference. Oslo, Norway. 2010.
[106]
Du Y, Shang B, Yi H, Yuan Y, Zhen Y, Xu J. Albumin-mediated delivery of bioactive peptides for pancreatic cancer therapy. Adv Ther 2020; 3(7): 2000003.
[http://dx.doi.org/10.1002/adtp.202000003]
[107]
Du Y, Wang X, Liu X, et al. The recombinant defensin/HSA fusion protein that inhibits NF-κb associated with intensive macropinocytosis shows potent efficacy against pancreatic cancer. Biochem Pharmacol 2022; 201: 115057.
[http://dx.doi.org/10.1016/j.bcp.2022.115057] [PMID: 35489393]
[108]
Du Y, Shang B, Sheng W, et al. A recombinantly tailored β-defensin that displays intensive macropinocytosis-mediated uptake exerting potent efficacy against K-Ras mutant pancreatic cancer. Oncotarget 2016; 7(36): 58418-34.
[http://dx.doi.org/10.18632/oncotarget.11170] [PMID: 27517152]
[109]
Wang Y, Zhang T, Zhang H, Yang H, Li Y, Jiang Y. Bovine hemoglobin derived peptide asn-phe-gly-lys inhibits pancreatic cancer cells metastasis by targeting secreted hsp90α. J Food Sci 2017; 82(12): 3005-12.
[http://dx.doi.org/10.1111/1750-3841.13962] [PMID: 29083493]
[110]
Ding X, Bai D, Qian J. Novel cyclotides from Hedyotis biflora inhibit proliferation and migration of pancreatic cancer cell in vitro and in vivo. Med Chem Res 2014; 23(3): 1406-13.
[http://dx.doi.org/10.1007/s00044-013-0746-6]
[111]
Nishida S, Tsuboi A, Tanemura A, et al. Immune adjuvant therapy using Bacillus Calmette-Guérin cell wall skeleton (BCG-CWS) in advanced malignancies. Medicine 2019; 98(33): e16771.
[http://dx.doi.org/10.1097/MD.0000000000016771] [PMID: 31415377]
[112]
Pexe-Machado PA, de Oliveira BD, Dock-Nascimento DB, de Aguilar-Nascimento JE. Shrinking preoperative fast time with maltodextrin and protein hydrolysate in gastrointestinal resections due to cancer. Nutrition 2013; 29(7-8): 1054-9.
[http://dx.doi.org/10.1016/j.nut.2013.02.003] [PMID: 23759267]
[113]
Bumrungpert A, Pavadhgul P, Nunthanawanich P, Sirikanchanarod A, Adulbhan A. Whey protein supplementation improves nutritional status, glutathione levels, and immune function in cancer patients: A randomized, double-blind controlled trial. J Med Food 2018; 21(6): 612-6.
[http://dx.doi.org/10.1089/jmf.2017.4080] [PMID: 29565716]
[114]
Cereda E, Turri A, Klersy C, et al. Whey protein isolate supplementation improves body composition, muscle strength, and treatment tolerance in malnourished advanced cancer patients undergoing chemotherapy. Cancer Med 2019; 8(16): 6923-32.
[http://dx.doi.org/10.1002/cam4.2517] [PMID: 31568698]
[115]
Chakrabarti S, Jahandideh F, Wu J. Food-derived bioactive peptides on inflammation and oxidative stress. BioMed Res Int 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/608979] [PMID: 24527452]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy