Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Targeting GM2 Ganglioside Accumulation in Dementia: Current Therapeutic Approaches and Future Directions

Author(s): Sanjesh Kumar and Siva Prasad Panda*

Volume 24, Issue 11, 2024

Published on: 24 October, 2023

Page: [1329 - 1345] Pages: 17

DOI: 10.2174/0115665240264547231017110613

Price: $65

conference banner
Abstract

Dementia in neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB) is a progressive neurological condition affecting millions worldwide. The amphiphilic molecule GM2 gangliosides are abundant in the human brain and play important roles in neuronal development, intercellular recognition, myelin stabilization, and signal transduction. GM2 ganglioside’s degradation requires hexosaminidase A (HexA), a heterodimer composed of an α subunit encoded by HEXA and a β subunit encoded by HEXB. The hydrolysis of GM2 also requires a non-enzymatic protein, the GM2 activator protein (GM2-AP), encoded by GM2A. Pathogenic mutations of HEXA, HEXB, and GM2A are responsible for autosomal recessive diseases known as GM2 gangliosidosis, caused by the excessive intralysosomal accumulation of GM2 gangliosides. In AD, PD and DLB, GM2 ganglioside accumulation is reported to facilitate Aβ and α-synuclein aggregation into toxic oligomers and plaques through activation of downstream signaling pathways, such as protein kinase C (PKC) and oxidative stress factors. This review explored the potential role of GM2 ganglioside alteration in toxic protein aggregations and its related signaling pathways leading to neurodegenerative diseases. Further review explored potential therapeutic approaches, which include synthetic and phytomolecules targeting GM2 ganglioside accumulation in the brain, holding a promise for providing new and effective management for dementia.

Keywords: Dementia, GM2 ganglioside, GM2-AP, PKC, synaptic loss, potential therapy.

[1]
Hsieh YC, Negri J, He A, et al. Elevated ganglioside GM2 activator (GM2A) in human brain tissue reduces neurite integrity and spontaneous neuronal activity. Mol Neurodegener 2022; 17(1): 61.
[http://dx.doi.org/10.1186/s13024-022-00558-4] [PMID: 36131294]
[2]
Bisel B, Pavone FS, Calamai M. GM1 and GM2 gangliosides: Recent developments. Biomol Concepts 2014; 5(1): 87-93.
[http://dx.doi.org/10.1515/bmc-2013-0039] [PMID: 25372744]
[3]
Aldabbagh Y, Islam A, Zhang W, Whiting P, Ali AB. Alzheimer’s disease enhanced tonic inhibition is correlated with upregulated astrocyte GABA Transporter-3/4 in a knock-in APP mouse model. Front Pharmacol 2022; 13: 822499.
[http://dx.doi.org/10.3389/fphar.2022.822499] [PMID: 35185574]
[4]
Küpeli Akkol E, Bardakcı H, Yücel Ç, Şeker Karatoprak G, Karpuz B, Khan H. A new perspective on the treatment of alzheimer’s disease and sleep deprivation-related consequences: Can curcumin help? Oxid Med Cell Longev 2022; 2022: 1-23.
[http://dx.doi.org/10.1155/2022/6168199] [PMID: 35069976]
[5]
Toro C, Zainab M, Tifft CJ. The GM2 gangliosidoses: Unlocking the mysteries of pathogenesis and treatment. Neurosci Lett 2021; 764: 136195.
[http://dx.doi.org/10.1016/j.neulet.2021.136195] [PMID: 34450229]
[6]
Ko G, Kim J, Jeon YJ, Lee D, Baek HM, Chang KA. Salvia miltiorrhiza alleviates memory deficit induced by ischemic brain injury in a transient mcao mouse model by inhibiting ferroptosis. Antioxidants 2023; 12(4): 785.
[http://dx.doi.org/10.3390/antiox12040785] [PMID: 37107160]
[7]
Suzuki M, Sango K, Wada K, Nagai Y. Pathological role of lipid interaction with α-synuclein in Parkinson’s disease. Neurochem Int 2018; 119: 97-106.
[http://dx.doi.org/10.1016/j.neuint.2017.12.014] [PMID: 29305919]
[8]
Brain network homeostasis and plasticity of salidroside for achieving neuroprotection and treating psychiatric sequelae stemming from stress. Research Square 2023.
[9]
Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C. Clusters of hyperactive neurons near amyloid plaques in a mouse model of alzheimer’s disease. Science 1979; 321(5896): 1686-9.
[10]
Singer HS, Mink JW, Gilbert DL, Jankovic J. Metabolic disorders with associated movement abnormalities. In: Movement Disorders in Childhood. Elsevier 2022; pp. 443-533.
[http://dx.doi.org/10.1016/B978-0-12-820552-5.00018-8]
[11]
Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the brain: Physiology, pathophysiology and therapeutic applications. Front Neurosci 2020; 14: 572965.
[http://dx.doi.org/10.3389/fnins.2020.572965] [PMID: 33117120]
[12]
Khan UA, Liu L, Provenzano FA, et al. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat Neurosci 2014; 17(2): 304-11.
[http://dx.doi.org/10.1038/nn.3606] [PMID: 24362760]
[13]
Yamanaka S, Johnson MD, Grinberg A, et al. Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay-Sachs disease. Proc Natl Acad Sci 1994; 91(21): 9975-9.
[http://dx.doi.org/10.1073/pnas.91.21.9975] [PMID: 7937929]
[14]
Leal AF, Benincore-Flórez E, Solano-Galarza D, Jaramillo RGG, Echeverri-Peña OY, Suarez DA, et al. GM2 Gangliosidoses: Clinical features, pathophysiological aspects, and current therapies. Int J Mol Sci 2020; 21(17): 1-27.
[15]
Petrache AL, Rajulawalla A, Shi A, et al. Aberrant excitatory–inhibitory synaptic mechanisms in entorhinal cortex microcircuits during the pathogenesis of alzheimer’s disease. Cereb Cortex 2019; 29(4): 1834-50.
[http://dx.doi.org/10.1093/cercor/bhz016] [PMID: 30766992]
[16]
Kehrer C, Kustermann W, Böhringer J, Krägeloh-Mann I, Trollmann R, Brackmann F. Rare variant of GM2 gangliosidosis through activator-protein deficiency. Neuropediatrics 2017; 48(2): 127-30.
[http://dx.doi.org/10.1055/s-0037-1598646] [PMID: 28192816]
[17]
Gasiorowska A, Wydrych M, Drapich P, et al. The biology and pathobiology of glutamatergic, cholinergic, and dopaminergic signaling in the aging brain. Front Aging Neurosci 2021; 13: 654931.
[http://dx.doi.org/10.3389/fnagi.2021.654931] [PMID: 34326765]
[18]
Ogawa Y, Furusawa E, Saitoh T, et al. Inhibition of astrocytic adenosine receptor A2A attenuates microglial activation in a mouse model of Sandhoff disease. Neurobiol Dis 2018; 118: 142-54.
[http://dx.doi.org/10.1016/j.nbd.2018.07.014] [PMID: 30026035]
[19]
Muffat J, Li Y, Yuan B, et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 2016; 22(11): 1358-67.
[http://dx.doi.org/10.1038/nm.4189] [PMID: 27668937]
[20]
Montani L. Lipids in regulating oligodendrocyte structure and function. Semin Cell Dev Biol 2021; 112: 114-22.
[http://dx.doi.org/10.1016/j.semcdb.2020.07.016] [PMID: 32912639]
[21]
Pant DC, Aguilera-Albesa S, Pujol A. Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol Dis 2020; 143: 105014.
[http://dx.doi.org/10.1016/j.nbd.2020.105014] [PMID: 32653675]
[22]
Dogbevia G, Grasshoff H, Othman A, Penno A, Schwaninger M. Brain endothelial specific gene therapy improves experimental Sandhoff disease. J Cereb Blood Flow Metab 2020; 40(6): 1338-50.
[http://dx.doi.org/10.1177/0271678X19865917] [PMID: 31357902]
[23]
Belarbi K, Cuvelier E, Bonte MA, et al. Glycosphingolipids and neuroinflammation in Parkinson’s disease. Mol Neurodegener 2020; 15(1): 59.
[http://dx.doi.org/10.1186/s13024-020-00408-1] [PMID: 33069254]
[24]
Sikora J, Dworski S, Jones EE, et al. Acid ceramidase deficiency in mice results in a broad range of central nervous system abnormalities. Am J Pathol 2017; 187(4): 864-83.
[http://dx.doi.org/10.1016/j.ajpath.2016.12.005] [PMID: 28342444]
[25]
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: Gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94(2): 461-518.
[http://dx.doi.org/10.1152/physrev.00033.2013] [PMID: 24692354]
[26]
Itokazu Y, Li D, Yu RK. Intracerebroventricular infusion of gangliosides augments the adult neural stem cell pool in mouse brain. ASN Neuro 2019; 11.
[http://dx.doi.org/10.1177/1759091419884859] [PMID: 31635474]
[27]
Zervas M, Dobrenis K, Walkley SU. Neurons in niemann-pick disease type c accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J Neuropathol Exp Neurol 2001; 60(1): 49-64.
[http://dx.doi.org/10.1093/jnen/60.1.49] [PMID: 11202175]
[28]
Pradeep P, Kang H, Lee B. Glycosylation and behavioral symptoms in neurological disorders. Transl Psychiatry 2023; 13(1): 154.
[http://dx.doi.org/10.1038/s41398-023-02446-x] [PMID: 37156804]
[29]
Itokazu Y, Fuchigami T, Morgan JC, Yu RK. Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse. Mol Ther 2021; 29(10): 3059-71.
[http://dx.doi.org/10.1016/j.ymthe.2021.06.005] [PMID: 34111562]
[30]
van Kruining D, Luo Q, van Echten-Deckert G, et al. Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Adv Drug Deliv Rev 2020; 159: 232-44.
[http://dx.doi.org/10.1016/j.addr.2020.04.009] [PMID: 32360155]
[31]
Chiricozzi E, Mauri L, Lunghi G, et al. Parkinson’s disease recovery by GM1 oligosaccharide treatment in the B4galnt1+/− mouse model. Sci Rep 2019; 9(1): 19330.
[http://dx.doi.org/10.1038/s41598-019-55885-2] [PMID: 31852959]
[32]
Ariga T, Yanagisawa M, Wakade C, et al. Ganglioside metabolism in a transgenic mouse model of Alzheimer’s disease: expression of Chol-1α antigens in the brain. ASN Neuro 2010; 2(4): AN20100021.
[http://dx.doi.org/10.1042/AN20100021] [PMID: 20930939]
[33]
Chowdhury S, Wu G, Lu ZH, Kumar R, Ledeen R. Age-related decline in gangliosides GM1 and GD1a in Non-CNS tissues of normal mice: Implications for peripheral symptoms of parkinson’s disease. Biomedicines 2023; 11(1): 209.
[http://dx.doi.org/10.3390/biomedicines11010209] [PMID: 36672717]
[34]
Chen H, Chan AY, Stone DU, Mandal NA. Beyond the cherry-red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders. Surv Ophthalmol 2014; 59(1): 64-76.
[http://dx.doi.org/10.1016/j.survophthal.2013.02.005] [PMID: 24011710]
[35]
Vasques J, de Jesus Gonçalves R, da Silva-Junior A, Martins R, Gubert F, Mendez-Otero R. Gangliosides in nervous system development, regeneration, and pathologies. Neural Regen Res 2023; 18(1): 81-6.
[http://dx.doi.org/10.4103/1673-5374.343890] [PMID: 35799513]
[36]
Kaya E, Smith DA, Smith C, Boland B, Strupp M, Platt FM. Beneficial effects of acetyl-dl-leucine (ADLL) in a mouse model of sandhoff disease. J Clin Med 2020; 9(4): 1050.
[http://dx.doi.org/10.3390/jcm9041050] [PMID: 32276303]
[37]
Mirzaei R, Bouzari B, Hosseini-Fard SR, et al. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed Pharmacother 2021; 139: 111661.
[http://dx.doi.org/10.1016/j.biopha.2021.111661] [PMID: 34243604]
[38]
Tamagawa K, Morimatsu Y, Fujisawa K, Hara A, Taketomi T. Neuropathological study and chemico-pathoiogical correlation in sibling cases of Sanfilippo syndrome type B. Brain Dev 1985; 7(6): 599-609.
[http://dx.doi.org/10.1016/S0387-7604(85)80008-5] [PMID: 3938624]
[39]
Walkley SU, Suzuki K. Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1685(1-3): 48-62.
[http://dx.doi.org/10.1016/j.bbalip.2004.08.011] [PMID: 15465426]
[40]
Agrawal I, Lim YS, Ng SY, Ling SC. Deciphering lipid dysregulation in ALS: From mechanisms to translational medicine. Transl Neurodegener 2022; 11(1): 48.
[http://dx.doi.org/10.1186/s40035-022-00322-0] [PMID: 36345044]
[41]
Mächtel R, Boros FA, Dobert JP, Arnold P, Zunke F. From lysosomal storage disorders to parkinson’s disease – challenges and opportunities. J Mol Biol 2023; 435(12): 167932.
[http://dx.doi.org/10.1016/j.jmb.2022.167932] [PMID: 36572237]
[42]
Rizvanov AA, Shaimardanova AA, Chulpanova DS, Solovyeva VV, Aimaletdinov AM. Functionality of a bicistronic construction containing HEXA and HEXB genes encoding β-hexosaminidase A for cell-mediated therapy of GM2 gangliosidoses. Neural Regen Res 2022; 17(1): 122-9.
[http://dx.doi.org/10.4103/1673-5374.314310] [PMID: 34100447]
[43]
Cachón-González MB, Wang SZ, McNair R, et al. Gene transfer corrects acute GM2 gangliosidosis--potential therapeutic contribution of perivascular enzyme flow. Mol Ther 2012; 20(8): 1489-500.
[http://dx.doi.org/10.1038/mt.2012.44] [PMID: 22453766]
[44]
Yang J, Wise L. TLR4 cross-talk with nlrp3 inflammasome and complement signaling pathways in alzheimer’s disease. Front Immunol 2020; 11.
[45]
Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci 2019; 20(23): 6008.
[http://dx.doi.org/10.3390/ijms20236008] [PMID: 31795299]
[46]
Maguire AS, Martin DR. White matter pathology as a barrier to gangliosidosis gene therapy. Front Cell Neurosci 2021; 15: 682106.
[http://dx.doi.org/10.3389/fncel.2021.682106] [PMID: 34456684]
[47]
Shin J, Kim G, Lee JW, et al. Identification of ganglioside GM 2 activator playing a role in cancer cell migration through proteomic analysis of breast cancer secretomes. Cancer Sci 2016; 107(6): 828-35.
[http://dx.doi.org/10.1111/cas.12935] [PMID: 27002480]
[48]
Espinosa-Oliva AM, García-Revilla J, Alonso-Bellido IM, Burguillos MA. Brainiac caspases: Beyond the wall of apoptosis. Front Cell Neurosci 2019; 13: 500.
[http://dx.doi.org/10.3389/fncel.2019.00500] [PMID: 31749689]
[49]
Lum JS, Berg T, Chisholm CG, Vendruscolo M, Yerbury JJ. Vulnerability of the spinal motor neuron presynaptic terminal sub-proteome in ALS. Neurosci Lett 2022; 778: 136614.
[http://dx.doi.org/10.1016/j.neulet.2022.136614] [PMID: 35367314]
[50]
Svirin E, de Munter J, Umriukhin A, et al. Aberrant ganglioside functions to underpin dysregulated myelination, insulin signalling, and cytokine expression: Is there a link and a room for therapy? Biomolecules 2022; 12(10): 1434.
[http://dx.doi.org/10.3390/biom12101434] [PMID: 36291644]
[51]
Lee Y, Miller MR, Fernandez MA, et al. Early lysosome defects precede neurodegeneration with amyloid-β and tau aggregation in NHE6-null rat brain. Brain 2022; 145(9): 3187-202.
[http://dx.doi.org/10.1093/brain/awab467] [PMID: 34928329]
[52]
Campos-Peña V, Pichardo-Rojas P, Sánchez-Barbosa T, et al. Amyloid β, lipid metabolism, basal cholinergic system, and therapeutics in alzheimer’s disease. Int J Mol Sci 2022; 23(20): 12092.
[http://dx.doi.org/10.3390/ijms232012092] [PMID: 36292947]
[53]
Solis E Jr, Hascup KN, Hascup ER. Alzheimer’s Disease: The link between amyloid-β and neurovascular dysfunction. J Alzheimers Dis 2020; 76(4): 1179-98.
[http://dx.doi.org/10.3233/JAD-200473] [PMID: 32597813]
[54]
Lai Y, Lin P, Lin F, et al. Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning. Front Immunol 2022; 13: 1046410.
[http://dx.doi.org/10.3389/fimmu.2022.1046410] [PMID: 36569892]
[55]
Bensalem J, Hein LK, Hassiotis S, et al. Modifying dietary protein impacts mTOR signaling and brain deposition of amyloid β in a knock-in mouse model of alzheimer disease. J Nutr 2023; 153(5): 1407-19.
[http://dx.doi.org/10.1016/j.tjnut.2023.02.035] [PMID: 36870538]
[56]
Demir SA, Timur ZK, Ateş N, Martínez LA, Seyrantepe V. GM2 ganglioside accumulation causes neuroinflammation and behavioral alterations in a mouse model of early onset Tay-Sachs disease. J Neuroinflammation 2020; 17(1): 277.
[http://dx.doi.org/10.1186/s12974-020-01947-6] [PMID: 32951593]
[57]
İnci A, Cengiz Ergin FB, Biberoğlu G, Okur İ, Ezgü FS, Tümer L. Two patients from Turkey with a novel variant in the GM2A gene and review of the literature. J Pediatr Endocrinol Metab 2021; 34(6): 805-12.
[http://dx.doi.org/10.1515/jpem-2020-0655] [PMID: 33819415]
[58]
Jónsson H, Sulem P, Kehr B, et al. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature 2017; 549(7673): 519-22.
[http://dx.doi.org/10.1038/nature24018] [PMID: 28959963]
[59]
Sanchez-Varo R, Mejias-Ortega M, Fernandez-Valenzuela JJ, et al. Transgenic mouse models of alzheimer’s disease: An integrative analysis. Int J Mol Sci 2022; 23(10): 5404.
[http://dx.doi.org/10.3390/ijms23105404] [PMID: 35628216]
[60]
Estaun-Panzano J, Arotcarena ML, Bezard E. Monitoring α-synuclein aggregation. Neurobiol Dis 2023; 176: 105966.
[http://dx.doi.org/10.1016/j.nbd.2022.105966] [PMID: 36527982]
[61]
Peña-Bautista C, Kumar R, Baquero M, et al. Misfolded alpha-synuclein detection by RT-QuIC in dementia with lewy bodies: a systematic review and meta-analysis. Front Mol Biosci 2023; 10: 1193458.
[http://dx.doi.org/10.3389/fmolb.2023.1193458] [PMID: 37266333]
[62]
Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis 2023; 14(3): 176.
[http://dx.doi.org/10.1038/s41419-023-05672-9] [PMID: 36859484]
[63]
Brockmann K, Quadalti C, Lerche S, et al. Association between CSF alpha-synuclein seeding activity and genetic status in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol Commun 2021; 9(1): 175.
[http://dx.doi.org/10.1186/s40478-021-01276-6] [PMID: 34717775]
[64]
Sango K, Yamanaka S, Hoffmann A, et al. Mouse models of Tay–Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 1995; 11(2): 170-6.
[http://dx.doi.org/10.1038/ng1095-170] [PMID: 7550345]
[65]
Zhou H, Lin B, Yang J, et al. Analysis of the mechanism of buyang huanwu decoction against cerebral ischemia-reperfusion by multi-omics. J Ethnopharmacol 2023; 305: 116112.
[http://dx.doi.org/10.1016/j.jep.2022.116112] [PMID: 36581164]
[66]
Pandey MK. Exploring pro-inflammatory immunological mediators: Unraveling the mechanisms of neuroinflammation in lysosomal storage diseases. Biomedicines 2023; 11(4): 1067.
[http://dx.doi.org/10.3390/biomedicines11041067] [PMID: 37189685]
[67]
Martins C, Brunel-Guitton C, Lortie A, et al. Atypical juvenile presentation of GM2 gangliosidosis AB in a patient compound-heterozygote for c.259G > T and c.164C > T mutations in the GM2A gene. Mol Genet Metab Rep 2017; 11: 24-9.
[http://dx.doi.org/10.1016/j.ymgmr.2017.01.017] [PMID: 28417072]
[68]
Kwan J, Vullaganti M. Amyotrophic lateral sclerosis mimics. Muscle Nerve 2022; 66(3): 240-52.
[http://dx.doi.org/10.1002/mus.27567] [PMID: 35607838]
[69]
Nestrasil I, Ahmed A, Utz JM, Rudser K, Whitley CB, Jarnes-Utz JR. Distinct progression patterns of brain disease in infantile and juvenile gangliosidoses: Volumetric quantitative MRI study. Mol Genet Metab 2018; 123(2): 97-104.
[http://dx.doi.org/10.1016/j.ymgme.2017.12.432] [PMID: 29352662]
[70]
Stenson PD, Mort M, Ball EV, et al. The human gene mutation database (HGMD®): Optimizing its use in a clinical diagnostic or research setting. Hum Genet 2020; 139(10): 1197-207.
[http://dx.doi.org/10.1007/s00439-020-02199-3] [PMID: 32596782]
[71]
Hayashi J, Carver JA. β-Synuclein: An enigmatic protein with diverse functionality. Biomolecules 2022; 12(1): 142.
[http://dx.doi.org/10.3390/biom12010142] [PMID: 35053291]
[72]
Leong TW, Pal A, Cai Q, et al. Clinical gene therapy development for the central nervous system: Candidates and challenges for AAVs. J Control Release 2023; 357: 511-30.
[http://dx.doi.org/10.1016/j.jconrel.2023.04.009] [PMID: 37040842]
[73]
Kido J, Sugawara K, Nakamura K. Gene therapy for lysosomal storage diseases: Current clinical trial prospects. Front Genet 2023; 14: 1064924.
[http://dx.doi.org/10.3389/fgene.2023.1064924] [PMID: 36713078]
[74]
Picache JA, Zheng W, Chen CZ. Therapeutic strategies for tay-sachs disease. Front Pharmacol 2022; 13: 906647.
[http://dx.doi.org/10.3389/fphar.2022.906647] [PMID: 35865957]
[75]
Tsuji D, Akeboshi H, Matsuoka K, et al. Highly phosphomannosylated enzyme replacement therapy for GM2 gangliosidosis. Ann Neurol 2011; 69(4): 691-701.
[http://dx.doi.org/10.1002/ana.22262] [PMID: 21520232]
[76]
Marshall J, Nietupski JB, Park H, et al. Substrate reduction therapy for sandhoff disease through inhibition of glucosylceramide synthase activity. Mol Ther 2019; 27(8): 1495-506.
[http://dx.doi.org/10.1016/j.ymthe.2019.05.018] [PMID: 31208914]
[77]
Leal AF, Cifuentes J, Quezada V, et al. CRISPR/nCas9-based genome editing on gm2 gangliosidoses fibroblasts via non-viral vectors. Int J Mol Sci 2022; 23(18): 10672.
[http://dx.doi.org/10.3390/ijms231810672] [PMID: 36142595]
[78]
Santos R, Amaral O. Advances in sphingolipidoses: CRISPR-Cas9 editing as an option for modelling and therapy. Int J Mol Sci 2019; 20(23): 5897.
[http://dx.doi.org/10.3390/ijms20235897] [PMID: 31771289]
[79]
Chiricozzi E, Niemir N, Aureli M, et al. Chaperone therapy for GM2 gangliosidosis: effects of pyrimethamine on β-hexosaminidase activity in Sandhoff fibroblasts. Mol Neurobiol 2014; 50(1): 159-67.
[http://dx.doi.org/10.1007/s12035-013-8605-5] [PMID: 24356898]
[80]
Vu M, Li R, Baskfield A, et al. Neural stem cells for disease modeling and evaluation of therapeutics for Tay-Sachs disease. Orphanet J Rare Dis 2018; 13(1): 152.
[http://dx.doi.org/10.1186/s13023-018-0886-3] [PMID: 30220252]
[81]
Calzoni E, Cesaretti A, Montegiove N, Di Michele A, Pellegrino RM, Emiliani C. HexA-enzyme coated polymer nanoparticles for the development of a drug-delivery system in the treatment of sandhoff lysosomal storage disease. J Funct Biomater 2022; 13(2): 37.
[http://dx.doi.org/10.3390/jfb13020037] [PMID: 35466219]
[82]
Beegle J, Hendrix K, Maciel H, Nolta JA, Anderson JS. Improvement of motor and behavioral activity in Sandhoff mice transplanted with human CD34+ cells transduced with a HexA/HexB expressing lentiviral vector. J Gene Med 2020; 22(9): e3205.
[http://dx.doi.org/10.1002/jgm.3205] [PMID: 32335981]
[83]
Kim MJ, Deng HX, Wong YC, Siddique T, Krainc D. The Parkinson’s disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking. Hum Mol Genet 2017; 26(4): ddw413.
[http://dx.doi.org/10.1093/hmg/ddw413] [PMID: 28115417]
[84]
Minamisawa M, Suzumura T, Bose S, et al. Effect of Yuzu (Citrus junos) seed limonoids and spermine on intestinal microbiota and hypothalamic tissue in the sandhoff disease mouse model. Med Sci 2021; 9(1): 17.
[http://dx.doi.org/10.3390/medsci9010017] [PMID: 33799734]
[85]
Vijayalakshmi M, Lakshmana Prabu S, Umamaheswari A, Neethimohan N. Strategies to combat Tay-Sachs disease. In: Drug Delivery Systems for Metabolic Disorders. Elsevier 2022; pp. 337-49.
[http://dx.doi.org/10.1016/B978-0-323-99616-7.00017-7]
[86]
Magini A, Polchi A, Di Meo D, et al. Curcumin analogue C1 promotes hex and gal recruitment to the plasma membrane via mTORC1-Independent TFEB activation. Int J Mol Sci 2019; 20(6): 1363.
[http://dx.doi.org/10.3390/ijms20061363] [PMID: 30889901]
[87]
De Masi R, Orlando S. GANAB and N-glycans substrates are relevant in human physiology, polycystic pathology and multiple sclerosis: A review. Int J Mol Sci 2022; 23(13): 7373.
[http://dx.doi.org/10.3390/ijms23137373] [PMID: 35806376]
[88]
Salau VF, Erukainure OL, Ibeji CU, Olasehinde TA, Koorbanally NA, Islam MS. Ferulic acid modulates dysfunctional metabolic pathways and purinergic activities, while stalling redox imbalance and cholinergic activities in oxidative brain injury. Neurotox Res 2020; 37(4): 944-55.
[http://dx.doi.org/10.1007/s12640-019-00099-7] [PMID: 31422569]
[89]
Boomgaarden I, Egert S, Rimbach G, Wolffram S, Müller MJ, Döring F. Quercetin supplementation and its effect on human monocyte gene expression profiles in vivo. Br J Nutr 2010; 104(3): 336-45.
[http://dx.doi.org/10.1017/S0007114510000711] [PMID: 20416132]
[90]
Arbor SC, LaFontaine M, Cumbay M. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores. Yale J Biol Med 2016; 89(1): 5-21.
[PMID: 27505013]
[91]
Rey F, Berardo C, Maghraby E, et al. Redox imbalance in neurological disorders in adults and children. Antioxidants 2023; 12(4): 965.
[http://dx.doi.org/10.3390/antiox12040965] [PMID: 37107340]
[92]
Axelsen PH, Komatsu H, Murray IVJ. Oxidative stress and cell membranes in the pathogenesis of Alzheimer’s disease. Physiology 2011; 26(1): 54-69.
[http://dx.doi.org/10.1152/physiol.00024.2010] [PMID: 21357903]
[93]
Simão F, Matté A, Breier AC, et al. Resveratrol prevents global cerebral ischemia-induced decrease in lipid content. Neurol Res 2013; 35(1): 59-64.
[http://dx.doi.org/10.1179/1743132812Y.0000000116] [PMID: 23317800]
[94]
Contri A, Brunati AM, Trentin L, et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest 2005; 115(2): 369-78.
[http://dx.doi.org/10.1172/JCI200522094] [PMID: 15650771]
[95]
Verma S, Ranawat P, Nehru B. Studies on the neuromodulatory effects of Ginkgo biloba on alterations in lipid composition and membrane integrity of rat brain following aluminium neurotoxicity. Neurochem Res 2020; 45(9): 2143-60.
[http://dx.doi.org/10.1007/s11064-020-03075-2] [PMID: 32594293]
[96]
Banning A, Tikkanen R. Towards splicing therapy for lysosomal storage disorders: Methylxanthines and luteolin ameliorate splicing defects in aspartylglucosaminuria and classic late infantile neuronal ceroid lipofuscinosis. Cells 2021; 10(11): 2813.
[http://dx.doi.org/10.3390/cells10112813] [PMID: 34831035]
[97]
Dhakal S, Ramsland PA, Adhikari B, Macreadie I. Trans-chalcone plus baicalein synergistically reduce intracellular amyloid Beta (Aβ42) and Protect from Aβ42 induced oxidative damage in yeast models of alzheimer’s disease. Int J Mol Sci 2021; 22(17): 9456.
[http://dx.doi.org/10.3390/ijms22179456] [PMID: 34502362]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy