Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Research Mechanism and Progress of the Natural Compound Curcumin in Treating Alzheimer´s Disease

Author(s): Li Li, Fan Wang, Xirong Jia, Luyang Yao and Yu Liu*

Volume 24, Issue 17, 2024

Published on: 30 October, 2023

Page: [1590 - 1601] Pages: 12

DOI: 10.2174/0113895575263783231009051957

Price: $65

conference banner
Abstract

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. AD patients usually present symptoms, such as cognitive dysfunction, progressive memory loss, and other manifestations. With the increasing number of AD cases worldwide, there is an urgent need to develop effective drug treatments. Currently, drugs targeting AD symptoms may not change or prevent the progression of the disease. Curcumin, a polyphenol extracted from the turmeric herb, has been used for the treatment of AD. In this review, we summarized both cellular and animal studies and described the mechanism of action of curcumin in altering the pathological features of AD. Curcumin attenuates the formation of amyloid-β plaques and promotes its decomposition, reduces the phosphorylation of tau, improves its clearance rate, and binds with copper to reduce cholesterol. It changes the activity of microglia, suppresses acetylcholinesterase, regulates insulin signal transduction, and exhibits antioxidant properties. Studies have found that curcumin can promote nerve repair and has a significant effect on AD. However, the low bioavailability of curcumin may hinder its use as a therapeutic agent. If this limitation can be overcome, curcumin may emerge as a promising drug for the treatment of AD.

Keywords: Alzheimer’s disease, amyloid-β, curcumin, turmeric, tau protein, copper binding, blood-brain barrier, bioavailability, cholesterol, antioxidant.

Graphical Abstract
[1]
Mahmudov, I.; Demir, Y.; Sert, Y.; Abdullayev, Y.; Sujayev, A.; Alwasel, S.H.; Gulcin, I. Synthesis and inhibition profiles of Nbenzyl- and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase – A molecular docking study. Arab. J. Chem., 2022, 15(3), 103645.
[http://dx.doi.org/10.1016/j.arabjc.2021.103645]
[2]
Anil, D.A.; Aydin, B.O.; Demir, Y.; Türkmenoğlu, B., Design, synthesis, biological evaluation and molecular docking studies of novel 1 H -1,2,3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J. Mol. Struct. ,, 1257(16), 132613. 2022.
[3]
Tugrak, M.; Gul, H.I.; Demir, Y.; Levent, S.; Gulcin, I. Synthesis and in vitro carbonic anhydrases and acetylcholinesterase inhibitory activities of novel imidazolinone‐based benzenesulfonamides. Arch. Pharm. (Weinheim), 2021, 354(4), 2000375.
[http://dx.doi.org/10.1002/ardp.202000375] [PMID: 33283898]
[4]
Yaşar, Ü.; Gönül, İ.; Türkeş, C.; Demir, Y.; Beydemir, Ş. Transition‐Metal Complexes of Bidentate Schiff‐Base Ligands: In Vitro and In Silico Evaluation as Non‐Classical Carbonic Anhydrase and Potential Acetylcholinesterase Inhibitors. ChemistrySelect, 2021, 6(29), 7278-7284.
[http://dx.doi.org/10.1002/slct.202102082]
[5]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[6]
Subudhi, U.; Das, K.; Paital, B.; Bhanja, S.; Chainy, G.B.N. Supplementation of curcumin and vitamin E enhances oxidative stress, but restores hepatic histoarchitecture in hypothyroid rats. Life Sci., 2009, 84(11-12), 372-379.
[http://dx.doi.org/10.1016/j.lfs.2008.12.024] [PMID: 19174171]
[7]
Xu, Z.; Huang, X.; Han, X.; Wu, D.; Zhang, B.; Tan, Y.; Cao, M.; Liu, S.H.; Yin, J.; Yoon, J. A Visible and Near-Infrared, Dual-Channel Fluorescence-On Probe for Selectively Tracking Mitochondrial Glutathione. Chem, 2018, 4(7), 1609-1628.
[http://dx.doi.org/10.1016/j.chempr.2018.04.003]
[8]
Zhou, S.S.; Xue, X.; Wang, J.F.; Dong, Y.; Jiang, B.; Wei, D.; Wan, M.L.; Jia, Y. Synthesis, optical properties and biological imaging of the rare earth complexes with curcumin and pyridine. J. Mater. Chem., 2012, 22(42), 22774-22780.
[http://dx.doi.org/10.1039/c2jm34117d]
[9]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[10]
Park, K.; Seo, Y.; Kim, M.K.; Kim, K.; Kim, Y.K.; Choo, H.; Chong, Y. A curcumin-based molecular probe for near-infrared fluorescence imaging of tau fibrils in Alzheimer’s disease. Org. Biomol. Chem., 2015, 13(46), 11194-11199.
[http://dx.doi.org/10.1039/C5OB01847A] [PMID: 26488450]
[11]
Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: the Indian solid gold. Adv. Exp. Med. Biol., 2007, 595, 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1] [PMID: 17569205]
[12]
Morales, I.; Cerda-Troncoso, C.; Andrade, V.; Maccioni, R.B. The Natural Product Curcumin as a Potential Coadjuvant in Alzheimer’s Treatment. J. Alzheimers Dis., 2017, 60(2), 451-460.
[http://dx.doi.org/10.3233/JAD-170354] [PMID: 28854504]
[13]
Maiti, P. 1, 3,4,5*, L.P., 2, a.G.L. Dunbar, 1, 3,4*, Solid lipid curcumin particles provide greater anti-amyloid, anti-infammatory and neuroprotective efects than curcumin in the 5xFAD mouse model of Alzheimer’s disease. BMC Neurosci., 2018.
[http://dx.doi.org/10.1186/s12868-018-0406-3]
[14]
Fan, S.; Zheng, Y.; Liu, X.; Fang, W.; Chen, X.; Liao, W.; Jing, X.; Lei, M.; Tao, E.; Ma, Q.; Zhang, X.; Guo, R.; Liu, J. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv., 2018, 25(1), 1091-1102.
[http://dx.doi.org/10.1080/10717544.2018.1461955] [PMID: 30107760]
[15]
Sharma, R.A.; Gescher, A.J.; Steward, W.P. Curcumin: The story so far. Eur. J. Cancer, 2005, 41(13), 1955-1968.
[http://dx.doi.org/10.1016/j.ejca.2005.05.009] [PMID: 16081279]
[16]
Cornago, P.; Claramunt, R.M.; Bouissane, L.; Alkorta, I.; Elguero, J. A study of the tautomerism of β-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron, 2008, 64(35), 8089-8094. [J
[http://dx.doi.org/10.1016/j.tet.2008.06.065]
[17]
Liu, A.K.L.; Chang, R.C.C.; Pearce, R.K.B.; Gentleman, S.M. Nucleus basalis of Meynert revisited: Anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol., 2015, 129(4), 527-540.
[http://dx.doi.org/10.1007/s00401-015-1392-5] [PMID: 25633602]
[18]
Thapa, A.; Vernon, B.C.; De la Peña, K.; Soliz, G.; Moreno, H.A.; López, G.P.; Chi, E.Y. Membrane-mediated neuroprotection by curcumin from amyloid-β-peptide-induced toxicity. Langmuir, 2013, 29(37), 11713-11723.
[http://dx.doi.org/10.1021/la4020459] [PMID: 24004419]
[19]
Chongzhao, R.; Xiaoyin, X.; Scott, B.R.; Brian, J.F.; Krista, N.; Zdravka, M.; Anna, M. Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-β deposits. J. Am. Chem. Soc., 2013, 131(42), 15257-15261.
[20]
Mithu, V.S.; Sarkar, B.; Bhowmik, D.; Das, A.K.; Chandrakesan, M.; Maiti, S.; Madhu, P.K. Curcumin alters the salt bridge-containing turn region in amyloid β(1-42) aggregates. J. Biol. Chem., 2014, 289(16), 11122-11131.
[http://dx.doi.org/10.1074/jbc.M113.519447] [PMID: 24599958]
[21]
Parada, E.; Buendia, I.; Navarro, E.; Avendaño, C.; Egea, J.; López, M.G. Microglial HO-1 induction by curcumin provides antioxidant, antineuroinflammatory, and glioprotective effects. Mol. Nutr. Food Res., 2015, 59(9), 1690-1700.
[http://dx.doi.org/10.1002/mnfr.201500279] [PMID: 26047311]
[22]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[23]
Adibian, M.; Hodaei, H.; Nikpayam, O.; Sohrab, G.; Hekmatdoost, A.; Hedayati, M. The effects of curcumin supplementation on high‐sensitivity C‐reactive protein, serum adiponectin, and lipid profile in patients with type 2 diabetes: A randomized, double‐blind, placebo‐controlled trial. Phytother. Res., 2019, 33(5), 1374-1383.
[http://dx.doi.org/10.1002/ptr.6328] [PMID: 30864188]
[24]
Tan, B.L.; Norhaizan, M.E.; Liew, W.P.P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharmacol., 2018, 9, 1162.
[http://dx.doi.org/10.3389/fphar.2018.01162] [PMID: 30405405]
[25]
Jakubczyk, K.; Dec, K.; Kałduńska, J.; Kawczuga, D.; Kochman, J.; Janda, K. Reactive oxygen species - sources, functions, oxidative damage. Pol. Merkuriusz Lek., 2020, 48(284), 124-127.
[PMID: 32352946]
[26]
Yang, J.; Zhang, X.; Yuan, P.; Yang, J.; Xu, Y.; Grutzendler, J.; Shao, Y.; Moore, A.; Ran, C. Oxalate-curcumin–based probe for micro- and macroimaging of reactive oxygen species in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2017, 114(47), 12384-12389.
[http://dx.doi.org/10.1073/pnas.1706248114] [PMID: 29109280]
[27]
Goozee, K.G.; Shah, T.M.; Sohrabi, H.R.; Rainey-Smith, S.R.; Brown, B.; Verdile, G.; Martins, R.N. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease. Br. J. Nutr., 2016, 115(3), 449-465.
[http://dx.doi.org/10.1017/S0007114515004687] [PMID: 26652155]
[28]
Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol., 2007, 8(2), 101-112.
[http://dx.doi.org/10.1038/nrm2101] [PMID: 17245412]
[29]
Manczak, M.; Mao, P.; Calkins, M.J.; Cornea, A.; Reddy, A.P.; Murphy, M.P.; Szeto, H.H.; Park, B.; Reddy, P.H. Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J. Alzheimers Dis., 2010, 20(S2), S609-S6031.
[30]
Chételat, G.; Villemagne, V.L.; Villain, N.; Jones, G.; Ellis, K.A.; Ames, D.; Martins, R.N.; Masters, C.L.; Rowe, C.C.; Group, A.R. Accelerated cortical atrophy in cognitively normal elderly with high -amyloid deposition. Neurology, 2012, 78(7), 477-484.
[http://dx.doi.org/10.1212/WNL.0b013e318246d67a] [PMID: 22302548]
[31]
Zhang, C.; Browne, A.; Child, D.; Tanzi, R.E. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J. Biol. Chem., 2010, 285(37), 28472-28480.
[http://dx.doi.org/10.1074/jbc.M110.133520] [PMID: 20622013]
[32]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[33]
Wan, W.; Xia, S.; Kalionis, B.; Liu, L.; Li, Y. The role of Wnt signaling in the development of Alzheimer’s disease: A potential therapeutic target? BioMed Res. Int., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/301575] [PMID: 24883305]
[34]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[35]
Hamley, I.W. Peptide Fibrillization. Angew. Chem. Int. Ed., 2007, 46(43), 8128-8147.
[http://dx.doi.org/10.1002/anie.200700861] [PMID: 17935097]
[36]
Hanyu, M.; Ninomiya, D.; Yanagihara, R. Studies on intramolecular hydrogen bonding between the pyridine nitrogen and the amide hydrogen of the peptide: Synthesis and conformational analysis of tripeptides containing novel amino acids with a pyridine ring. J. Pept. Sci., 2005, 11(8), 491-498.
[37]
Huang, H.C.; Jiang, Z.F. Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J. Alzheimers Dis., 2009, 16(1), 15-27.
[http://dx.doi.org/10.3233/JAD-2009-0960] [PMID: 19158417]
[38]
Lourenco, M.V.; Clarke, J.R.; Frozza, R.L.; Bomfim, T.R.; Forny-Germano, L.; Batista, A.F.; Sathler, L.B.; Brito-Moreira, J.; Amaral, O.B.; Silva, C.A.; Freitas-Correa, L.; Espírito-Santo, S.; Campello-Costa, P.; Houzel, J.C.; Klein, W.L.; Holscher, C.; Carvalheira, J.B.; Silva, A.M.; Velloso, L.A.; Munoz, D.P.; Ferreira, S.T.; De Felice, F.G. TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab., 2013, 18(6), 831-843.
[http://dx.doi.org/10.1016/j.cmet.2013.11.002] [PMID: 24315369]
[39]
Guo, T.; Noble, W.; Hanger, D.P. Roles of tau protein in health and disease. Acta Neuropathol., 2017, 133(5), 665-704.
[http://dx.doi.org/10.1007/s00401-017-1707-9] [PMID: 28386764]
[40]
Falcon, B.; Zhang, W.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Vidal, R.; Crowther, R.A.; Ghetti, B.; Scheres, S.H.W.; Goedert, M. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature, 2018, 561(7721), 137-140.
[http://dx.doi.org/10.1038/s41586-018-0454-y] [PMID: 30158706]
[41]
Kapaki, E.; Paraskevas, G.P.; Zalonis, I.; Zournas, C. CSF tau protein and β -amyloid (1-42) in Alzheimer’s disease diagnosis: Discrimination from normal ageing and other dementias in the Greek population. Eur. J. Neurol., 2003, 10(2), 119-128.
[http://dx.doi.org/10.1046/j.1468-1331.2003.00562.x] [PMID: 12603286]
[42]
Gul, H.I.; Mete, E.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Synthesis, carbonic anhydrase I and II inhibition studies of the 1,3,5-trisubstituted-pyrazolines. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 189-192.
[http://dx.doi.org/10.1080/14756366.2016.1244533] [PMID: 27774818]
[43]
Miller, Y.; Ma, B.; Nussinov, R. Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape. Chem. Rev., 2010, 110(8), 4820-4838.
[http://dx.doi.org/10.1021/cr900377t] [PMID: 20402519]
[44]
Wallin, C.; Hiruma, Y.; Wärmländer, S.K.T.S.; Huvent, I.; Jarvet, J.; Abrahams, J.P.; Gräslund, A.; Lippens, G.; Luo, J. The neuronal tau protein blocks in vitro fibrillation of the amyloid-β (Aβ) peptide at the oligomeric stage. J. Am. Chem. Soc., 2018, 140(26), 8138-8146.
[http://dx.doi.org/10.1021/jacs.7b13623] [PMID: 29708745]
[45]
Mohorko, N.; Repovš, G.; Popović, M.; Kovacs, G.G.; Bresjanac, M. Curcumin labeling of neuronal fibrillar tau inclusions in human brain samples. J. Neuropathol. Exp. Neurol., 2010, 69(4), 405-414.
[http://dx.doi.org/10.1097/NEN.0b013e3181d709eb] [PMID: 20448485]
[46]
Begum, A.N.; Jones, M.R.; Lim, G.P.; Morihara, T.; Kim, P.; Heath, D.D.; Rock, C.L.; Pruitt, M.A.; Yang, F.; Hudspeth, B.; Hu, S.; Faull, K.F.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2008, 326(1), 196-208.
[http://dx.doi.org/10.1124/jpet.108.137455] [PMID: 18417733]
[47]
Zhou, H.; Beevers, C.S.; Huang, S. The targets of curcumin. Curr. Drug Targets, 2011, 12(3), 332-347.
[http://dx.doi.org/10.2174/138945011794815356] [PMID: 20955148]
[48]
Hamaguchi, T.; Ono, K.; Yamada, M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci. Ther., 2010, 16(5), 285-297.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00147.x] [PMID: 20406252]
[49]
Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol., 2001, 19(4), 316-317.
[http://dx.doi.org/10.1038/86684] [PMID: 11283581]
[50]
Cai, L.; Innis, R.; Pike, V. Radioligand development for PET imaging of beta-amyloid (Abeta)--current status. Curr. Med. Chem., 2007, 14(1), 19-52.
[http://dx.doi.org/10.2174/092986707779313471] [PMID: 17266566]
[51]
Cui, M.; Ono, M.; Kimura, H.; Kawashima, H.; Liu, B.L.; Saji, H. Radioiodinated benzimidazole derivatives as single photon emission computed tomography probes for imaging of β-amyloid plaques in Alzheimer’s disease. Nucl. Med. Biol., 2011, 38(3), 313-320.
[http://dx.doi.org/10.1016/j.nucmedbio.2010.09.012] [PMID: 21492779]
[52]
Si, G.; Zhou, S.; Xu, G.; Wang, J.; Wu, B.; Zhou, S. A curcumin-based NIR fluorescence probe for detection of amyloid-beta (Aβ) plaques in Alzheimer’s disease. Dyes Pigments, 2019, 163, 509-515.
[http://dx.doi.org/10.1016/j.dyepig.2018.12.003]
[53]
Basnet, P.; Skalko-Basnet, N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules, 2011, 16(6), 4567-4598.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[54]
Xu, Y.X.; Pindolia, K.R.; Janakiraman, N.; Chapman, R.A.; Gautam, S.C. Curcumin inhibits IL1 alpha and TNF-alpha induction of AP-1 and NF-kB DNA-binding activity in bone marrow stromal cells. Hematopathol. Mol. Hematol., 1997-1998, 11(1), 49-62.
[PMID: 9439980]
[55]
Joe, B.; Rao, U.J.S.P.; Lokesh, B.R. Presence of an acidic glycoprotein in the serum of arthritic rats: Modulation by capsaicin and curcumin. Mol. Cell. Biochem., 1997, 169(1/2), 125-134.
[http://dx.doi.org/10.1023/A:1006877928703] [PMID: 9089639]
[56]
Zhang, X.; Tian, Y.; Li, Z.; Tian, X.; Sun, H.; Liu, H.; Moore, A.; Ran, C. Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer’s disease. J. Am. Chem. Soc., 2013, 135(44), 16397-16409.
[http://dx.doi.org/10.1021/ja405239v] [PMID: 24116384]
[57]
Di Paolo, G.; Kim, T.W. Linking lipids to Alzheimer’s disease: Cholesterol and beyond. Nat. Rev. Neurosci., 2011, 12(5), 284-296.
[http://dx.doi.org/10.1038/nrn3012] [PMID: 21448224]
[58]
Pi, Z.; Wang, J.; Jiang, B.; Cheng, G.; Zhou, S. A curcumin-based TPA four-branched copper(II) complex probe for in vivo early tumor detection. Mater. Sci. Eng. C, 2015, 46, 565-571.
[http://dx.doi.org/10.1016/j.msec.2014.10.061] [PMID: 25492022]
[59]
Puglielli, L.; Tanzi, R.E.; Kovacs, D.M. Alzheimer’s disease: the cholesterol connection. Nat. Neurosci., 2003, 6(4), 345-351.
[http://dx.doi.org/10.1038/nn0403-345] [PMID: 12658281]
[60]
Soni, K; Kutian, R Effecf of oral curcumin administranon on serum peroxides and cholesterol levels in human volunteers. Indian J. Physiol. Phannacol., 1992, 36(4), 273.(275).
[61]
Popp, J.; Lewczuk, P.; Kölsch, H.; Meichsner, S.; Maier, W.; Kornhuber, J.; Jessen, F.; Lütjohann, D. Cholesterol metabolism is associated with soluble amyloid precursor protein production in Alzheimer’s disease. J. Neurochem., 2012, 123(2), 310-316.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07893.x] [PMID: 22845771]
[62]
Wood, W.G.; Li, L.; Müller, W.E.; Eckert, G.P. Cholesterol as a causative factor in Alzheimer’s disease: A debatable hypothesis. J. Neurochem., 2014, 129(4), 559-572.
[http://dx.doi.org/10.1111/jnc.12637] [PMID: 24329875]
[63]
Garcia-Alloza, M.; Borrelli, L.A.; Rozkalne, A.; Hyman, B.T.; Bacskai, B.J. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J. Neurochem., 2007, 102(4), 1095-1104.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04613.x] [PMID: 17472706]
[64]
Mutsuga, M.; Chambers, J.K.; Uchida, K.; Tei, M.; Makibuchi, T.; Mizorogi, T.; Takashima, A.; Nakayama, H. Binding of curcumin to senile plaques and cerebral amyloid angiopathy in the aged brain of various animals and to neurofibrillary tangles in Alzheimer’s brain. J. Vet. Med. Sci., 2012, 74(1), 51-57.
[http://dx.doi.org/10.1292/jvms.11-0307] [PMID: 21891973]
[65]
Masters, C.L.; Multhaup, G.; Simms, G.; Pottgiesser, J.; Martins, R.N.; Beyreuther, K. Neuronal origin of a cerebral amyloid: Neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J., 1985, 4(11), 2757-2763.
[http://dx.doi.org/10.1002/j.1460-2075.1985.tb04000.x] [PMID: 4065091]
[66]
Ghoneim, A.; Abdel-Naim, A.B.; Khalifa, A.; El-Denshary, E.S. Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol. Res., 2002, 46(3), 273-279.
[http://dx.doi.org/10.1016/S1043-6618(02)00123-8] [PMID: 12220971]
[67]
Thiyagarajan, M.; Sharma, S.S. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci., 2004, 74(8), 969-985.
[http://dx.doi.org/10.1016/j.lfs.2003.06.042] [PMID: 14672754]
[68]
Jiang, J.; Wang, W.; Sun, Y.J.; Hu, M.; Li, F.; Zhu, D.Y. Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood–brain barrier damage. Eur. J. Pharmacol., 2007, 561(1-3), 54-62.
[http://dx.doi.org/10.1016/j.ejphar.2006.12.028] [PMID: 17303117]
[69]
Wang, Y.; Gu, Y.; Qin, G.; Zhong, L.; Meng, Y. Curcumin ameliorates the permeability of the blood-brain barrier during hypoxia by upregulating heme oxygenase-1 expression in brain microvascular endothelial cells. J. Mol. Neurosci., 2013, 51(2), 344-351.
[http://dx.doi.org/10.1007/s12031-013-9989-4] [PMID: 23494637]
[70]
Tsai, Y.M.; Chien, C.F.; Lin, L.C.; Tsai, T.H. Curcumin and its nano-formulation: The kinetics of tissue distribution and blood–brain barrier penetration. Int. J. Pharm., 2011, 416(1), 331-338.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.030] [PMID: 21729743]
[71]
Ferreira, S.T.; Klein, W.L. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol. Learn. Mem., 2011, 96(4), 529-543.
[http://dx.doi.org/10.1016/j.nlm.2011.08.003] [PMID: 21914486]
[72]
Zhao, J.; Luo, Y.; Jang, H.; Yu, X.; Wei, G.; Nussinov, R.; Zheng, J. Probing ion channel activity of human islet amyloid polypeptide (amylin). Biochim. Biophys. Acta Biomembr., 2012, 1818(12), 3121-3130.
[http://dx.doi.org/10.1016/j.bbamem.2012.08.012] [PMID: 22935354]
[73]
Samy, D.M.; Ismail, C.A.; Nassra, R.A.; Zeitoun, T.M.; Nomair, A.M. Downstream modulation of extrinsic apoptotic pathway in streptozotocin-induced Alzheimer’s dementia in rats: Erythropoietin versus curcumin. Eur. J. Pharmacol., 2016, 770, 52-60.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.046] [PMID: 26638997]
[74]
Lv, H.Q.; Wang, Y.; Yang, X.T.; Ling, G.X.; Zhang, P. Application of curcumin nanoformulations in Alzheimer’s disease: Prevention, diagnosis and treatment. Nutr. Neurosci., 26(8), 727-742. 2022.
[PMID: 35694842]
[75]
Thota, R.N. Dietary supplementation with curcumin reduce circulating levels of glycogen synthase kinase-3βand islet amyloid polypeptide in adults with high risk of type 2 diabetes and alzheimer’s disease. Nutrients., 2020, 12(4), 1032.
[76]
Cox, K.H.M.; White, D.J.; Pipingas, A.; Poorun, K.; Scholey, A. Further Evidence of Benefits to Mood and Working Memory from Lipidated Curcumin in Healthy Older People: A 12-Week, Double-Blind, Placebo-Controlled, Partial Replication Study. Nutrients, 2020, 12(6), 1678.
[http://dx.doi.org/10.3390/nu12061678] [PMID: 32512782]
[77]
Fu, Z.; Aucoin, D.; Ahmed, M.; Ziliox, M.; Van Nostrand, W.E.; Smith, S.O. Capping of aβ42 oligomers by small molecule inhibitors. Biochemistry, 2014, 53(50), 7893-7903.
[http://dx.doi.org/10.1021/bi500910b] [PMID: 25422864]
[78]
Imam, Z.; Khasawneh, M.; Jomaa, D.; Iftikhar, H.; Sayedahmad, Z. Drug Induced Liver Injury Attributed to a Curcumin Supplement. Case Rep. Gastrointest. Med., 2019, 2019, 1-4.
[http://dx.doi.org/10.1155/2019/6029403] [PMID: 31781418]
[79]
Lao, C.D.; Ruffin, M.T., IV; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6(1), 10.
[http://dx.doi.org/10.1186/1472-6882-6-10] [PMID: 16545122]
[80]
Thapa, A.; Jett, S.D.; Chi, E.Y. Curcumin attenuates amyloid-β aggregate toxicity and modulates amyloid-β aggregation pathway. ACS Chem. Neurosci., 2016, 7(1), 56-68.
[http://dx.doi.org/10.1021/acschemneuro.5b00214] [PMID: 26529184]
[81]
Wang, L.; Zhou, Q.; Zhu, B.; Yan, L.; Ma, Z.; Du, B.; Zhang, X. A colorimetric and fluorescent chemodosimeter for discriminative and simultaneous quantification of cysteine and homocysteine. Dyes Pigments, 2012, 95(2), 275-279.
[http://dx.doi.org/10.1016/j.dyepig.2012.05.006]
[82]
Agrawal, D.K.; Mishra, P.K. Curcumin and its analogues: potential anticancer agents. Med. Res. Rev., 2010, 30(5), 818-860.
[PMID: 20027668]
[83]
Liu, Y.; Zhang, C.; Pan, H.; Li, L.; Yu, Y.; Liu, B. An insight into the in vivo imaging potential of curcumin analogues as fluorescence probes. Asian J. Pharma. Sci., 2021, 16(4), 419-431.
[http://dx.doi.org/10.1016/j.ajps.2020.11.003] [PMID: 34703492]
[84]
Carrettiero, D.C.; Hernandez, I.; Neveu, P.; Papagiannakopoulos, T.; Kosik, K.S. The cochaperone BAG2 sweeps paired helical filament- insoluble tau from the microtubule. J. Neurosci., 2009, 29(7), 2151-2161.
[http://dx.doi.org/10.1523/JNEUROSCI.4660-08.2009] [PMID: 19228967]
[85]
Patil, S.P.; Tran, N.; Geekiyanage, H.; Liu, L.; Chan, C. Curcumin-induced upregulation of the anti-tau cochaperone BAG2 in primary rat cortical neurons. Neurosci. Lett., 2013, 554, 121-125.
[http://dx.doi.org/10.1016/j.neulet.2013.09.008] [PMID: 24035895]
[86]
Miyasaka, T.; Xie, C.; Yoshimura, S.; Shinzaki, Y.; Yoshina, S.; Kage-Nakadai, E.; Mitani, S.; Ihara, Y. Curcumin improves tau-induced neuronal dysfunction of nematodes. Neurobiol. Aging, 2016, 39, 69-81.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.11.004] [PMID: 26923403]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy