Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Beyond the Dusty Fog: Local Eye Drop Therapy and Potentially New Treatment Alternatives in Pseudoexfoliative Glaucoma

Author(s): Marco Zeppieri* and Mutali Musa

Volume 31, Issue 13, 2024

Published on: 19 October, 2023

Page: [1608 - 1619] Pages: 12

DOI: 10.2174/0109298673255220231010073215

Price: $65

conference banner
Abstract

Pseudoexfoliative glaucoma (PEG) is a type of secondary open-angle glaucoma characterized by the accumulation of whitish-gray material on the trabecular meshwork and lens, leading to an increase in intraocular pressure (IOP) and optic nerve damage. Local eye drop therapy is one of the first-line treatments for PEG, which include prostaglandin analogues, beta-blockers, and alpha-adrenergic agonists to lower IOP. New treatments beyond conventional techniques, however, are constantly being developed. One potential treatment proposed for PEG is based on magnetic phage display, which involves using magnetic nanoparticles conjugated to specific peptides or proteins selected using phage display techniques to remove aggregates in the anterior chamber of the eye or inflammatory cells and cytokines that contribute to PEG pathogenesis. Other potential treatments include microRNAs (miRNAs) that are involved in the regulation of gene expression at the post-transcription stages. Gene therapies, nanotechnology, immunotherapy and methods based on stem cells can also be potentially used to target and treat specific tissues and cells responsible for regulating IOP. In addition, photobiomodulation therapy (PBMT), a non-invasive procedure that utilizes low-level laser therapy to improve cellular function and promote tissue repair, can prove an interesting alternative in treating PEG. The aim of our mini-review is to provide a brief overview of these innovative methods that appear to offer potentially promising treatment options for PEG.

Keywords: Pseudoexfoliative glaucoma (PEG), intraocular pressure (IOP), phage display, gene therapies, nanotechnology, immunotherapy, stem cell treatments, photobiomodulation therapy.

[1]
Prokosch, V.; Zwingelberg, S.B.; Mercieca, K. Normal tension glaucoma; Klin Monbl Augenheilkd, 2022.
[2]
Nenciu, A. Pseudo-exfoliative syndrome-etiology, clinical aspects, diagnosis. Oftalmologia, 2007, 51(4), 34-40.
[PMID: 18543671]
[3]
Schweitzer, C. Pseudoexfoliation syndrome and pseudoexfoliation glaucoma. J. Fr. Ophtalmol., 2018, 41(1), 78-90.
[http://dx.doi.org/10.1016/j.jfo.2017.09.003] [PMID: 29329947]
[4]
Chakraborty, M.; Rao, A. Alternate causes for pathogenesis of exfoliation glaucoma, a multifactorial elastotic disorder: literature review. Curr. Issues Mol. Biol., 2022, 44(3), 1191-1202.
[http://dx.doi.org/10.3390/cimb44030078] [PMID: 35723301]
[5]
Zeppieri, M.; Gurnani, B. Applanation tonometry; StatPearls: Treasure Island, FL, 2023.
[6]
Ringvold, A. Epidemiology of the pseudo-exfoliation syndrome, A review. Acta Ophthalmol. Scand., 1999, 77(4), 371-375.
[http://dx.doi.org/10.1034/j.1600-0420.1999.770401.x] [PMID: 10463402]
[7]
Padhy, B.; Alone, D.P. Is pseudoexfoliation glaucoma a neurodegenerative disorder? J. Biosci., 2021, 46(4), 97.
[http://dx.doi.org/10.1007/s12038-021-00217-8] [PMID: 34785624]
[8]
Grzybowski, A.; Kanclerz, P.; Ritch, R. The history of exfoliation syndrome. Asia Pac. J. Ophthalmol. (Phila.), 2019, 8(1), 55-61.
[PMID: 30421589]
[9]
Sencanic, I.; Gazibara, T.; Jaksic, V.; Grgurevic, A.; Mrakovic, T.; Dotlic, J. Socio-Demographic, lifestyle and eye-related factors associated with quality of life among people with glaucoma in Serbia. Eur. J. Ophthalmol., 2023, 33(2), 965-975.
[PMID: 36163693]
[10]
Feroze, K.B.; Zeppieri, M.; Khazaeni, L. Steroid-induced glaucoma; StatPearls: Treasure Island, FL, 2023.
[11]
Tanito, M. Reported evidence of vitamin E protection against cataract and glaucoma. Free Radic. Biol. Med., 2021, 177, 100-119.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.10.027] [PMID: 34695546]
[12]
Gillies, W.E. Racial incidence of pseudoexfoliation of the lens capsule. Br. J. Ophthalmol., 1972, 56(6), 474-477.
[http://dx.doi.org/10.1136/bjo.56.6.474] [PMID: 5069187]
[13]
Wang, W.; He, M.; Zhou, M.; Zhang, X. Ocular pseudoexfoliation syndrome and vascular disease: Systematic review and meta-analysis. PLoS One, 2014, 9(3), e92767.
[http://dx.doi.org/10.1371/journal.pone.0092767] [PMID: 24667689]
[14]
French, D.; Margo, C.; Harman, L. Ocular pseudoexfoliation and cardiovascular disease: national cross-section comparison study. N. Am. J. Med. Sci., 2012, 4(10), 468-473.
[http://dx.doi.org/10.4103/1947-2714.101987] [PMID: 23112968]
[15]
Špečkauskas, M.; Tamošiūnas, A.; Jašinskas, V. Association of ocular pseudoexfoliation syndrome with ischaemic heart disease, arterial hypertension and diabetes mellitus. Acta Ophthalmol., 2012, 90(6), e470-e475.
[http://dx.doi.org/10.1111/j.1755-3768.2012.02439.x] [PMID: 22550962]
[16]
Melese, E.K.; Shibeshi, M.A.; Sherief, S.T. Prevalence of pseudoexfoliation among adults and its related ophthalmic variables in Southern Ethiopia: cross-sectional study. Clin. Ophthalmol., 2022, 16, 3951-3958.
[http://dx.doi.org/10.2147/OPTH.S391290] [PMID: 36471727]
[17]
Nobl, M.; Mackert, M. Pseudoexfoliation syndrome and glaucoma. Klin. Monatsbl. Augenheilkd., 2019, 236(9), 1139-1155.
[PMID: 31412384]
[18]
Fogagnolo, P.; Figus, M.; Frezzotti, P.; Iester, M.; Oddone, F.; Zeppieri, M.; Ferreras, A.; Brusini, P.; Rossetti, L.; Orzalesi, N. Test-retest variability of intraocular pressure and ocular pulse amplitude for dynamic contour tonometry: multicentre study. Br. J. Ophthalmol., 2010, 94(4), 419-423.
[http://dx.doi.org/10.1136/bjo.2009.165142] [PMID: 19833616]
[19]
Martinez, A.; Sanchez, M. Ocular haemodynamics in pseudoexfoliative and primary open-angle glaucoma. Eye (Lond.), 2008, 22(4), 515-520.
[http://dx.doi.org/10.1038/sj.eye.6702676] [PMID: 17173007]
[20]
Michalik, A.Z.; Kaufman, P.L. Medical management of glaucoma in exfoliation syndrome. J. Glaucoma, 2018, 27(1)(Suppl. 1), S87-S90.
[http://dx.doi.org/10.1097/IJG.0000000000000920] [PMID: 29965902]
[21]
Tarkkanen, A.H.A.; Kivelä, T.T. Mortality in primary open-angle glaucoma and exfoliative glaucoma. Eur. J. Ophthalmol., 2014, 24(5), 718-721.
[http://dx.doi.org/10.5301/ejo.5000450] [PMID: 24557754]
[22]
Jünemann, A.G.M. Diagnosis and therapy of pseudoexfoliation glaucoma. Ophthalmologe, 2012, 109(10), 962-975.
[http://dx.doi.org/10.1007/s00347-012-2532-0]
[23]
Zeppieri, M. Pigment dispersion syndrome: brief overview. J. Clin. Transl. Res., 2022, 8(5), 344-350.
[PMID: 36518550]
[24]
Sternfeld, A.; Luski, M.; Sella, R.; Zahavi, A.; Geffen, N.; Pereg, A.; Megiddo, E.; Gaton, D. Diagnosis of pseudoexfoliation syndrome in pseudophakic patients. Ophthalmic Res., 2021, 64(1), 28-33.
[http://dx.doi.org/10.1159/000508336] [PMID: 32353850]
[25]
Zeppieri, M.; Tripathy, K. Pigment dispersion glaucoma; StatPearls: Treasure Island, FL, 2023.
[26]
Tuteja, S.; Chawla, H. Pseudoexfoliation syndrome and glaucoma; StatPearls: Treasure Island, FL, 2023.
[27]
Todorović; D.; Šarenac Vulović; T.; Sreć;ković; S.; Jovanović; S.; Petrović; N. The effect of primary argon laser trabeculoplasty on intraocular pressure reduction and quality of life in patients with pseudoexfoliation glaucoma. Acta Clin. Croat., 2021, 60(2), 231-236.
[http://dx.doi.org/10.20471/acc.2021.60.02.08] [PMID: 34744272]
[28]
Tekin, K.; Inanc, M.; Elgin, U. Monitoring and management of the patient with pseudoexfoliation syndrome: Current perspectives. Clin. Ophthalmol., 2019, 13(1), 453-464.
[http://dx.doi.org/10.2147/OPTH.S181444] [PMID: 30880906]
[29]
Holló, G.; Katsanos, A.; Konstas, A.G. Management of exfoliative glaucoma: hallenges and solutions. Clin. Ophthalmol., 2015, 9, 907-919.
[http://dx.doi.org/10.2147/OPTH.S77570] [PMID: 26045655]
[30]
Miglior, S.; Bertuzzi, F. Exfoliative glaucoma. Prog. Brain Res; , 2015, pp. 221-233-241.
[http://dx.doi.org/10.1016/bs.pbr.2015.06.007] [PMID: 26518081]
[31]
Li, F.; Tang, G.; Zhang, H.; Yan, X.; Ma, L.; Geng, Y. The effects of trabeculectomy on pseudoexfoliation glaucoma and primary open-angle glaucoma. J. Ophthalmol., 2020, 2020(23), 1-7.
[http://dx.doi.org/10.1155/2020/1723691] [PMID: 32280515]
[32]
Aydin, D.; Kusbeci, T.; Uzunel, U.D.; Orsel, T.; Yuksel, B. Evaluation of retinal nerve fiber layer and ganglion cell complex thickness in unilateral exfoliation syndrome using optical coherence tomography. J. Glaucoma, 2016, 25(6), 523-527.
[http://dx.doi.org/10.1097/IJG.0000000000000383] [PMID: 26900827]
[33]
Öztürker, Z.K.; Öztürker, C.; Bayraktar, S.; Altan, C.; Yilmaz, O.F. Does the use of preoperative antiglaucoma medications influence trabeculectomy success? J. Ocul. Pharmacol. Ther., 2014, 30(7), 554-558.
[http://dx.doi.org/10.1089/jop.2014.0008] [PMID: 24918962]
[34]
Gonnermann, J.; Klamann, M.K.J.; Maier, A.K.B.; Torun, N.; Ruokonen, P.C.; Bertelmann, E. Influence of prostaglandin analogue on outcome after combined cataract surgery and trabecular aspiration in pseudoexfoliative glaucoma. Eur. J. Ophthalmol., 2013, 23(6), 814-818.
[http://dx.doi.org/10.5301/ejo.5000311] [PMID: 23661542]
[35]
Bader, J.; Zeppieri, M.; Havens, S.J. Tonometry; StatPearls: Treasure Island, FL, 2023.
[36]
Aydin Kurna, S.; Sonmez, A.D.; Yamic, M.; Altun, A. Long-term results of micropulse laser trabeculoplasty with 577-nm yellow wavelength in patients with uncontrolled primary open-angle glaucoma and pseudoexfoliation glaucoma. Lasers Med. Sci., 2022, 37(6), 2745-2752.
[http://dx.doi.org/10.1007/s10103-022-03550-y] [PMID: 35353248]
[37]
Lee, J.H.; Na, J.H.; Chung, H.J.; Choi, J.Y.; Kim, M.J. Selective laser trabeculoplasty for medically uncontrolled pseudoexfoliation glaucoma in korean patients. Korean J. Ophthalmol., 2021, 35(6), 476-483.
[http://dx.doi.org/10.3341/kjo.2021.0086] [PMID: 34634862]
[38]
Parmaksiz, S.; Yüksel, N.; Karabas, V.L.; Özkan, B.; Demirci, G. çaglar, Y. A comparison of travoprost, latanoprost, and the fixed combination of dorzolamide and timolol in patients with pseudoexfoliation glaucoma. Eur. J. Ophthalmol., 2006, 16(1), 73-80.
[http://dx.doi.org/10.1177/112067210601600113]
[39]
Kurysheva, N.I. Long-term use of latanoprost in the treatment of glaucoma. Vestn. Oftalmol., 2020, 136(2), 125-132.
[http://dx.doi.org/10.17116/oftalma2020136021125] [PMID: 32366080]
[40]
Tripathy, K.; Geetha, R. Latanoprost; StatPearls: Treasure Island, FL, 2023.
[41]
Muñoz-Negrete, F.J.; Arnalich-Montiel, F.; Lara-Medina, F.J.; Rebolleda, G. Latanoprost-induced skin hypopigmentation. J. Glaucoma, 2018, 27(3), e72.
[http://dx.doi.org/10.1097/IJG.0000000000000878] [PMID: 29334483]
[42]
Desai, M.A.; Lee, R.K. The medical and surgical management of pseudoexfoliation glaucoma. Int. Ophthalmol. Clin., 2008, 48(4), 95-113.
[http://dx.doi.org/10.1097/IIO.0b013e318187e902] [PMID: 18936639]
[43]
Sah, A.K.; Suresh, P.K. Medical management of glaucoma: ocus on ophthalmologic drug delivery systems of timolol maleate. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 448-459.
[http://dx.doi.org/10.3109/21691401.2016.1160917] [PMID: 27002850]
[44]
Farzam, K.; Jan, A. Beta blockers; StatPearls: Treasure Island, FL, 2023.
[45]
Ko, D.T.; Hebert, P.R.; Coffey, C.S.; Curtis, J.P.; Foody, J.M.; Sedrakyan, A.; Krumholz, H.M. Adverse effects of beta-blocker therapy for patients with heart failure: quantitative overview of randomized trials. Arch. Intern. Med., 2004, 164(13), 1389-1394.
[http://dx.doi.org/10.1001/archinte.164.13.1389] [PMID: 15249347]
[46]
Oh, D.J.; Chen, J.L.; Vajaranant, T.S.; Dikopf, M.S. Brimonidine tartrate for the treatment of glaucoma. Expert Opin. Pharmacother., 2019, 20(1), 115-122.
[http://dx.doi.org/10.1080/14656566.2018.1544241] [PMID: 30407890]
[47]
Rahman, M.Q.; Ramaesh, K.; Montgomery, D.M.I. Brimonidine for glaucoma. Expert Opin. Drug Saf., 2010, 9(3), 483-491.
[http://dx.doi.org/10.1517/14740331003709736] [PMID: 20367525]
[48]
Yasaei, R.; Saadabadi, A. Clonidine; StatPearls: Treasure Island, FL, 2023.
[49]
Beckers, H.J.M.; Schouten, J.S.A.G.; Webers, C.A.B.; van der Valk, R.; Hendrikse, F. Side effects of commonly used glaucoma medications: omparison of tolerability, chance of discontinuation, and patient satisfaction. Graefes Arch. Clin. Exp. Ophthalmol., 2008, 246(10), 1485-1490.
[http://dx.doi.org/10.1007/s00417-008-0875-7] [PMID: 18575878]
[50]
Stoner, A.; Harris, A.; Oddone, F.; Belamkar, A.; Verticchio Vercellin, A.C.; Shin, J.; Januleviciene, I.; Siesky, B. Topical carbonic anhydrase inhibitors and glaucoma in 2021: here do we stand? Br. J. Ophthalmol., 2022, 106(10), 1332-1337.
[http://dx.doi.org/10.1136/bjophthalmol-2021-319530] [PMID: 34433550]
[51]
Eichhorn, M. Mode of action, clinical profile and relevance of carbonic anhydrase inhibitors in glaucoma therapy. Klin. Monatsbl. Augenheilkd., 2013, 230(2), 146-149.
[PMID: 23430679]
[52]
Aslam, S.; Gupta, V. Carbonic anhydrase inhibitors; StatPearls: Treasure Island, FL, 2023.
[53]
Li, F.; Huang, W.; Zhang, X. Efficacy and safety of different regimens for primary open-angle glaucoma or ocular hypertension: systematic review and network meta-analysis. Acta Ophthalmol., 2018, 96(3), e277-e284.
[http://dx.doi.org/10.1111/aos.13568] [PMID: 29144028]
[54]
Tanna, A.P.; Johnson, M. Rho kinase inhibitors as a novel treatment for glaucoma and ocular hypertension. Ophthalmology, 2018, 125(11), 1741-1756.
[http://dx.doi.org/10.1016/j.ophtha.2018.04.040] [PMID: 30007591]
[55]
Berrino, E.; Supuran, C.T. Rho-kinase inhibitors in the management of glaucoma. Expert Opin. Pharmacother. Pat., 2019, 29(10), 817-827.
[56]
Patel, P.; Patel, B.C. Netarsudil ophthalmic solution; StatPearls: Treasure Island, FL, 2023.
[57]
Saha, B.C.; Kumari, R.; Kushumesh, R.; Ambasta, A.; Sinha, B.P. Status of Rho kinase inhibitors in glaucoma therapeutics-an overview. Int. Ophthalmol., 2022, 42(1), 281-294.
[http://dx.doi.org/10.1007/s10792-021-02002-w] [PMID: 34453229]
[58]
Patterson-Orazem, A.C.; Lieberman, R.L. Antibodies used to detect glaucoma-associated myocilin: ore or less than meets the eye? Invest. Ophthalmol. Vis. Sci., 2019, 60(6), 2034-2037.
[http://dx.doi.org/10.1167/iovs.19-26843] [PMID: 31067323]
[59]
Pande, J.; Szewczyk, M.M.; Grover, A.K. Phage display: oncept, innovations, applications and future. Biotechnol. Adv., 2010, 28(6), 849-858.
[http://dx.doi.org/10.1016/j.biotechadv.2010.07.004] [PMID: 20659548]
[60]
Ghaffari Sharaf, M.; Waduthanthri, K.D.; Crichton, A.; Damji, K.F.; Unsworth, L.D. Towards preventing exfoliation glaucoma by targeting and removing fibrillar aggregates associated with exfoliation syndrome. J. Nanobiotechnology, 2022, 20(1), 459.
[http://dx.doi.org/10.1186/s12951-022-01665-6] [PMID: 36303134]
[61]
Nitzan, A.; Corredor-Sanchez, M.; Galron, R.; Nahary, L.; Safrin, M.; Bruzel, M.; Moure, A.; Bonet, R.; Pérez, Y.; Bujons, J.; Vallejo-Yague, E.; Sacks, H.; Burnet, M.; Alfonso, I.; Messeguer, A.; Benhar, I.; Barzilai, A. Solomon, AS Inhibition of sema-3a promotes cell migration, axonal growth, and retinal ganglion cell survival. Transl. Vis. Sci. Technol., 2021, 10(10), 16.
[62]
Ledsgaard, L.; Kilstrup, M.; Karatt-Vellatt, A.; McCafferty, J.; Laustsen, A. Basics of antibody phage display technology. Toxins (Basel), 2018, 10(6), 236.
[http://dx.doi.org/10.3390/toxins10060236] [PMID: 29890762]
[63]
Correia de Sousa, M.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs’ action through miRNA editing. Int. J. Mol. Sci., 2019, 20(24), 6249.
[http://dx.doi.org/10.3390/ijms20246249]
[64]
Diener, C.; Keller, A.; Meese, E. Emerging concepts of miRNA therapeutics: rom cells to clinic. Trends Genet., 2022, 38(6), 613-626.
[http://dx.doi.org/10.1016/j.tig.2022.02.006] [PMID: 35303998]
[65]
Rao, A.; Chakraborty, M.; Roy, A.; Sahay, P.; Pradhan, A.; Raj, N. Differential miRNA expression: ignature for glaucoma in pseudoexfoliation. Clin. Ophthalmol., 2020, 14, 3025-3038.
[http://dx.doi.org/10.2147/OPTH.S254504] [PMID: 33116354]
[66]
Ran, W.; Zhu, D.; Feng, Q. TGF-β2 stimulates Tenon’s capsule fibroblast proliferation in patients with glaucoma via suppression of miR-29b expression regulated by Nrf2. Int. J. Clin. Exp. Pathol., 2015, 8(5), 4799-4806.
[PMID: 26191170]
[67]
Liu, H.; Xiu, Y.; Zhang, Q.; Xu, Y.; Wan, Q.; Tao, L. Silencing microRNA 29b 3p expression protects human trabecular meshwork cells against oxidative injury via upregulation of RNF138 to activate the ERK pathway. Int. J. Mol. Med., 2021, 47(6), 101.
[http://dx.doi.org/10.3892/ijmm.2021.4934] [PMID: 33907817]
[68]
Luna, C.; Parker, M.; Challa, P.; Gonzalez, P. Long-term decrease of intraocular pressure in rats by viral delivery of miR-146a. Translat. Vis. Sci. Tech., 2021, 10(8), 14.
[69]
Prattichizzo, F.; Giuliani, A.; Ceka, A.; Rippo, M.R.; Bonfigli, A.R.; Testa, R.; Procopio, A.D.; Olivieri, F. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin. Epigenetics, 2015, 7(1), 56.
[http://dx.doi.org/10.1186/s13148-015-0090-4] [PMID: 26015812]
[70]
Jayaram, H.; Cepurna, W.O.; Johnson, E.C.; Morrison, J.C. MicroRNA expression in the glaucomatous retina. Invest. Ophthalmol. Vis. Sci., 2015, 56(13), 7971-7982.
[http://dx.doi.org/10.1167/iovs.15-18088] [PMID: 26720444]
[71]
Demetriades, A.M. Gene therapy for glaucoma. Curr. Opin. Ophthalmol., 2011, 22(2), 73-77.
[http://dx.doi.org/10.1097/ICU.0b013e32834371d2] [PMID: 21252673]
[72]
Amador, C.; Shah, R.; Ghiam, S.; Kramerov, A.A.; Ljubimov, A.V. Gene therapy in the anterior eye segment. Curr. Gene Ther., 2022, 22(2), 104-131.
[http://dx.doi.org/10.2174/1566523221666210423084233] [PMID: 33902406]
[73]
Aboobakar, I.F.; Wiggs, J.L. The genetics of glaucoma: isease associations, personalised risk assessment and therapeutic opportunities-A review. Clin. Exp. Ophthalmol., 2022, 50(2), 143-162.
[http://dx.doi.org/10.1111/ceo.14035] [PMID: 35037362]
[74]
Ratican, S.E.; Osborne, A.; Martin, K.R. Progress in gene therapy to prevent retinal ganglion cell loss in glaucoma and Leber’s hereditary optic neuropathy. Neur. Plasticity., 2018, 2018, 7108948.
[75]
DiCarlo, J.E.; Mahajan, V.B.; Tsang, S.H. Gene therapy and genome surgery in the retina. J. Clin. Invest., 2018, 128(6), 2177-2188.
[http://dx.doi.org/10.1172/JCI120429]
[76]
Alqawlaq, S.; Huzil, J.T.; Ivanova, M.V.; Foldvari, M. Challenges in neuroprotective nanomedicine development: rogress towards noninvasive gene therapy of glaucoma. Nanomedicine (Lond.), 2012, 7(7), 1067-1083.
[http://dx.doi.org/10.2217/nnm.12.69] [PMID: 22846092]
[77]
Wasnik, V.B.; Thool, A.R. Ocular gene therapy: literature review with focus on current clinical trials. Cureus, 2022, 14(9), e29533.
[http://dx.doi.org/10.7759/cureus.29533] [PMID: 36312652]
[78]
Shirley, J.L.; de Jong, Y.P.; Terhorst, C.; Herzog, R.W. Immune responses to viral gene therapy vectors. Mol. Ther., 2020, 28(3), 709-722.
[http://dx.doi.org/10.1016/j.ymthe.2020.01.001]
[79]
Hua, Z.Q.; Liu, H.; Wang, N.; Jin, Z.B. Towards stem cell-based neuronal regeneration for glaucoma. Prog. Brain Res.,; , 2020, pp. 257-99-118.
[http://dx.doi.org/10.1016/bs.pbr.2020.05.026] [PMID: 32988476]
[80]
Sharma, A.; Jaganathan, B.G. Stem cell therapy for retinal degeneration: he evidence to date. Biologics, 2021, 15, 299-306.
[PMID: 34349498]
[81]
Musa, M.; Zeppieri, M.; Enaholo, E.S.; Chukwuyem, E.; Salati, C. An overview of corneal transplantation in the past decade. Clin. Pract., 2023, 13(1), 264-279.
[http://dx.doi.org/10.3390/clinpract13010024] [PMID: 36826166]
[82]
Coulon, S.J.; Schuman, J.S.; Du, Y.; Bahrani Fard, M.R.; Ethier, C.R.; Stamer, W.D. A novel glaucoma approach: tem cell regeneration of the trabecular meshwork. Prog. Retin. Eye Res., 2022, 90, 101063.
[http://dx.doi.org/10.1016/j.preteyeres.2022.101063] [PMID: 35398015]
[83]
Musa, M.; Zeppieri, M.; Enaholo, E.S.; Salati, C.; Parodi, P.C. Adipose stem cells in modern-day ophthalmology. Clin. Pract., 2023, 13(1), 230-245.
[http://dx.doi.org/10.3390/clinpract13010021] [PMID: 36826163]
[84]
Miotti, G.; Parodi, P.C.; Zeppieri, M. Stem cell therapy in ocular pathologies in the past 20 years. World J. Stem Cells, 2021, 13(5), 366-385.
[http://dx.doi.org/10.4252/wjsc.v13.i5.366] [PMID: 34136071]
[85]
Chakrabarti, A.; Mohan, N.; Nazm, N.; Mehta, R.; Edward, D. Newer advances in medical management of glaucoma. Indian J. Ophthalmol., 2022, 70(6), 1920-1930.
[http://dx.doi.org/10.4103/ijo.IJO_2239_21] [PMID: 35647957]
[86]
Pearson, C.; Martin, K. Stem cell approaches to glaucoma. Prog. Brain Res; , 2015, pp. 220-241-256.
[http://dx.doi.org/10.1016/bs.pbr.2015.04.005] [PMID: 26497794]
[87]
Zhang, J.; Wu, S.; Jin, Z.B.; Wang, N. Stem cell-based regeneration and restoration for retinal ganglion cell: ecent advancements and current challenges. Biomolecules, 2021, 11(7), 987.
[http://dx.doi.org/10.3390/biom11070987]
[88]
Snider, E.J.; Kubelick, K.P.; Tweed, K.; Kim, R.K.; Li, Y.; Gao, K.; Read, A.T.; Emelianov, S.; Ethier, C.R. Improving stem cell delivery to the trabecular meshwork using magnetic nanoparticles. Sci. Rep., 2018, 8(1), 12251.
[http://dx.doi.org/10.1038/s41598-018-30834-7]
[89]
Mallick, S.; Sharma, M.; Kumar, A.; Du, Y. Cell-based therapies for trabecular meshwork regeneration to treat glaucoma. Biomolecules, 2021, 11(9), 1258.
[http://dx.doi.org/10.3390/biom11091258]
[90]
Glass, G.E. Photobiomodulation: he clinical applications of low-level light therapy. Aesthet Surj Jl, 2021, 41(6), 723-738.
[91]
Hamblin, M.R. Photobiomodulation or low-level laser therapy. J. Biophotonics, 2016, 9(11-12), 1122-1124.
[http://dx.doi.org/10.1002/jbio.201670113] [PMID: 27973730]
[92]
Ahn, S.H.; Suh, J.S.; Lim, G.H.; Kim, T.J. The potential effects of light irradiance in glaucoma and photobiomodulation therapy. Bioengineering (Basel), 2023, 10(2), 223.
[http://dx.doi.org/10.3390/bioengineering10020223] [PMID: 36829717]
[93]
Van de Veire, S.; Zeyen, T.; Stalmans, I. Argon versus selective laser trabeculoplasty. Bull. Soc. Belge Ophtalmol., 2006, (299), 5-10.
[PMID: 16681083]
[94]
Sandhu, S.; Damji, K.F. Laser management of glaucoma in exfoliation syndrome. J. Glaucoma, 2018, 27(Suppl. 1), S91-S94.
[http://dx.doi.org/10.1097/IJG.0000000000000909] [PMID: 29419644]
[95]
Katsanos, A.; Konstas, A.G.; Mikropoulos, D.G.; Quaranta, L.; Voudouragkaki, I.C.; Athanasopoulos, G.P.; Asproudis, I.; Teus, M.A. A review of the clinical usefulness of selective laser trabeculoplasty in exfoliative glaucoma. Adv. Ther., 2018, 35(5), 619-630.
[http://dx.doi.org/10.1007/s12325-018-0695-z] [PMID: 29644538]
[96]
Gillies, W.E.; West, R.H.; Cebon, L. Laser trabeculotomy or trabeculoplasty. Early experience with a new non-invasive surgical technique for glaucoma. Aust. N. Z. J. Ophthalmol., 1983, 11(3), 165-168.
[http://dx.doi.org/10.1111/j.1442-9071.1983.tb01073.x] [PMID: 6639509]
[97]
Shaw, E.; Gupta, P. Laser trabeculoplasty; StatPearls: Treasure Island, FL, 2023.
[98]
Jang, H.J.; Yu, B.; Hodge, W.; Malvankar-Mehta, M.S. Repeat selective laser trabeculoplasty for glaucoma patients: systematic review and meta-analysis. J. Curr. Glaucoma Pract., 2022, 15(3), 117-124.
[http://dx.doi.org/10.5005/jp-journals-10078-1302] [PMID: 35173393]
[99]
De Keyser, M.; De Belder, M.; De Belder, S.; De Groot, V. Where does selective laser trabeculoplasty stand now? A review. Eye Vis. (Lond.), 2016, 3(1), 10.
[http://dx.doi.org/10.1186/s40662-016-0041-y] [PMID: 27051674]
[100]
Oydanich, M.; Kass, W.; Khouri, A.S. Laser induced damage to disposable gonioscopy lenses during selective laser trabeculoplasty. J. Glaucoma, 2022, 31(7), e46-e48.
[http://dx.doi.org/10.1097/IJG.0000000000002038] [PMID: 35439774]
[101]
Sun, C.Q.; Chen, T.A.; Deiner, M.S.; Ou, Y. Clinical outcomes of micropulse laser trabeculoplasty compared to selective laser trabeculoplasty at one year in open-angle glaucoma. Clin. Ophthalmol., 2021, 15, 243-251.
[http://dx.doi.org/10.2147/OPTH.S285136]
[102]
Mishra, S. Nanotechnology in medicine. Indian Heart J., 2016, 68(3), 437-439.
[http://dx.doi.org/10.1016/j.ihj.2016.05.003] [PMID: 27316514]
[103]
Cardigos, J.; Ferreira, Q.; Crisóstomo, S.; Moura-Coelho, N.; Cunha, J.P.; Pinto, L.A.; Ferreira, J.T. Nanotechnology-ocular devices for glaucoma treatment: literature review. Curr. Eye Res., 2019, 44(2), 111-117.
[http://dx.doi.org/10.1080/02713683.2018.1536218] [PMID: 30309248]
[104]
Occhiutto, M.L.; Maranhão, R.C.; Costa, V.P.; Konstas, A.G. Nanotechnology for medical and surgical glaucoma therapy-a review. Adv. Ther., 2020, 37(1), 155-199.
[http://dx.doi.org/10.1007/s12325-019-01163-6] [PMID: 31823205]
[105]
Kwon, S.; Kim, S.H.; Khang, D.; Lee, J.Y. Potential therapeutic usage of nanomedicine for glaucoma treatment. Int. J. Nanomed., 2020, 15, 5745-5765.
[http://dx.doi.org/10.2147/IJN.S254792] [PMID: 32821099]
[106]
Kim, N.J.; Harris, A.; Gerber, A.; Tobe, L.A.; Amireskandari, A.; Huck, A.; Siesky, B. Nanotechnology and glaucoma: review of the potential implications of glaucoma nanomedicine. Br. J. Ophthalmol., 2014, 98(4), 427-431.
[http://dx.doi.org/10.1136/bjophthalmol-2013-304028] [PMID: 24246373]
[107]
Juliana, F.R.; Kesse, S.; Boakye-Yiadom, K.O.; Veroniaina, H.; Wang, H.; Sun, M. Promising approach in the treatment of glaucoma using nanotechnology and nanomedicine-based systems. Molecules, 2019, 24(20), 3805.
[http://dx.doi.org/10.3390/molecules24203805]
[108]
Justiz Vaillant, A.A.; Nessel, T.A.; Zito, P.M. Immunotherapy In; StatPearls: Treasure Island, FL, 2023.
[109]
Tonner, H.; Hunn, S.; Auler, N.; Schmelter, C.; Pfeiffer, N.; Grus, F.H. Dynamin-like protein 1 (DNML1) as a molecular target for antibody-based immunotherapy to treat glaucoma. Int. J. Mol. Sci., 2022, 23(21), 13618.
[110]
Wierzbowska, J.; Robaszkiewicz, J.; Figurska, M.; Stankiewicz, A. Future possibilities in glaucoma therapy. Med. Sci. Monit., 2010, 16(11), RA252-RA259.
[PMID: 20980972]
[111]
Gramlich, O.W.; Ding, Q.J.; Zhu, W.; Cook, A.; Anderson, M.G.; Kuehn, M.H. Adoptive transfer of immune cells from glaucomatous mice provokes retinal ganglion cell loss in recipients. Acta Neuropathol. Commun., 2015, 3(1), 56.
[http://dx.doi.org/10.1186/s40478-015-0234-y] [PMID: 26374513]
[112]
Adamus, G.; Amundson, D.; Vainiene, M.; Ariail, K.; Machnicki, M.; Weinberg, A.; Offner, H. Myelin basic protein specific T-helper cells induce experimental anterior uveitis. J. Neurosci. Res., 1996, 44(6), 513-518.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19960615)44:6<513:AID-JNR1>3.0.CO;2-E] [PMID: 8794942]
[113]
Yu, M.W.; Quail, D.F. Immunotherapy for glioblastoma: urrent progress and challenges. Front. Immunol., 2021, 12, 676301.
[http://dx.doi.org/10.3389/fimmu.2021.676301] [PMID: 34054867]
[114]
Park, D.Y.; Kim, M.; Cha, S.C. Cytokine and growth factor analysis in exfoliation syndrome and glaucoma. Invest. Ophthalmol. Vis. Sci., 2021, 62(15), 6.
[http://dx.doi.org/10.1167/iovs.62.15.6] [PMID: 34870675]
[115]
European glaucoma society terminology and guidelines for glaucoma, 5th Edition. Br. J. Ophthalmol., 2021, 105(Suppl 1), 1-169.
[116]
Jeng, S.M.; Karger, R.A.; Hodge, D.O.; Burke, J.P.; Johnson, D.H.; Good, M.S. The risk of glaucoma in pseudoexfoliation syndrome. J. Glaucoma, 2007, 16(1), 117-121.
[http://dx.doi.org/10.1097/01.ijg.0000243470.13343.8b] [PMID: 17224761]
[117]
Rao, A.; Padhy, D.; Sahay, P.; Pradhan, A.; Sarangi, S.; Das, G.; Raj, N. Clinical spectrum of pseudoexfoliation syndrome-An electronic records audit. PLoS One, 2017, 12(10), e0185373.
[http://dx.doi.org/10.1371/journal.pone.0185373] [PMID: 29077713]
[118]
Łukasik, U.; Kosior-Jarecka, E.; Wróbel-Dudzińska, D.; Kustra, A.; Milanowski, P.; Żarnowski, T. Clinical features of pseudoexfoliative glaucoma in treated polish patients. Clin. Ophthalmol., 2020, 14, 1373-1381.
[http://dx.doi.org/10.2147/OPTH.S239371] [PMID: 32546945]
[119]
Schuknecht, A.; Wachtl, J.; Fleischhauer, J.; Kniestedt, C. Intraocular pressure in eyes with intraocular lens dislocation and pseudoexfoliation syndrome. Klin. Monatsbl. Augenheilkd., 2022, 239(4), 424-428.
[http://dx.doi.org/10.1055/a-1766-7153] [PMID: 35472783]
[120]
Plateroti, P.; Plateroti, A.M.; Abdolrahimzadeh, S.; Scuderi, G. Pseudoexfoliation syndrome and pseudoexfoliation glaucoma: review of the literature with updates on surgical management. J. Ophthalmol., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/370371] [PMID: 26605078]
[121]
Li, G.; Nottebaum, A.F.; Brigell, M.; Navarro, I.D.; Ipe, U.; Mishra, S.; Gomez-Caraballo, M.; Schmitt, H.; Soldo, B.; Pakola, S.; Withers, B.; Peters, K.G.; Vestweber, D.; Stamer, W.D. A small molecule inhibitor of VE-PTP activates Tie2 in Schlemm’s canal increasing outflow facility and reducing intraocular pressure. Invest. Ophthalmol. Vis. Sci., 2020, 61(14), 12.
[http://dx.doi.org/10.1167/iovs.61.14.12]
[122]
Lewis, R.A.; Levy, B.; Ramirez, N.; Kopczynski, C. C.; Usner, D.W.; Novack, G.D. Fixed-dose combination of AR-13324 and latanoprost: double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. Br. J. Ophthalmol., 2016, 100(3), 339-344.
[http://dx.doi.org/10.1136/bjophthalmol-2015-306778] [PMID: 26209587]
[123]
Schlötzer-Schrehardt, U.; Khor, C.C. Pseudoexfoliation syndrome and glaucoma: rom genes to disease mechanisms. Curr. Opin. Ophthalmol., 2021, 32(2), 118-128.
[http://dx.doi.org/10.1097/ICU.0000000000000736] [PMID: 33332884]
[124]
Zukerman, R.; Harris, A.; Verticchio Vercellin, A.; Siesky, B.; Pasquale, L.R.; Ciulla, T.A. Molecular genetics of glaucoma: ubtype and ethnicity considerations. Genes (Basel), 2020, 12(1), 55.
[http://dx.doi.org/10.3390/genes12010055] [PMID: 33396423]
[125]
Tomczyk-Socha, M.; Tomczak, W.; Winkler-Lach, W. Turno-Kręcicka, A. Pseudoexfoliation syndrome-clinical characteristics of most common cause of secondary glaucoma. J. Clin. Med., 2023, 12(10), 3580.
[http://dx.doi.org/10.3390/jcm12103580] [PMID: 37240686]
[126]
Jeong, W.C.; Min, J.Y.; Kang, T.G.; Bae, H. Association between pseudoexfoliation and Alzheimer’s disease-related brain atrophy. PLoS One, 2023, 18(6), e0286727.
[http://dx.doi.org/10.1371/journal.pone.0286727] [PMID: 37289754]
[127]
Shih, M.C.; Gordis, T.M.; Lambert, P.R.; Nguyen, S.A.; Meyer, T.A. Hearing loss in exfoliation syndrome: ystematic review and meta-analysis. Laryngoscope, 2023, 133(5), 1025-1035.
[http://dx.doi.org/10.1002/lary.30384] [PMID: 36087028]
[128]
Sener, H.; Polat, O.A.; Gunay Sener, A.B. Optic nerve head vessel density in patients with pseudoexfoliation syndrome/glaucoma: systematic review and meta-analysis. Photodiagn. Photodyn. Ther., 2023, 42, 103514.
[http://dx.doi.org/10.1016/j.pdpdt.2023.103514] [PMID: 36933675]
[129]
Brusini, P.; Salvetat, M.L.; Parisi, L.; Zeppieri, M.; Tosoni, C. Discrimination between normal and early glaucomatous eyes with scanning laser polarimeter with fixed and variable corneal compensator settings. Eur. J. Ophthalmol., 2005, 15(4), 468-131.
[130]
Salvetat, M.L.; Zeppieri, M.; Tosoni, C.; Parisi, L.; Brusini, P. Non-conventional perimetric methods in the detection of early glaucomatous functional damage. Eye (Lond.), 2010, 24(5), 835-842.
[PMID: 19696803]
[131]
Musa, M.; Okoye, G.S.; Akpalaba, R.U.E.; Atuanya, G.N. Managing in early COVID-19: he Nigerian optometry experience. Scand J. Optom. Vis. Sci., 2021, 14(2), 1-7.
[http://dx.doi.org/10.5384/sjovs.v14i2.130]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy