Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Regenerative Medicine

Metabolic Reprogramming of Cancer Stem Cells and a Novel Eight-Gene Metabolism-Related Risk Signature in Clear Cell Renal Carcinoma

Author(s): Lu Pang, Yanfeng Hou, Xin Wang, Jialin Du, Haiming Huang, Mingyu Yang, Sisi Wang, Chongwen An, Tao Meng and Haixia Li*

Volume 4, Issue 1, 2024

Published on: 18 October, 2023

Page: [72 - 84] Pages: 13

DOI: 10.2174/0122102981264993230925164537

open access plus

Open Access Journals Promotions 2
Abstract

Background: Clear cell renal carcinoma (ccRCC) is one of the most common urological tumors worldwide and metabolic reprogramming is its distinguishing feature. A systematic study on the role of the metabolism-related genes in ccRCC cancer stem cells (CSCs) is still lacking. Moreover, an effective metabolism-related prediction signature is urgently needed to assess the prognosis of ccRCC patients.

Methods: Gene expression profiles of GSE48550 and GSE84546 were analyzed for the role of metabolism-related gene in ccRCC-CSCs. The GSE22541 dataset were used to construct and validate an effective metabolism-related prediction signature to assess the prognosis of ccRCC patients.

Results: For glycolytic metabolism, we found that HKDC1, PFKM and LDHB were significantly upregulated in ccRCC-CSCs in GSE84546. For TCA cycle, ACO1, SDHA and MDH1 were significantly downregulated in ccRCC-CSCs in both GSE48550 and GSE84546. For fatty acid metabolism, CPT1A and ACACB were significantly upregulated in ccRCC-CSCs in GSE84546. It is worth noting that SCD was significantly downregulated in both GSE48550 and GSE84546. For glutamine metabolism, SLC1A5, GLS and GOT1 were significantly upregulated in GSE84546. An eight-gene CSCs metabolism-related risk signature including HKDC1, PFKM, LDHB, IDH1, OGDH, SDHA, GLS and GLUL were constructed to predict the overall survival (OS) of ccRCC patients. Patients could be separated into two groups, and the patients with lower risk scores had longer survival time.

Conclusion: Our study indicated that metabolic reprogramming, including glycolytic metabolism, TCA cycle, fatty acid metabolism and glutamine metabolism, is more obvious in CD105+ renal cells (GSE84546) than CD133+ renal cells (GSE48550). An eight-gene metabolismrelated risk signature including HKDC1, PFKM, LDHB, IDH1, OGDH, SDHA, GLS and GLUL can effectively predict OS in ccRCC.

Keywords: Clear cell renal carcinoma, cancer stem cells, metabolic reprogramming, risk signature, overall survival, novel eight-gene metabolism.

« Previous
Graphical Abstract
[1]
Morris, M.R.; Latif, F. The epigenetic landscape of renal cancer. Nat. Rev. Nephrol., 2017, 13(1), 47-60.
[http://dx.doi.org/10.1038/nrneph.2016.168] [PMID: 27890923]
[2]
Capitanio, U.; Montorsi, F. Renal cancer. Lancet, 2016, 387(10021), 894-906.
[http://dx.doi.org/10.1016/S0140-6736(15)00046-X] [PMID: 26318520]
[3]
Jonasch, E.; Gao, J.; Rathmell, W.K. Renal cell carcinoma. BMJ, 2014, 349(11), g4797.
[http://dx.doi.org/10.1136/bmj.g4797] [PMID: 25385470]
[4]
Galassi, C.; Musella, M.; Manduca, N.; Maccafeo, E.; Sistigu, A. The immune privilege of cancer stem cells: A key to understanding tumor immune escape and therapy failure. Cells, 2021, 10(9), 2361.
[http://dx.doi.org/10.3390/cells10092361] [PMID: 34572009]
[5]
Peired, A.J.; Sisti, A.; Romagnani, P. Renal cancer stem cells: characterization and targeted therapies. Stem Cells Int., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/8342625] [PMID: 27293448]
[6]
Corrò, C.; Moch, H. Biomarker discovery for renal cancer stem cells. J. Pathol. Clin. Res., 2018, 4(1), 3-18.
[http://dx.doi.org/10.1002/cjp2.91] [PMID: 29416873]
[7]
Fendler, A.; Bauer, D.; Busch, J.; Jung, K.; Wulf-Goldenberg, A.; Kunz, S.; Song, K.; Myszczyszyn, A.; Elezkurtaj, S.; Erguen, B.; Jung, S.; Chen, W.; Birchmeier, W. Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. Nat. Commun., 2020, 11(1), 929.
[http://dx.doi.org/10.1038/s41467-020-14700-7] [PMID: 32066735]
[8]
Bussolati, B.; Bruno, S.; Grange, C.; Ferrando, U.; Camussi, G. Identification of a tumor‐initiating stem cell population in human renal carcinomas. FASEB J., 2008, 22(10), 3696-3705.
[http://dx.doi.org/10.1096/fj.08-102590] [PMID: 18614581]
[9]
Myszczyszyn, A.; Czarnecka, A.M.; Matak, D.; Szymanski, L.; Lian, F.; Kornakiewicz, A.; Bartnik, E.; Kukwa, W.; Kieda, C.; Szczylik, C. The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis. Stem Cell Rev., 2015, 11(6), 919-943.
[http://dx.doi.org/10.1007/s12015-015-9611-y] [PMID: 26210994]
[10]
Bruno, S.; Bussolati, B.; Grange, C.; Collino, F.; Graziano, M.E.; Ferrando, U.; Camussi, G. CD133+ renal progenitor cells contribute to tumor angiogenesis. Am. J. Pathol., 2006, 169(6), 2223-2235.
[http://dx.doi.org/10.2353/ajpath.2006.060498] [PMID: 17148683]
[11]
Li, C.; Wu, S.; Yang, Z.; Zhang, X.; Zheng, Q.; Lin, L.; Niu, Z.; Li, R.; Cai, Z.; Li, L. Single-cell exome sequencing identifies mutations in KCP, LOC440040, and LOC440563 as drivers in renal cell carcinoma stem cells. Cell Res., 2017, 27(4), 590-593.
[http://dx.doi.org/10.1038/cr.2016.150] [PMID: 27981968]
[12]
Alvina, F.B.; Gouw, A.M.; Le, A. Cancer stem cell metabolism. Adv. Exp. Med. Biol., 2021, 1311, 161-172.
[http://dx.doi.org/10.1007/978-3-030-65768-0_12] [PMID: 34014542]
[13]
Sanderson, S.M.; Locasale, J.W. Revisiting the Warburg Effect: Some tumors hold their breath. Cell Metab., 2018, 28(5), 669-670.
[http://dx.doi.org/10.1016/j.cmet.2018.10.011] [PMID: 30403984]
[14]
Lukey, M.J.; Katt, W.P.; Cerione, R.A. Targeting amino acid metabolism for cancer therapy. Drug Discov. Today, 2017, 22(5), 796-804.
[http://dx.doi.org/10.1016/j.drudis.2016.12.003] [PMID: 27988359]
[15]
Galleggiante, V.; Rutigliano, M.; Sallustio, F.; Ribatti, D.; Ditonno, P.; Bettocchi, C.; Selvaggi, F.P.; Lucarelli, G.; Battaglia, M. CTR2 identifies a population of cancer cells with stem cell-like features in patients with clear cell renal cell carcinoma. J. Urol., 2014, 192(6), 1831-1841.
[http://dx.doi.org/10.1016/j.juro.2014.06.070] [PMID: 24972308]
[16]
Khan, M.I.; Czarnecka, A.M.; Lewicki, S.; Helbrecht, I.; Brodaczewska, K.; Koch, I.; Zdanowski, R.; Król, M.; Szczylik, C. Comparative gene expression profiling of primary and metastatic renal cell carcinoma stem cell-like cancer cells. PLoS One, 2016, 11(11), e0165718.
[http://dx.doi.org/10.1371/journal.pone.0165718] [PMID: 27812180]
[17]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[18]
Aurilio, G.; Santoni, M.; Massari, F.; Cimadamore, A.; Rizzo, A.; Mollica, V.; Verri, E.; Battelli, N.; Montironi, R. Metabolomic profiling in renal cell carcinoma patients: News and views. Cancers (Basel), 2021, 13(20), 5229.
[http://dx.doi.org/10.3390/cancers13205229] [PMID: 34680377]
[19]
Morais, M.; Dias, F.; Teixeira, A.L.; Medeiros, R. MicroRNAs and altered metabolism of clear cell renal cell carcinoma: Potential role as aerobic glycolysis biomarkers. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(9), 2175-2185.
[http://dx.doi.org/10.1016/j.bbagen.2017.05.028] [PMID: 28579513]
[20]
Zhang, Y.; Chen, M.; Liu, M.; Xu, Y.; Wu, G. Glycolysis-related genes serve as potential prognostic biomarkers in clear cell renal cell carcinoma. Oxid. Med. Cell. Longev., 2021, 2021, 1-20.
[http://dx.doi.org/10.1155/2021/6699808] [PMID: 33564363]
[21]
Xing, Q.; Zeng, T.; Liu, S.; Cheng, H.; Ma, L.; Wang, Y. A novel 10 glycolysis-related genes signature could predict overall survival for clear cell renal cell carcinoma. BMC Cancer, 2021, 21(1), 381.
[http://dx.doi.org/10.1186/s12885-021-08111-0] [PMID: 33836688]
[22]
Li, B.; Qiu, B.; Lee, D.S.M.; Walton, Z.E.; Ochocki, J.D.; Mathew, L.K.; Mancuso, A.; Gade, T.P.F.; Keith, B.; Nissim, I.; Simon, M.C. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature, 2014, 513(7517), 251-255.
[http://dx.doi.org/10.1038/nature13557] [PMID: 25043030]
[23]
Sciacovelli, M.; Gonçalves, E.; Johnson, T.I.; Zecchini, V.R.; da Costa, A.S.H.; Gaude, E.; Drubbel, A.V.; Theobald, S.J.; Abbo, S.R.; Tran, M.G.B.; Rajeeve, V.; Cardaci, S.; Foster, S.; Yun, H.; Cutillas, P.; Warren, A.; Gnanapragasam, V.; Gottlieb, E.; Franze, K.; Huntly, B.; Maher, E.R.; Maxwell, P.H.; Saez-Rodriguez, J.; Frezza, C. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature, 2016, 537(7621), 544-547.
[http://dx.doi.org/10.1038/nature19353] [PMID: 27580029]
[24]
Ooi, A.; Wong, J.C.; Petillo, D.; Roossien, D.; Perrier-Trudova, V.; Whitten, D.; Min, B.W.H.; Tan, M.H.; Zhang, Z.; Yang, X.J.; Zhou, M.; Gardie, B.; Molinié, V.; Richard, S.; Tan, P.H.; Teh, B.T.; Furge, K.A. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell, 2011, 20(4), 511-523.
[http://dx.doi.org/10.1016/j.ccr.2011.08.024] [PMID: 22014576]
[25]
Tan, S.K.; Hougen, H.Y.; Merchan, J.R.; Gonzalgo, M.L.; Welford, S.M. Fatty acid metabolism reprogramming in ccRCC: mechanisms and potential targets. Nat. Rev. Urol., 2023, 20(1), 48-60.
[http://dx.doi.org/10.1038/s41585-022-00654-6] [PMID: 36192502]
[26]
Tan, S.K.; Welford, S.M. Lipid in renal carcinoma: Queen Bee to Target? Trends Cancer, 2020, 6(6), 448-450.
[http://dx.doi.org/10.1016/j.trecan.2020.02.017] [PMID: 32459999]
[27]
Du, W.; Zhang, L.; Brett-Morris, A.; Aguila, B.; Kerner, J.; Hoppel, C.L.; Puchowicz, M.; Serra, D.; Herrero, L.; Rini, B.I.; Campbell, S.; Welford, S.M. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat. Commun., 2017, 8(1), 1769.
[http://dx.doi.org/10.1038/s41467-017-01965-8] [PMID: 29176561]
[28]
Melone, M.A.B.; Valentino, A.; Margarucci, S.; Galderisi, U.; Giordano, A.; Peluso, G. The carnitine system and cancer metabolic plasticity. Cell Death Dis., 2018, 9(2), 228.
[http://dx.doi.org/10.1038/s41419-018-0313-7] [PMID: 29445084]
[29]
Qu, Y.Y.; Zhao, R.; Zhang, H.L.; Zhou, Q.; Xu, F.J.; Zhang, X.; Xu, W.H.; Shao, N.; Zhou, S.X.; Dai, B.; Zhu, Y.; Shi, G.H.; Shen, Y.J.; Zhu, Y.P.; Han, C.T.; Chang, K.; Lin, Y.; Zang, W.D.; Xu, W.; Ye, D.W.; Zhao, S.M.; Zhao, J.Y. Inactivation of the AMPK-GATA3-ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Cancer Res., 2020, 80(2), 319-333.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1023] [PMID: 31690668]
[30]
Teng, R.; Liu, Z.; Tang, H.; Zhang, W.; Chen, Y.; Xu, R.; Chen, L.; Song, J.; Liu, X.; Deng, H. HSP60 silencing promotes Warburg-like phenotypes and switches the mitochondrial function from ATP production to biosynthesis in ccRCC cells. Redox Biol., 2019, 24, 101218.
[http://dx.doi.org/10.1016/j.redox.2019.101218] [PMID: 31112866]
[31]
Huang, C.Y.; Hsueh, Y.M.; Chen, L.C.; Cheng, W.C.; Yu, C.C.; Chen, W.J.; Lu, T.L.; Lan, K.J.; Lee, C.H.; Huang, S.P.; Bao, B.Y. Clinical significance of glutamate metabotropic receptors in renal cell carcinoma risk and survival. Cancer Med., 2018, 7(12), 6104-6111.
[http://dx.doi.org/10.1002/cam4.1901] [PMID: 30488581]
[32]
Gameiro, P.A.; Yang, J.; Metelo, A.M.; Pérez-Carro, R.; Baker, R.; Wang, Z.; Arreola, A.; Rathmell, W.K.; Olumi, A.; López-Larrubia, P.; Stephanopoulos, G.; Iliopoulos, O. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab., 2013, 17(3), 372-385.
[http://dx.doi.org/10.1016/j.cmet.2013.02.002] [PMID: 23473032]
[33]
Laba, P.; Wang, J.; Zhang, J. Low level of isocitrate dehydrogenase 1 predicts unfavorable postoperative outcomes in patients with clear cell renal cell carcinoma. BMC Cancer, 2018, 18(1), 852.
[http://dx.doi.org/10.1186/s12885-018-4747-1] [PMID: 30153799]
[34]
Brooks, S.A.; Brannon, A.R.; Parker, J.S.; Fisher, J.C.; Sen, O.; Kattan, M.W.; Hakimi, A.A.; Hsieh, J.J.; Choueiri, T.K.; Tamboli, P.; Maranchie, J.K.; Hinds, P.; Miller, C.R.; Nielsen, M.E.; Rathmell, W.K. ClearCode34: A prognostic risk predictor for localized clear cell renal cell carcinoma. Eur. Urol., 2014, 66(1), 77-84.
[http://dx.doi.org/10.1016/j.eururo.2014.02.035] [PMID: 24613583]
[35]
Rini, B.; Goddard, A.; Knezevic, D.; Maddala, T.; Zhou, M.; Aydin, H.; Campbell, S.; Elson, P.; Koscielny, S.; Lopatin, M.; Svedman, C.; Martini, J.F.; Williams, J.A.; Verkarre, V.; Radulescu, C.; Neuzillet, Y.; Hemmerlé, I.; Timsit, M.O.; Tsiatis, A.C.; Bonham, M.; Lebret, T.; Mejean, A.; Escudier, B. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: Development and validation studies. Lancet Oncol., 2015, 16(6), 676-685.
[http://dx.doi.org/10.1016/S1470-2045(15)70167-1] [PMID: 25979595]
[36]
Morgan, T.M.; Mehra, R.; Tiemeny, P.; Wolf, J.S.; Wu, S.; Sangale, Z.; Brawer, M.; Stone, S.; Wu, C.L.; Feldman, A.S. A multigene signature based on cell cycle proliferation improves prediction of mortality within 5 Yr of radical nephrectomy for renal cell carcinoma. Eur. Urol., 2018, 73(5), 763-769.
[http://dx.doi.org/10.1016/j.eururo.2017.12.002] [PMID: 29249291]
[37]
Wu, J.; Jin, S.; Gu, W.; Wan, F.; Zhang, H.; Shi, G.; Qu, Y.; Ye, D. Construction and validation of a 9-gene signature for predicting prognosis in stage III clear cell renal cell carcinoma. Front. Oncol., 2019, 9, 152.
[http://dx.doi.org/10.3389/fonc.2019.00152] [PMID: 30941304]
[38]
Li, H.; Mo, Z. Prognostic value of metabolism-related genes and immune infiltration in clear cell renal cell carcinoma. Int. J. Gen. Med., 2021, 14, 6885-6898.
[http://dx.doi.org/10.2147/IJGM.S328109] [PMID: 34703293]
[39]
Chen, Y.; Liang, Y.; Chen, Y.; Ouyang, S.; Liu, K.; Yin, W. Identification of prognostic metabolism-related genes in clear cell renal cell carcinoma. J. Oncol., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/2042114] [PMID: 34616452]
[40]
Zhang, Q.; Ding, L.; Zhou, T.; Zhai, Q.; Ni, C.; Liang, C.; Li, J. A metabolic reprogramming-related prognostic risk model for clear cell renal cell carcinoma: From construction to preliminary application. Front. Oncol., 2022, 12, 982426.
[http://dx.doi.org/10.3389/fonc.2022.982426] [PMID: 36176391]
[41]
Zhang, F.; Lin, J.; Zhu, D.; Tang, Y.; Lu, Y.; Liu, Z.; Wang, X. Identification of an amino acid metabolism-associated gene signature predicting the prognosis and immune therapy response of clear cell renal cell carcinoma. Front. Oncol., 2022, 12, 970208.
[http://dx.doi.org/10.3389/fonc.2022.970208] [PMID: 36158645]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy