Review Article

Current Updates on the Role of MicroRNA in the Diagnosis and Treatment of Neurodegenerative Diseases

Author(s): Ammara Saleem*, Maira Javed, Muhammad Furqan Akhtar*, Ali Sharif, Bushra Akhtar, Muhammad Naveed, Uzma Saleem, Mirza Muhammad Faran Ashraf Baig, Hafiz Muhammad Zubair, Talha Bin Emran, Mohammad Saleem and Ghulam Md Ashraf*

Volume 24, Issue 2, 2024

Published on: 12 October, 2023

Page: [122 - 134] Pages: 13

DOI: 10.2174/0115665232261931231006103234

Price: $65

conference banner
Abstract

Background: MicroRNAs (miRNA) are small noncoding RNAs that play a significant role in the regulation of gene expression. The literature has explored the key involvement of miRNAs in the diagnosis, prognosis, and treatment of various neurodegenerative diseases (NDD), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). The miRNA regulates various signalling pathways; its dysregulation is involved in the pathogenesis of NDD.

Objective: The present review is focused on the involvement of miRNAs in the pathogenesis of NDD and their role in the treatment or management of NDD. The literature provides comprehensive and cutting-edge knowledge for students studying neurology, researchers, clinical psychologists, practitioners, pathologists, and drug development agencies to comprehend the role of miRNAs in the NDD’s pathogenesis, regulation of various genes/signalling pathways, such as α-synuclein, P53, amyloid-β, high mobility group protein (HMGB1), and IL-1β, NMDA receptor signalling, cholinergic signalling, etc.

Methods: The issues associated with using anti-miRNA therapy are also summarized in this review. The data for this literature were extracted and summarized using various search engines, such as Google Scholar, Pubmed, Scopus, and NCBI using different terms, such as NDD, PD, AD, HD, nanoformulations of mRNA, and role of miRNA in diagnosis and treatment.

Results: The miRNAs control various biological actions, such as neuronal differentiation, synaptic plasticity, cytoprotection, neuroinflammation, oxidative stress, apoptosis and chaperone-mediated autophagy, and neurite growth in the central nervous system and diagnosis. Various miRNAs are involved in the regulation of protein aggregation in PD and modulating β-secretase activity in AD. In HD, mutation in the huntingtin (Htt) protein interferes with Ago1 and Ago2, thus affecting the miRNA biogenesis. Currently, many anti-sense technologies are in the research phase for either inhibiting or promoting the activity of miRNA.

Conclusion: This review provides new therapeutic approaches and novel biomarkers for the diagnosis and prognosis of NDDs by using miRNA.

Keywords: MicroRNA, neurodegenerative diseases, anti-miRNA, neuroinflammation, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease.

Graphical Abstract
[1]
Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta Mol Cell Res 2010; 1803(11): 1231-43.
[http://dx.doi.org/10.1016/j.bbamcr.2010.06.013] [PMID: 20619301]
[2]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[3]
Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 2019; 20(1): 5-20.
[http://dx.doi.org/10.1038/s41580-018-0059-1] [PMID: 30228348]
[4]
Miyoshi K, Miyoshi T, Siomi H. Many ways to generate microRNA-like small RNAs: Non-canonical pathways for microRNA production. Mol Genet Genomics 2010; 284(2): 95-103.
[http://dx.doi.org/10.1007/s00438-010-0556-1] [PMID: 20596726]
[5]
Chen X, Xie D, Zhao Q, You ZH. MicroRNAs and complex diseases: From experimental results to computational models. Brief Bioinform 2019; 20(2): 515-39.
[http://dx.doi.org/10.1093/bib/bbx130] [PMID: 29045685]
[6]
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: Taxonomy, trends and challenges of computational models. Brief Bioinform 2022; 23(5): bbac358.
[http://dx.doi.org/10.1093/bib/bbac358] [PMID: 36056743]
[7]
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: Towards systematic evaluation of computational models. Brief Bioinform 2022; 23(6): bbac407.
[http://dx.doi.org/10.1093/bib/bbac407] [PMID: 36151749]
[8]
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: Experimental results, databases, webservers and data fusion. Brief Bioinform 2022; 23(6): bbac397.
[http://dx.doi.org/10.1093/bib/bbac397] [PMID: 36094095]
[9]
Tan L, Yu JT, Tan L. Causes and consequences of MicroRNA dysregulation in neurodegenerative diseases. Mol Neurobiol 2015; 51(3): 1249-62.
[http://dx.doi.org/10.1007/s12035-014-8803-9] [PMID: 24973986]
[10]
Viswambharan V, Thanseem I, Vasu MM, Poovathinal SA, Anitha A. miRNAs as biomarkers of neurodegenerative disorders. Biomarkers Med 2017; 11(2): 151-67.
[http://dx.doi.org/10.2217/bmm-2016-0242] [PMID: 28125293]
[11]
Roy B, Lee E, Li T, Rampersaud M. Role of miRNAs in neurodegeneration: From disease cause to tools of biomarker discovery and therapeutics. Genes 2022; 13(3): 425.
[http://dx.doi.org/10.3390/genes13030425] [PMID: 35327979]
[12]
Jiang Q, Hao Y, Wang G, et al. Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol 2010; 4(S1): S2.
[http://dx.doi.org/10.1186/1752-0509-4-S1-S2] [PMID: 20522252]
[13]
Mørk S, Pletscher-Frankild S, Palleja Caro A, Gorodkin J, Jensen LJ. Protein-driven inference of miRNA–disease associations. Bioinformatics 2014; 30(3): 392-7.
[http://dx.doi.org/10.1093/bioinformatics/btt677] [PMID: 24273243]
[14]
Chen X, Yan CC, Zhang X, et al. WBSMDA: Within and between score for MiRNA-disease association prediction. Sci Rep 2016; 6(1): 21106.
[http://dx.doi.org/10.1038/srep21106] [PMID: 26880032]
[15]
Shi H, Xu J, Zhang G, et al. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Syst Biol 2013; 7(1): 101.
[http://dx.doi.org/10.1186/1752-0509-7-101] [PMID: 24103777]
[16]
Chen X, Yan CC, Zhang X, You ZH, Huang YA, Yan GY. HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction. Oncotarget 2016; 7(40): 65257-69.
[http://dx.doi.org/10.18632/oncotarget.11251] [PMID: 27533456]
[17]
Chen X, Yin J, Qu J, Huang L. MDHGI: Matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction. PLOS Comput Biol 2018; 14(8): e1006418.
[http://dx.doi.org/10.1371/journal.pcbi.1006418] [PMID: 30142158]
[18]
Chen X, Wang L, Qu J, Guan NN, Li JQ. Predicting miRNA–disease association based on inductive matrix completion. Bioinformatics 2018; 34(24): 4256-65.
[http://dx.doi.org/10.1093/bioinformatics/bty503] [PMID: 29939227]
[19]
Chen X, Sun LG, Zhao Y. NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion. Brief Bioinform 2021; 22(1): 485-96.
[http://dx.doi.org/10.1093/bib/bbz159] [PMID: 31927572]
[20]
Chen X, Li TH, Zhao Y, Wang CC, Zhu CC. Deep-belief network for predicting potential miRNA-disease associations. Brief Bioinform 2021; 22(3): bbaa186.
[http://dx.doi.org/10.1093/bib/bbaa186] [PMID: 34020550]
[21]
Condrat CE, Thompson DC, Barbu MG, et al. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020; 9(2): 276.
[http://dx.doi.org/10.3390/cells9020276] [PMID: 31979244]
[22]
Abe M, Bonini NM. MicroRNAs and neurodegeneration: Role and impact. Trends Cell Biol 2013; 23(1): 30-6.
[http://dx.doi.org/10.1016/j.tcb.2012.08.013] [PMID: 23026030]
[23]
Jaber VR, Zhao Y, Sharfman NM, Li W, Lukiw WJ. Addressing Alzheimer’s disease (AD) neuropathology using anti-microRNA (AM) strategies. Mol Neurobiol 2019; 56(12): 8101-8.
[http://dx.doi.org/10.1007/s12035-019-1632-0] [PMID: 31183807]
[24]
Ardashirova NS, Fedotova EY, Illarioshkin SN. The role of MicroRNA in the pathogenesis and diagnostics of Parkinson’s Disease. Neurochem J 2020; 14(2): 127-32.
[http://dx.doi.org/10.1134/S1819712420020026]
[25]
Arshad AR, Sulaiman SA, Saperi AA, Jamal R, Mohamed IN, Abdul Murad NA. MicroRNAs and target genes as biomarkers for the diagnosis of early onset of parkinson disease. Front Mol Neurosci 2017; 10: 352.
[http://dx.doi.org/10.3389/fnmol.2017.00352] [PMID: 29163029]
[26]
Maciotta S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 2013; 7: 265.
[http://dx.doi.org/10.3389/fncel.2013.00265] [PMID: 24391543]
[27]
Elangovan A, Venkatesan D, Selvaraj P, et al. miRNA in Parkinson’s disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238(2): 329-54.
[http://dx.doi.org/10.1002/jcp.30932] [PMID: 36502506]
[28]
Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Junn E. Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett 2015; 589(3): 319-25.
[http://dx.doi.org/10.1016/j.febslet.2014.12.014] [PMID: 25541488]
[29]
Miñones-Moyano E, Porta S, Escaramís G, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 2011; 20(15): 3067-78.
[http://dx.doi.org/10.1093/hmg/ddr210] [PMID: 21558425]
[30]
Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007; 8(3): 173-84.
[http://dx.doi.org/10.1038/nrg2006] [PMID: 17304245]
[31]
McMillan KJ, Murray TK, Bengoa-Vergniory N, et al. Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Mol Ther 2017; 25(10): 2404-14.
[http://dx.doi.org/10.1016/j.ymthe.2017.08.017] [PMID: 28927576]
[32]
Titze-de-Almeida SS, Soto-Sánchez C, Eduardo F. The promise and challenges of developing miRNA-based therapeutics for Parkinson's Disease. Cells 2020; 9(4): 841.
[http://dx.doi.org/10.3390/cells9040841]
[33]
Oh SE, Park HJ, He L, Skibiel C, Junn E, Mouradian MM. The Parkinson’s disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress. Redox Biol 2018; 19: 62-73.
[http://dx.doi.org/10.1016/j.redox.2018.07.021] [PMID: 30107296]
[34]
Yang Z, Li T, Li S, et al. Altered expression levels of microRNA-132 and Nurr1 in peripheral blood of Parkinson’s disease: potential disease biomarkers. ACS Chem Neurosci 2019; 10(5): 2243-9.
[http://dx.doi.org/10.1021/acschemneuro.8b00460] [PMID: 30817108]
[35]
Yao L, Ye Y, Mao H, et al. MicroRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson’s disease. J Neuroinflammation 2018; 15(1): 13.
[http://dx.doi.org/10.1186/s12974-018-1053-4] [PMID: 29329581]
[36]
Doxakis E. Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153. J Biol Chem 2010; 285(17): 12726-34.
[http://dx.doi.org/10.1074/jbc.M109.086827] [PMID: 20106983]
[37]
Harraz MM, Dawson TM, Dawson VL. MicroRNAs in Parkinson’s disease. J Chem Neuroanat 2011; 42(2): 127-30.
[http://dx.doi.org/10.1016/j.jchemneu.2011.01.005] [PMID: 21295133]
[38]
Khan D, Sharif A, Zafar M, Akhtar B, Akhtar MF, Awan S. Delonix regia a folklore remedy for diabetes; attenuates oxidative stress and modulates type II diabetes mellitus. Curr Pharm Biotechnol 2020; 21(11): 1059-69.
[http://dx.doi.org/10.2174/1389201021666200217112244] [PMID: 32065099]
[39]
Li L, Xu J, Wu M, Hu JM. Protective role of microRNA-221 in Parkinson’s disease. Bratisl Med J 2018; 119(1): 22-7.
[http://dx.doi.org/10.4149/BLL_2018_005] [PMID: 29405726]
[40]
Ozdilek B, Demircan B. Serum microRNA expression levels in Turkish patients with Parkinson’s disease. Int J Neurosci 2021; 131(12): 1181-9.
[http://dx.doi.org/10.1080/00207454.2020.1784165] [PMID: 32546033]
[41]
Grossi I, Radeghieri A, Paolini L, et al. MicroRNA-34a-5p expression in the plasma and in its extracellular vesicle fractions in subjects with Parkinson’s disease: An exploratory study. Int J Mol Med 2020; 47(2): 533-46.
[http://dx.doi.org/10.3892/ijmm.2020.4806] [PMID: 33416118]
[42]
Lv Q, Zhong Z, Hu B, et al. MicroRNA-3473b regulates the expression of TREM2/ULK1 and inhibits autophagy in inflammatory pathogenesis of Parkinson disease. J Neurochem 2021; 157(3): 599-610.
[http://dx.doi.org/10.1111/jnc.15299] [PMID: 33448372]
[43]
Lungu G, Stoica G, Ambrus A. MicroRNA profiling and the role of microRNA-132 in neurodegeneration using a rat model. Neurosci Lett 2013; 553: 153-8.
[http://dx.doi.org/10.1016/j.neulet.2013.08.001] [PMID: 23973300]
[44]
Ding H, Huang Z, Chen M, et al. Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism Relat Disord 2016; 22: 68-73.
[http://dx.doi.org/10.1016/j.parkreldis.2015.11.014] [PMID: 26631952]
[45]
Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-inflammatory MicroRNAs and their potential for inflammatory diseases treatment. Front Immunol 2018; 9: 1377.
[http://dx.doi.org/10.3389/fimmu.2018.01377] [PMID: 29988529]
[46]
Zhao Y, Jaber V, Alexandrov PN, et al. microRNA-based biomarkers in Alzheimer’s disease (AD). Front Neurosci 2020; 14: 585432.
[http://dx.doi.org/10.3389/fnins.2020.585432] [PMID: 33192270]
[47]
Wang WX, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008; 28(5): 1213-23.
[http://dx.doi.org/10.1523/JNEUROSCI.5065-07.2008] [PMID: 18234899]
[48]
Boissonneault V, Plante I, Rivest S, Provost P. MicroRNA-298 and microRNA-328 regulate expression of mouse β-amyloid precursor protein-converting enzyme 1. J Biol Chem 2009; 284(4): 1971-81.
[http://dx.doi.org/10.1074/jbc.M807530200] [PMID: 18986979]
[49]
Zhang M, Han W, Xu Y, Li D, Xue Q. Serum miR-128 serves as a potential diagnostic biomarker for Alzheimer’s Disease. Neuropsychiatr Dis Treat 2021; 17: 269-75.
[http://dx.doi.org/10.2147/NDT.S290925] [PMID: 33542630]
[50]
Schonrock N, Humphreys DT, Preiss T, Götz J. Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-β. J Mol Neurosci 2012; 46(2): 324-35.
[http://dx.doi.org/10.1007/s12031-011-9587-2] [PMID: 21720722]
[51]
Femminella GD, Ferrara N, Rengo GJFip. The emerging role of microRNAs in Alzheimer's disease. Front Physiol 2015; 6: 40.
[http://dx.doi.org/10.3389/fphys.2015.00040]
[52]
Nelson PT, Wang W-XJJoAsD. MiR-107 is reduced in Alzheimer's disease brain neocortex: Validation study. J Alzheimers Dis 2010; 21(1): 75-9.
[http://dx.doi.org/10.3233/JAD-2010-091603]
[53]
Lei X, Lei L, Zhang Z, Zhang Z, Cheng Y. Downregulated miR-29c correlates with increased BACE1 expression in sporadic Alzheimer’s disease. Int J Clin Exp Pathol 2015; 8(2): 1565-74.
[PMID: 25973041]
[54]
Silvestro S, Bramanti P, Mazzon E. Role of miRNAs in Alzheimer's Disease and possible fields of application. Int J Mol Sci 2019; 20(16): 3979.
[http://dx.doi.org/10.3390/ijms20163979]
[55]
Wang LL. The potential role of microRNA-146 in Alzheimer's disease: Biomarker or therapeutic target?. Med Hypotheses 2012; 78(3): 398-401.
[http://dx.doi.org/10.1016/j.mehy.2011.11.019]
[56]
Sun H, Liu X, Long SR, et al. Antidiabetic effects of pterostilbene through PI3K/Akt signal pathway in high fat diet and STZ-induced diabetic rats. Eur J Pharmacol 2019; 859: 172526.
[http://dx.doi.org/10.1016/j.ejphar.2019.172526] [PMID: 31283935]
[57]
Yu J, Chen J, Yang H, Chen S, Wang Z. Overexpression of miR-200a-3p promoted inflammation in sepsis-induced brain injury through ROS-induced NLRP3. Int J Mol Med 2019; 44(5): 1811-23.
[http://dx.doi.org/10.3892/ijmm.2019.4326] [PMID: 31485604]
[58]
Kumar S, Reddy PH. MicroRNA-455-3p as a potential biomarker for Alzheimer’s disease: An update. Front Aging Neurosci 2018; 10: 41.
[http://dx.doi.org/10.3389/fnagi.2018.00041] [PMID: 29527164]
[59]
Bañez-Coronel M, Porta S, Kagerbauer B, et al. A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet 2012; 8(2): e1002481.
[http://dx.doi.org/10.1371/journal.pgen.1002481] [PMID: 22383888]
[60]
Hoss AG. Study of plasma-derived miRNAs mimic differences in Huntington's disease brain. Mov Disord 2015; 30(14): 1961-4.
[http://dx.doi.org/10.1002/mds.26457]
[61]
Johnson R, Chiara Z, Nikolai DB, et al. A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiol Dis 2008; 29(3): 438-45.
[http://dx.doi.org/10.1016/j.nbd.2007.11.001]
[62]
Lee ST, Chu K, Im WS, et al. Altered microRNA regulation in Huntington’s disease models. Exp Neurol 2011; 227(1): 172-9.
[http://dx.doi.org/10.1016/j.expneurol.2010.10.012] [PMID: 21035445]
[63]
Hoss AG, Labadorf A, Latourelle JC, et al. miR-10b-5p expression in Huntington’s disease brain relates to age of onset and the extent of striatal involvement. BMC Med Genomics 2015; 8(1): 10.
[http://dx.doi.org/10.1186/s12920-015-0083-3] [PMID: 25889241]
[64]
Reed ER, Latourelle JC, Bockholt JH, et al. MicroRNAs in CSF as prodromal biomarkers for Huntington disease in the PREDICT-HD study. Neurology 2018; 90(4): e264-72.
[http://dx.doi.org/10.1212/WNL.0000000000004844] [PMID: 29282329]
[65]
Ban JJ, Chung JY, Lee M, Im W, Kim M. MicroRNA-27a reduces mutant hutingtin aggregation in an in vitro model of Huntington’s disease. Biochem Biophys Res Commun 2017; 488(2): 316-21.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.040] [PMID: 28495533]
[66]
Chung TKH, Lau TS, Cheung TH, et al. Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1. Int J Cancer 2012; 130(5): 1036-45.
[http://dx.doi.org/10.1002/ijc.26060] [PMID: 21400511]
[67]
Ferraldeschi M, Romano S, Giglio S, et al. Circulating hsa-miR-323b-3p in Huntington’s Disease: A Pilot Study. Front Neurol 2021; 12: 657973.
[http://dx.doi.org/10.3389/fneur.2021.657973] [PMID: 34025560]
[68]
Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ. A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis 2008; 29(3): 438-45.
[http://dx.doi.org/10.1016/j.nbd.2007.11.001] [PMID: 18082412]
[69]
Kocerha J, Xu Y, Prucha MS, Zhao D, Chan AWS. microRNA-128a dysregulation in transgenic Huntington’s disease monkeys. Mol Brain 2014; 7(1): 46.
[http://dx.doi.org/10.1186/1756-6606-7-46] [PMID: 24929669]
[70]
Tiribuzi R, Crispoltoni L, Porcellati S, et al. miR128 up-regulation correlates with impaired amyloid β(1-42) degradation in monocytes from patients with sporadic Alzheimer’s disease. Neurobiol Aging 2014; 35(2): 345-56.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.08.003] [PMID: 24064186]
[71]
Geng L, Zhang T, Liu W, Chen Y. Inhibition of miR-128 abates Aβ-mediated cytotoxicity by targeting PPAR-γ via NF-κB inactivation in primary mouse cortical neurons and Neuro2a cells. Yonsei Med J 2018; 59(9): 1096-106.
[http://dx.doi.org/10.3349/ymj.2018.59.9.1096] [PMID: 30328325]
[72]
Samadian M, Gholipour M, Hajiesmaeili M, Taheri M, Ghafouri- Fard S. The eminent role of microRNAs in the pathogenesis of Alzheimer’s Disease. Front Aging Neurosci 2021; 13: 641080.
[http://dx.doi.org/10.3389/fnagi.2021.641080] [PMID: 33790780]
[73]
Sinha M, Mukhopadhyay S, Bhattacharyya NP. Mechanism(s) of alteration of micro RNA expressions in Huntington’s disease and their possible contributions to the observed cellular and molecular dysfunctions in the disease. Neuromol Med 2012; 14(4): 221-43.
[http://dx.doi.org/10.1007/s12017-012-8183-0] [PMID: 22581158]
[74]
Martins M, Rosa A, Guedes LC, et al. Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson’s disease. PLoS One 2011; 6(10): e25443.
[http://dx.doi.org/10.1371/journal.pone.0025443] [PMID: 22003392]
[75]
Kim W, Lee Y, McKenna ND, et al. miR-126 contributes to Parkinson’s disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiol Aging 2014; 35(7): 1712-21.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.01.021] [PMID: 24559646]
[76]
Kim W, Noh H, Lee Y, et al. MiR-126 regulates growth factor activities and vulnerability to toxic insult in neurons. Mol Neurobiol 2016; 53(1): 95-108.
[http://dx.doi.org/10.1007/s12035-014-8989-x] [PMID: 25407931]
[77]
Shioya M, Obayashi S, Tabunoki H, et al. Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 2010; 36(4): 320-30.
[http://dx.doi.org/10.1111/j.1365-2990.2010.01076.x] [PMID: 20202123]
[78]
Cao XY, Lu JM, Zhao ZQ, et al. MicroRNA biomarkers of Parkinson’s disease in serum exosome-like microvesicles. Neurosci Lett 2017; 644: 94-9.
[http://dx.doi.org/10.1016/j.neulet.2017.02.045] [PMID: 28223160]
[79]
Maldonado-Lasuncion I, Atienza M, Sanchez-Espinosa MP, Cantero JL. Aging-related changes in cognition and cortical integrity are associated with serum expression of candidate MicroRNAs for Alzheimer Disease. Cereb Cortex 2019; 29(10): 4426-37.
[http://dx.doi.org/10.1093/cercor/bhy323] [PMID: 30590432]
[80]
Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ. microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol 2012; 3(4): 365-73.
[PMID: 23301201]
[81]
Rostamian Delavar M, Baghi M, Safaeinejad Z, Kiani-Esfahani A, Ghaedi K, Nasr-Esfahani MH. Differential expression of miR-34a, miR-141, and miR-9 in MPP+-treated differentiated PC12 cells as a model of Parkinson’s disease. Gene 2018; 662: 54-65.
[http://dx.doi.org/10.1016/j.gene.2018.04.010] [PMID: 29631008]
[82]
Huang M, Dan L, Xiuli C, et al. Micro RNA alteration after paraquat induced PC12 cells damage and regulatory mechanism of bcl-2. Chinese journal of industrial hygiene and occupational diseases 2014; 32(1): 32-7.
[83]
Kinoshita C, Aoyama K, Nakaki T. microRNA as a new agent for regulating neuronal glutathione synthesis and metabolism. AIMS Mol Sci 2015; 2(2): 124-43.
[http://dx.doi.org/10.3934/molsci.2015.2.124]
[84]
Olmo IG, Olmo RP, Gonçalves ANA, Pires RGW, Marques JT, Ribeiro FM. High-throughput sequencing of BACHD mice reveals upregulation of neuroprotective miRNAs at the pre-symptomatic stage of huntington’s disease. ASN Neuro 2021; 13: 17590914211009857.
[http://dx.doi.org/10.1177/17590914211009857] [PMID: 33906482]
[85]
Curtaz CJ, Schmitt C, Blecharz-Lang KG, Roewer N, Wöckel A, Burek M. Circulating MicroRNAs and blood-brain-barrier function in breast cancer metastasis. Curr Pharm Des 2020; 26(13): 1417-27.
[http://dx.doi.org/10.2174/1381612826666200316151720] [PMID: 32175838]
[86]
Tominaga N, Kosaka N, Ono M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nat Commun 2015; 6(1): 6716.
[http://dx.doi.org/10.1038/ncomms7716] [PMID: 25828099]
[87]
Lee SWL, Paoletti C, Campisi M, et al. MicroRNA delivery through nanoparticles. J Control Release 2019; 313: 80-95.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.007] [PMID: 31622695]
[88]
Wang L, Zhao C, Wu S, et al. Hydrogen gas treatment improves the neurological outcome after traumatic brain injury via increasing miR-21 expression. Shock 2018; 50(3): 308-15.
[http://dx.doi.org/10.1097/SHK.0000000000001018] [PMID: 29028768]
[89]
Song J, Li N, Xia Y, et al. Arctigenin confers neuroprotection against mechanical trauma injury in human neuroblastoma SH-SY5Y cells by regulating miRNA-16 and miRNA-199a expression to alleviate inflammation. J Mol Neurosci 2016; 60(1): 115-29.
[http://dx.doi.org/10.1007/s12031-016-0784-x] [PMID: 27389368]
[90]
Li Z, Wang S, Li W, Yuan H. Ferulic acid improves functional recovery after acute spinal cord injury in rats by inducing hypoxia to inhibit microrna-590 and elevate vascular endothelial growth factor expressions. Front Mol Neurosci 2017; 10: 183.
[http://dx.doi.org/10.3389/fnmol.2017.00183] [PMID: 28642684]
[91]
Yang Q, Yang K, Li AY. Trimetazidine protects against hypoxia-reperfusion-induced cardiomyocyte apoptosis by increasing microRNA-21 expression. Int J Clin Exp Pathol 2015; 8(4): 3735-41.
[PMID: 26097555]
[92]
Wen Y, Zhang X, Dong L, Zhao J, Zhang C, Zhu C. Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Mol Med 2015; 21(1): 197-209.
[http://dx.doi.org/10.2119/molmed.2014.00199] [PMID: 25811992]
[93]
Li L, Jiang H, Li Y, Guo Y. Hydrogen sulfide protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord ischemia-reperfusion injury. J Biomed Sci 2015; 22(1): 50.
[http://dx.doi.org/10.1186/s12929-015-0135-1] [PMID: 26149869]
[94]
Dong YF, Chen ZZ, Zhao Z, et al. Potential role of microRNA-7 in the anti-neuroinflammation effects of nicorandil in astrocytes induced by oxygen-glucose deprivation. J Neuroinflammation 2016; 13(1): 60.
[http://dx.doi.org/10.1186/s12974-016-0527-5] [PMID: 26961366]
[95]
Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson’s disease. J Control Release 2016; 235: 291-305.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.005] [PMID: 27269730]
[96]
Liu DY, Zhang L. MicroRNA-132 promotes neurons cell apoptosis and activates Tau phosphorylation by targeting GTDC-1 in Alzheimer’s disease. Eur Rev Med Pharmacol Sci 2019; 23(19): 8523-32.
[PMID: 31646584]
[97]
Her LS, Mao SH, Chang CY, et al. miR-196a enhances neuronal morphology through suppressing RANBP10 to provide Neuroprotection in Huntington’s disease. Theranostics 2017; 7(9): 2452-62.
[http://dx.doi.org/10.7150/thno.18813] [PMID: 28744327]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy