Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies

Author(s): Konstantin Yenkoyan*, Zadik Ounanian, Margarita Mirumyan, Liana Hayrapetyan, Naira Zakaryan, Raisa Sahakyan and Geir Bjørklund*

Volume 31, Issue 12, 2024

Published on: 05 October, 2023

Page: [1485 - 1511] Pages: 27

DOI: 10.2174/0109298673252910230920151332

open access plus

conference banner
Abstract

Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.

Keywords: Autism spectrum disorder, treatment strategy, management, neuropharmacology, animal model, neurochemistry.

[1]
Correction and republication: Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Morb. Mortal. Wkly. Rep., 2018, 67(45), 1279.
[http://dx.doi.org/10.15585/mmwr.mm6745a7] [PMID: 30439872]
[2]
Tillmann, J.; Uljarevic, M.; Crawley, D.; Dumas, G.; Loth, E.; Murphy, D.; Buitelaar, J.; Charman, T.; Ahmad, J.; Ambrosino, S.; Auyeung, B.; Baumeister, S.; Beckmann, C.; Bourgeron, T.; Bours, C.; Brammer, M.; Brandeis, D.; Brogna, C.; de Bruijn, Y.; Chakrabarti, B.; Cornelissen, I.; Acqua, F.D.; Dumas, G.; Ecker, C.; Faulkner, J.; Frouin, V.; Garcés, P.; Goyard, D.; Hayward, H.; Hipp, J.; Johnson, M.H.; Jones, E.J.H.; Kundu, P.; Lai, M-C.; D’ardhuy, X.L.; Lombardo, M.; Lythgoe, D.J.; Mandl, R.; Mason, L.; Meyer-Lindenberg, A.; Moessnang, C.; Mueller, N.; O’Dwyer, L.; Oldehinkel, M.; Oranje, B.; Pandina, G.; Persico, A.M.; Ruggeri, B.; Ruigrok, A.; Sabet, J.; Sacco, R.; Toro, R.; Tost, H.; Waldman, J.; Williams, S.C.R.; Wooldridge, C.; Zwiers, M.P. Dissecting the phenotypic heterogeneity in sensory features in autism spectrum disorder: A factor mixture modelling approach. Mol. Autism, 2020, 11(1), 67.
[http://dx.doi.org/10.1186/s13229-020-00367-w] [PMID: 32867850]
[3]
Yenkoyan, K.; Grigoryan, A.; Fereshetyan, K.; Yepremyan, D. Advances in understanding the pathophysiology of autism spectrum disorders. Behav. Brain Res., 2017, 331, 92-101.
[http://dx.doi.org/10.1016/j.bbr.2017.04.038] [PMID: 28499914]
[4]
Courchesne, E.; Mouton, P.R.; Calhoun, M.E.; Semendeferi, K.; Ahrens-Barbeau, C.; Hallet, M.J.; Barnes, C.C.; Pierce, K. Neuron number and size in prefrontal cortex of children with autism. JAMA, 2011, 306(18), 2001-2010.
[http://dx.doi.org/10.1001/jama.2011.1638] [PMID: 22068992]
[5]
Wang, Z.; Hong, Y.; Zou, L.; Zhong, R.; Zhu, B.; Shen, N.; Chen, W.; Lou, J.; Ke, J.; Zhang, T.; Wang, W.; Miao, X. Reelin gene variants and risk of autism spectrum disorders: An integrated meta-analysis. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2014, 165(2), 192-200.
[http://dx.doi.org/10.1002/ajmg.b.32222] [PMID: 24453138]
[6]
Turrigiano, G.G.; Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci., 2004, 5(2), 97-107.
[http://dx.doi.org/10.1038/nrn1327] [PMID: 14735113]
[7]
Guang, S.; Pang, N.; Deng, X.; Yang, L.; He, F.; Wu, L.; Chen, C.; Yin, F.; Peng, J. Synaptopathology involved in autism spectrum disorder. Front. Cell. Neurosci., 2018, 12, 470.
[http://dx.doi.org/10.3389/fncel.2018.00470] [PMID: 30627085]
[8]
Rizzolatti, G.; Fabbri-Destro, M. Mirror neurons: From discovery to autism. Exp. Brain Res., 2010, 200(3-4), 223-237.
[http://dx.doi.org/10.1007/s00221-009-2002-3] [PMID: 19760408]
[9]
Kelleher, R.J., III; Bear, M.F. The autistic neuron: Troubled translation? Cell, 2008, 135(3), 401-406.
[http://dx.doi.org/10.1016/j.cell.2008.10.017] [PMID: 18984149]
[10]
Takumi, T.; Tamada, K. CNV biology in neurodevelopmental disorders. Curr. Opin. Neurobiol., 2018, 48, 183-192.
[http://dx.doi.org/10.1016/j.conb.2017.12.004] [PMID: 29331932]
[11]
Argyropoulos, A.; Gilby, K.L.; Hill-Yardin, E.L. Studying autism in rodent models: Reconciling endophenotypes with comorbidities. Front. Hum. Neurosci., 2013, 7, 417.
[http://dx.doi.org/10.3389/fnhum.2013.00417] [PMID: 23898259]
[12]
Aishworiya, R.; Valica, T.; Hagerman, R.; Restrepo, B. An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics, 2022, 19(1), 248-262.
[http://dx.doi.org/10.1007/s13311-022-01183-1] [PMID: 35029811]
[13]
Bourgeron, T. The possible interplay of synaptic and clock genes in autism spectrum disorders. Cold Spring Harb. Symp. Quant. Biol., 2007, 72(1), 645-654.
[http://dx.doi.org/10.1101/sqb.2007.72.020] [PMID: 18419324]
[14]
Gogolla, N.; LeBlanc, J.J.; Quast, K.B.; Südhof, T.C.; Fagiolini, M.; Hensch, T.K. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord., 2009, 1(2), 172-181.
[http://dx.doi.org/10.1007/s11689-009-9023-x] [PMID: 20664807]
[15]
Cellot, G.; Cherubini, E. GABAergic signaling as therapeutic target for autism spectrum disorders. Front Pediatr., 2014, 2, 70.
[http://dx.doi.org/10.3389/fped.2014.00070] [PMID: 25072038]
[16]
Nelson, S.B.; Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron, 2015, 87(4), 684-698.
[http://dx.doi.org/10.1016/j.neuron.2015.07.033] [PMID: 26291155]
[17]
Bjorklund, G. The role of zinc and copper in autism spectrum disorders. Acta Neurobiol. Exp., 2013, 73(2), 225-236.
[PMID: 23823984]
[18]
Campbell, M.; Rapoport, J.L.; Simpson, G.M. Antipsychotics in children and adolescents. J. Am. Acad. Child Adolesc. Psychiatry, 1999, 38(5), 537-545.
[http://dx.doi.org/10.1097/00004583-199905000-00015] [PMID: 10230185]
[19]
Chopko, T.C.; Lindsley, C.W. Classics in chemical neuroscience: Risperidone. ACS Chem. Neurosci., 2018, 9(7), 1520-1529.
[http://dx.doi.org/10.1021/acschemneuro.8b00159] [PMID: 29695153]
[20]
Vardanyan, R. Piperidine-Based Drug Discovery; Elsevier, 2017.
[21]
Robert, L. Cross-discipline team leader review memo. 2012. Available From: https://www.accessdata.fda.gov/drugsatfda_docs/summary_review/2008/021817se1-001_SUMR.pdf
[22]
Kent, J.M.; Kushner, S.; Ning, X.; Karcher, K.; Ness, S.; Aman, M.; Singh, J.; Hough, D. Risperidone dosing in children and adolescents with autistic disorder: A double-blind, placebo-controlled study. J. Autism Dev. Disord., 2013, 43(8), 1773-1783.
[http://dx.doi.org/10.1007/s10803-012-1723-5] [PMID: 23212807]
[23]
Kent, J.M.; Hough, D.; Singh, J.; Karcher, K.; Pandina, G. An open-label extension study of the safety and efficacy of risperidone in children and adolescents with autistic disorder. J. Child Adolesc. Psychopharmacol., 2013, 23(10), 676-686.
[http://dx.doi.org/10.1089/cap.2012.0058] [PMID: 24350813]
[24]
Jesner, O.S.; Aref-Adib, M.; Coren, E. Risperidone for autism spectrum disorder. Cochrane Libr., 2007, 2010(1), CD005040.
[http://dx.doi.org/10.1002/14651858.CD005040.pub2] [PMID: 17253538]
[25]
West, L.; Waldrop, J. Risperidone use in the treatment of behavioral symptoms in children with autism. Pediatr. Nurs., 2006, 32(6), 545-549.
[PMID: 17256292]
[26]
Kim, J.-W.; Seung, H.; Kim, K. C.; Gonzales, E. L. T.; Oh, H. A.; Yang, S. M.; Ko, M. J.; Han, S.-H.; Banerjee, S.; Shin, C. Y. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology, 2017, 113(Pt A), 71-81.
[http://dx.doi.org/10.1016/j.neuropharm.2016.09.014]
[27]
Raasch, W.; Schäfer, U.; Chun, J.; Dominiak, P. Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br. J. Pharmacol., 2001, 133(6), 755-780.
[http://dx.doi.org/10.1038/sj.bjp.0704153] [PMID: 11454649]
[28]
Uzbay, T.; Goktalay, G.; Kayir, H.; Eker, S.S.; Sarandol, A.; Oral, S.; Buyukuysal, L.; Ulusoy, G.; Kirli, S. Increased plasma agmatine levels in patients with schizophrenia. J. Psychiatr. Res., 2013, 47(8), 1054-1060.
[http://dx.doi.org/10.1016/j.jpsychires.2013.04.004] [PMID: 23664672]
[29]
Esnafoglu, E.; İrende, İ. Decreased plasma agmatine levels in autistic subjects. J. Neural Transm., 2018, 125(4), 735-740.
[http://dx.doi.org/10.1007/s00702-017-1836-2] [PMID: 29302750]
[30]
Silverman, J.M.; Brunet, Y.R.; Cascales, E.; Mougous, J.D. Structure and regulation of the type VI secretion system. Annu. Rev. Microbiol., 2012, 66(1), 453-472.
[http://dx.doi.org/10.1146/annurev-micro-121809-151619] [PMID: 22746332]
[31]
Lee, K.; Mills, Z.; Cheung, P.; Cheyne, J.E.; Montgomery, J.M. The role of zinc and NMDA receptors in autism spectrum disorders. Pharmaceuticals, 2022, 16(1), 1.
[http://dx.doi.org/10.3390/ph16010001] [PMID: 36678498]
[32]
Vatankhah Ardestani, S.S.; Karahmadi, M.; Tarrahi, M.J.; Omranifard, V.; Farzaneh, B. Efficacy of memantine as adjunct therapy for autism spectrum disorder in children aged 14 years. Adv. Biomed. Res., 2018, 7(1), 131.
[http://dx.doi.org/10.4103/abr.abr_100_18] [PMID: 30320040]
[33]
Soorya, L.V.; Fogg, L.; Ocampo, E.; Printen, M.; Youngkin, S.; Halpern, D.; Kolevzon, A.; Lee, S.; Grodberg, D.; Anagnostou, E. Neurocognitive outcomes from memantine: A pilot, double-blind, placebo-controlled trial in children with autism spectrum disorder. J. Child Adolesc. Psychopharmacol., 2021, 31(7), 475-484.
[http://dx.doi.org/10.1089/cap.2021.0010] [PMID: 34543081]
[34]
Aman, M.G.; Findling, R.L.; Hardan, A.Y.; Hendren, R.L.; Melmed, R.D.; Kehinde-Nelson, O.; Hsu, H.A.; Trugman, J.M.; Palmer, R.H.; Graham, S.M.; Gage, A.T.; Perhach, J.L.; Katz, E. Safety and efficacy of memantine in children with autism: Randomized, placebo-controlled study and open-label extension. J. Child Adolesc. Psychopharmacol., 2017, 27(5), 403-412.
[http://dx.doi.org/10.1089/cap.2015.0146] [PMID: 26978327]
[35]
Modi, M.E.; Young, L.J. D-cycloserine facilitates socially reinforced learning in an animal model relevant to autism spectrum disorders. Biol. Psychiatry, 2011, 70(3), 298-304.
[http://dx.doi.org/10.1016/j.biopsych.2011.01.026] [PMID: 21481844]
[36]
Minshawi, N.F.; Wink, L.K.; Shaffer, R.; Plawecki, M.H.; Posey, D.J.; Liu, H.; Hurwitz, S.; McDougle, C.J.; Swiezy, N.B.; Erickson, C.A. A randomized, placebo-controlled trial of d-cycloserine for the enhancement of social skills training in autism spectrum disorders. Mol. Autism, 2016, 7(1), 2.
[http://dx.doi.org/10.1186/s13229-015-0062-8] [PMID: 26770664]
[37]
Burket, J.A.; Benson, A.D.; Tang, A.H.; Deutsch, S.I. d-Cycloserine improves sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Res. Bull., 2013, 96, 62-70.
[http://dx.doi.org/10.1016/j.brainresbull.2013.05.003] [PMID: 23685206]
[38]
Zhao, H.; Mao, X.; Zhu, C.; Zou, X.; Peng, F.; Yang, W.; Li, B.; Li, G.; Ge, T.; Cui, R. GABAergic system dysfunction in autism spectrum disorders. Front. Cell Dev. Biol., 2022, 9, 781327.
[http://dx.doi.org/10.3389/fcell.2021.781327] [PMID: 35198562]
[39]
Braat, S.; D’Hulst, C.; Heulens, I.; De Rubeis, S.; Mientjes, E.; Nelson, D.L.; Willemsen, R.; Bagni, C.; Van Dam, D.; De Deyn, P.P.; Kooy, R.F. The GABA A receptor is an FMRP target with therapeutic potential in fragile X syndrome. Cell Cycle, 2015, 14(18), 2985-2995.
[http://dx.doi.org/10.4161/15384101.2014.989114] [PMID: 25790165]
[40]
Silverman, J.L.; Pride, M.C.; Hayes, J.E.; Puhger, K.R.; Butler-Struben, H.M.; Baker, S.; Crawley, J.N. GABAB receptor agonist r-baclofen reverses social deficits and reduces repetitive behavior in two mouse models of autism. Neuropsychopharmacology, 2015, 40(9), 2228-2239.
[http://dx.doi.org/10.1038/npp.2015.66] [PMID: 25754761]
[41]
Mahdavinasab, S.M.; Saghazadeh, A.; Motamed-Gorji, N.; Vaseghi, S.; Mohammadi, M.R.; Alichani, R.; Akhondzadeh, S. Baclofen as an adjuvant therapy for autism: A randomized, double-blind, placebo-controlled trial. Eur. Child Adolesc. Psychiatry, 2019, 28(12), 1619-1628.
[http://dx.doi.org/10.1007/s00787-019-01333-5] [PMID: 30980177]
[42]
Tan, T.; Wang, W.; Xu, H.; Huang, Z.; Wang, Y.T.; Dong, Z. Low-frequency rTMS ameliorates autistic-like behaviors in rats induced by neonatal isolation through regulating the synaptic GABA transmission. Front. Cell. Neurosci., 2018, 12, 46.
[http://dx.doi.org/10.3389/fncel.2018.00046] [PMID: 29541022]
[43]
Desarkar, P.; Rajji, T.K.; Ameis, S.H.; Blumberger, D.M.; Lai, M.C.; Lunsky, Y.; Daskalakis, Z.J. Assessing and stabilizing atypical plasticity in autism spectrum disorder using rTMS: Results from a proof-of-principle study. Clin. Neurophysiol., 2022, 141, 109-118.
[http://dx.doi.org/10.1016/j.clinph.2021.03.046] [PMID: 34011467]
[44]
Enticott, P.G.; Barlow, K.; Guastella, A.J.; Licari, M.K.; Rogasch, N.C.; Middeldorp, C.M.; Clark, S.R.; Vallence, A.M.; Boulton, K.A.; Hickie, I.B.; Whitehouse, A.J.O.; Galletly, C.; Alvares, G.A.; Fujiyama, H.; Heussler, H.; Craig, J.M.; Kirkovski, M.; Mills, N.T.; Rinehart, N.J.; Donaldson, P.H.; Ford, T.C.; Caeyenberghs, K.; Albein-Urios, N.; Bekkali, S.; Fitzgerald, P.B. Repetitive transcranial magnetic stimulation (rTMS) in autism spectrum disorder: Protocol for a multicentre randomised controlled clinical trial. BMJ Open, 2021, 11(7), e046830.
[http://dx.doi.org/10.1136/bmjopen-2020-046830] [PMID: 34233985]
[45]
Dai, Y.C.; Zhang, H.F.; Schön, M.; Böckers, T.M.; Han, S.P.; Han, J.S.; Zhang, R. Neonatal oxytocin treatment ameliorates autistic-like behaviors and oxytocin deficiency in valproic acid-induced rat model of autism. Front. Cell. Neurosci., 2018, 12, 355.
[http://dx.doi.org/10.3389/fncel.2018.00355] [PMID: 30356897]
[46]
Tyzio, R.; Nardou, R.; Ferrari, D.C.; Tsintsadze, T.; Shahrokhi, A.; Eftekhari, S.; Khalilov, I.; Tsintsadze, V.; Brouchoud, C.; Chazal, G.; Lemonnier, E.; Lozovaya, N.; Burnashev, N.; Ben-Ari, Y. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science, 2014, 343(6171), 675-679.
[http://dx.doi.org/10.1126/science.1247190] [PMID: 24503856]
[47]
Parker, K.J.; Oztan, O.; Libove, R.A.; Sumiyoshi, R.D.; Jackson, L.P.; Karhson, D.S.; Summers, J.E.; Hinman, K.E.; Motonaga, K.S.; Phillips, J.M.; Carson, D.S.; Garner, J.P.; Hardan, A.Y. Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc. Natl. Acad. Sci. USA, 2017, 114(30), 8119-8124.
[http://dx.doi.org/10.1073/pnas.1705521114] [PMID: 28696286]
[48]
Bernaerts, S.; Boets, B.; Bosmans, G.; Steyaert, J.; Alaerts, K. Behavioral effects of multiple-dose oxytocin treatment in autism: A randomized, placebo-controlled trial with long-term follow-up. Mol. Autism, 2020, 11(1), 6.
[http://dx.doi.org/10.1186/s13229-020-0313-1] [PMID: 31969977]
[49]
Bernaerts, S.; Boets, B.; Steyaert, J.; Wenderoth, N.; Alaerts, K. Oxytocin treatment attenuates amygdala activity in autism: A treatment-mechanism study with long-term follow-up. Transl. Psychiatry, 2020, 10(1), 383.
[http://dx.doi.org/10.1038/s41398-020-01069-w] [PMID: 33159033]
[50]
Yenkoyan, K.; Harutyunyan, H.; Harutyunyan, A. A certain role of SOD/CAT imbalance in pathogenesis of autism spectrum disorders. Free Radic. Biol. Med., 2018, 123, 85-95.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.070] [PMID: 29782990]
[51]
Harutyunyan, A.A.; Harutyunyan, H.A.; Yenkoyan, K.B. Novel probable glance at inflammatory scenario development in autistic pathology. Front. Psychiatry, 2021, 12, 788779.
[http://dx.doi.org/10.3389/fpsyt.2021.788779] [PMID: 35002805]
[52]
Manivasagam, T. Role of oxidative stress and antioxidants in autism. In: Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology; Essa, M.; Qoronfleh, M., Eds.; Springer: Cham, 2020; vol 24, pp. 193-206.
[http://dx.doi.org/10.1007/978-3-030-30402-7_7]
[53]
Robea, M.A.; Jijie, R.; Nicoara, M.; Plavan, G.; Ciobica, A.S.; Solcan, C.; Audira, G.; Hsiao, C.D.; Strungaru, S.A.; Vitamin, C. Vitamin C attenuates oxidative stress and behavioral abnormalities triggered by fipronil and pyriproxyfen insecticide chronic exposure on zebrafish juvenile. Antioxidants, 2020, 9(10), 944.
[http://dx.doi.org/10.3390/antiox9100944] [PMID: 33019596]
[54]
McGuinness, G.; Kim, Y. Sulforaphane treatment for autism spectrum disorder: A systematic review. EXCLI J., 2020, 19, 892-903.
[http://dx.doi.org/10.17179/excli2020-2487] [PMID: 33013262]
[55]
Abraham, D.A.; Undela, K.; Narasimhan, U.; Rajanandh, M.G. Effect of L-Carnosine in children with autism spectrum disorders: A systematic review and meta-analysis of randomised controlled trials. Amino Acids, 2021, 53(4), 575-585.
[http://dx.doi.org/10.1007/s00726-021-02960-6] [PMID: 33704575]
[56]
Hajizadeh-Zaker, R.; Ghajar, A.; Mesgarpour, B.; Afarideh, M.; Mohammadi, M.R.; Akhondzadeh, S. L-Carnosine as an adjunctive therapy to risperidone in children with autistic disorder: A randomized, double-blind, placebo-controlled trial. J. Child Adolesc. Psychopharmacol., 2018, 28(1), 74-81.
[http://dx.doi.org/10.1089/cap.2017.0026] [PMID: 29027815]
[57]
Demarquoy, C.; Demarquoy, J. Autism and carnitine: A possible link. World J. Biol. Chem., 2019, 10(1), 7-16.
[http://dx.doi.org/10.4331/wjbc.v10.i1.7] [PMID: 30622681]
[58]
Fahmy, S.F.; El-hamamsy, M.H.; Zaki, O.K.; Badary, O.A. l-Carnitine supplementation improves the behavioral symptoms in autistic children. Res. Autism Spectr. Disord., 2013, 7(1), 159-166.
[http://dx.doi.org/10.1016/j.rasd.2012.07.006]
[59]
Guevara-Campos, J.; González-Guevara, L.; Guevara-González, J.; Cauli, O. First case report of primary carnitine deficiency manifested as intellectual disability and autism spectrum disorder. Brain Sci., 2019, 9(6), 137.
[http://dx.doi.org/10.3390/brainsci9060137] [PMID: 31200524]
[60]
Shakibaei, F.; Jelvani, D. Effect of adding l-carnitine to risperidone on behavioral, cognitive, social, and physical symptoms in children and adolescents with autism: A randomized double-blinded placebo-controlled clinical trial. Clin. Neuropharmacol., 2023, 46(2), 55-59.
[http://dx.doi.org/10.1097/WNF.0000000000000544] [PMID: 36735565]
[61]
Eeckhaut, V.; Van Immerseel, F.; Croubels, S.; De Baere, S.; Haesebrouck, F.; Ducatelle, R.; Louis, P.; Vandamme, P. Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum. Microb. Biotechnol., 2011, 4(4), 503-512.
[http://dx.doi.org/10.1111/j.1751-7915.2010.00244.x] [PMID: 21375722]
[62]
Hakalehto, E.; Hänninen, O. Gaseous CO 2 signal initiates growth of butyric-acid-producing Clostridium butyricum in both pure culture and mixed cultures with Lactobacillus brevis. Can. J. Microbiol., 2012, 58(7), 928-931.
[http://dx.doi.org/10.1139/w2012-059] [PMID: 22697044]
[63]
Liu, S.; Li, E.; Sun, Z.; Fu, D.; Duan, G.; Jiang, M.; Yu, Y.; Mei, L.; Yang, P.; Tang, Y.; Zheng, P. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep., 2019, 9(1), 287.
[http://dx.doi.org/10.1038/s41598-018-36430-z] [PMID: 30670726]
[64]
Kratsman, N.; Getselter, D.; Elliott, E. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology, 2016, 102, 136-145.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.003] [PMID: 26577018]
[65]
Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int., 2016, 99, 110-132.
[http://dx.doi.org/10.1016/j.neuint.2016.06.011] [PMID: 27346602]
[66]
Barone, R.; Rizzo, R.; Tabbì, G.; Malaguarnera, M.; Frye, R.E.; Bastin, J. Nuclear peroxisome proliferator-activated receptors (PPARs) as therapeutic targets of resveratrol for autism spectrum disorder. Int. J. Mol. Sci., 2019, 20(8), 1878.
[http://dx.doi.org/10.3390/ijms20081878] [PMID: 30995737]
[67]
Deckmann, I.; Schwingel, G.B.; Fontes-Dutra, M.; Bambini-Junior, V.; Gottfried, C. Neuroimmune alterations in autism: A translational analysis focusing on the animal model of autism induced by prenatal exposure to valproic acid. Neuroimmunomodulation, 2018, 25(5-6), 285-299.
[http://dx.doi.org/10.1159/000492113] [PMID: 30157484]
[68]
Kumar, P.; Raman, T.; Swain, M.M.; Mishra, R.; Pal, A. Hyperglycemia-induced oxidative-nitrosative stress induces inflammation and neurodegeneration via augmented tuberous sclerosis complex-2 (TSC-2) activation in neuronal cells. Mol. Neurobiol., 2017, 54(1), 238-254.
[http://dx.doi.org/10.1007/s12035-015-9667-3] [PMID: 26738854]
[69]
Das, A.; Durrant, D.; Koka, S.; Salloum, F.N.; Xi, L.; Kukreja, R.C. Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: Potential role of attenuated oxidative stress and altered contractile protein expression. J. Biol. Chem., 2014, 289(7), 4145-4160.
[http://dx.doi.org/10.1074/jbc.M113.521062] [PMID: 24371138]
[70]
Kotajima-Murakami, H.; Kobayashi, T.; Kashii, H.; Sato, A.; Hagino, Y.; Tanaka, M.; Nishito, Y.; Takamatsu, Y.; Uchino, S.; Ikeda, K. Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero. Mol. Brain, 2019, 12(1), 3.
[http://dx.doi.org/10.1186/s13041-018-0423-2] [PMID: 30621732]
[71]
Schafer, F.Q.; Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med., 2001, 30(11), 1191-1212.
[http://dx.doi.org/10.1016/S0891-5849(01)00480-4] [PMID: 11368918]
[72]
Bala, K.A.; Doğan, M.; Mutluer, T.; Kaba, S.; Aslan, O.; Balahoroğlu, R.; Çokluk, E.; Üstyol, L.; Kocaman, S. Plasma amino acid profile in autism spectrum disorder (ASD). Eur. Rev. Med. Pharmacol. Sci., 2016, 20(5), 923-929.
[PMID: 27010152]
[73]
Moretti, P.; Peters, S.U.; del Gaudio, D.; Sahoo, T.; Hyland, K.; Bottiglieri, T.; Hopkin, R.J.; Peach, E.; Min, S.H.; Goldman, D.; Roa, B.; Bacino, C.A.; Scaglia, F. Brief report: Autistic symptoms, developmental regression, mental retardation, epilepsy, and dyskinesias in CNS folate deficiency. J. Autism Dev. Disord., 2008, 38(6), 1170-1177.
[http://dx.doi.org/10.1007/s10803-007-0492-z] [PMID: 18027081]
[74]
Zhang, Z.; Yu, L.; Li, S.; Liu, J. Association study of polymorphisms in genes relevant to vitamin B12 and folate metabolism with childhood autism spectrum disorder in a han chinese population. Med. Sci. Monit., 2018, 24, 370-376.
[http://dx.doi.org/10.12659/MSM.905567] [PMID: 29348398]
[75]
Bertoglio, K.; Jill James, S.; Deprey, L.; Brule, N.; Hendren, R.L. Pilot study of the effect of methyl B12 treatment on behavioral and biomarker measures in children with autism. J. Altern. Complement. Med., 2010, 16(5), 555-560.
[http://dx.doi.org/10.1089/acm.2009.0177] [PMID: 20804367]
[76]
Zhang, Y.; Hodgson, N.W.; Trivedi, M.S.; Abdolmaleky, H.M.; Fournier, M.; Cuenod, M.; Do, K.Q.; Deth, R.C. Decreased brain levels of vitamin B12 in aging, autism and schizophrenia. PLoS One, 2016, 11(1), e0146797.
[http://dx.doi.org/10.1371/journal.pone.0146797] [PMID: 26799654]
[77]
Frye, R.E.; Slattery, J.C.; Quadros, E.V. Folate metabolism abnormalities in autism: Potential biomarkers. Biomarkers Med., 2017, 11(8), 687-699.
[http://dx.doi.org/10.2217/bmm-2017-0109] [PMID: 28770615]
[78]
James, S.J.; Melnyk, S.; Fuchs, G.; Reid, T.; Jernigan, S.; Pavliv, O.; Hubanks, A.; Gaylor, D.W. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am. J. Clin. Nutr., 2009, 89(1), 425-430.
[http://dx.doi.org/10.3945/ajcn.2008.26615] [PMID: 19056591]
[79]
An, S.; Feng, X.; Dai, Y.; Bo, H.; Wang, X.; Li, M.; Woo, J.Z.; Liang, X.; Guo, C.; Liu, C.X.; Wei, L. Development and evaluation of a speech-generating AAC mobile app for minimally verbal children with autism spectrum disorder in Mainland China. Mol. Autism, 2017, 8(1), 52.
[http://dx.doi.org/10.1186/s13229-017-0165-5] [PMID: 29026509]
[80]
Sun, C.; Zou, M.; Zhao, D.; Xia, W.; Wu, L. Efficacy of folic acid supplementation in autistic children participating in structured teaching: An open-label trial. Nutrients, 2016, 8(6), 337.
[http://dx.doi.org/10.3390/nu8060337] [PMID: 27338456]
[81]
Castro, K.; Klein, L.S.; Baronio, D.; Gottfried, C.; Riesgo, R.; Perry, I.S. Folic acid and autism: What do we know? Nutr. Neurosci., 2016, 19(7), 310-317.
[http://dx.doi.org/10.1179/1476830514Y.0000000142] [PMID: 25087906]
[82]
Kang, D.W.; Adams, J.B.; Gregory, A.C.; Borody, T.; Chittick, L.; Fasano, A.; Khoruts, A.; Geis, E.; Maldonado, J.; McDonough-Means, S.; Pollard, E.L.; Roux, S.; Sadowsky, M.J.; Lipson, K.S.; Sullivan, M.B.; Caporaso, J.G.; Krajmalnik-Brown, R. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome, 2017, 5(1), 10.
[http://dx.doi.org/10.1186/s40168-016-0225-7] [PMID: 28122648]
[83]
Gondalia, S.V.; Palombo, E.A.; Knowles, S.R.; Cox, S.B.; Meyer, D.; Austin, D.W. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res., 2012, 5(6), 419-427.
[http://dx.doi.org/10.1002/aur.1253] [PMID: 22997101]
[84]
Chaidez, V.; Hansen, R.L.; Hertz-Picciotto, I. Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord., 2014, 44(5), 1117-1127.
[http://dx.doi.org/10.1007/s10803-013-1973-x] [PMID: 24193577]
[85]
Santocchi, E.; Guiducci, L.; Fulceri, F.; Billeci, L.; Buzzigoli, E.; Apicella, F.; Calderoni, S.; Grossi, E.; Morales, M.A.; Muratori, F. Gut to brain interaction in autism spectrum disorders: A randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry, 2016, 16(1), 183.
[http://dx.doi.org/10.1186/s12888-016-0887-5] [PMID: 27260271]
[86]
Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[87]
McElhanon, B.O.; McCracken, C.; Karpen, S.; Sharp, W.G. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics, 2014, 133(5), 872-883.
[http://dx.doi.org/10.1542/peds.2013-3995] [PMID: 24777214]
[88]
Rao, G.M. Effects of prebiotics, probiotics intervention in children with autism spectrum disorder: A systematic review. Biomedicine, 2020, 20, 119-122.
[89]
Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A.; De Filippo, C. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome, 2017, 5(1), 24.
[http://dx.doi.org/10.1186/s40168-017-0242-1] [PMID: 28222761]
[90]
Dhakal, R.; Bajpai, V.K.; Baek, K.H. Production of gaba (γ - aminobutyric acid) by microorganisms: A review. Braz. J. Microbiol., 2012, 43(4), 1230-1241.
[http://dx.doi.org/10.1590/S1517-83822012000400001] [PMID: 24031948]
[91]
El-Ansary, A.; Bacha, A.B.; Bjørklund, G.; Al-Orf, N.; Bhat, R.S.; Moubayed, N.; Abed, K. Probiotic treatment reduces the autistic-like excitation/inhibition imbalance in juvenile hamsters induced by orally administered propionic acid and clindamycin. Metab. Brain Dis., 2018, 33(4), 1155-1164.
[http://dx.doi.org/10.1007/s11011-018-0212-8] [PMID: 29582256]
[92]
Ait-Belgnaoui, A.; Colom, A.; Braniste, V.; Ramalho, L.; Marrot, A.; Cartier, C.; Houdeau, E.; Theodorou, V.; Tompkins, T. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol. Motil., 2014, 26(4), 510-520.
[http://dx.doi.org/10.1111/nmo.12295] [PMID: 24372793]
[93]
Sanctuary, M.R.; Kain, J.N.; Angkustsiri, K.; German, J.B. Dietary considerations in autism spectrum disorders: The potential role of protein digestion and microbial putrefaction in the gut-brain axis. Front. Nutr., 2018, 5, 40.
[http://dx.doi.org/10.3389/fnut.2018.00040] [PMID: 29868601]
[94]
Grimaldi, R.; Gibson, G.R.; Vulevic, J.; Giallourou, N.; Castro-Mejía, J.L.; Hansen, L.H.; Leigh Gibson, E.; Nielsen, D.S.; Costabile, A. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome, 2018, 6(1), 133.
[http://dx.doi.org/10.1186/s40168-018-0523-3] [PMID: 30071894]
[95]
Meguid, N.A.; Mawgoud, Y.I.A.; Bjørklund, G.; Mehanne, N.S.; Anwar, M.; Effat, B.A.E.K.; Chirumbolo, S.; Elrahman, M.M.A. Molecular characterization of probiotics and their influence on children with autism spectrum disorder. Mol. Neurobiol., 2022, 59(11), 6896-6902.
[http://dx.doi.org/10.1007/s12035-022-02963-8] [PMID: 36050597]
[96]
MacFabe, D.F. Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microb. Ecol. Health Dis., 2012, 23(0)
[http://dx.doi.org/10.3402/mehd.v23i0.19260] [PMID: 23990817]
[97]
Sanctuary, M.R.; Kain, J.N.; Chen, S.Y.; Kalanetra, K.; Lemay, D.G.; Rose, D.R.; Yang, H.T.; Tancredi, D.J.; German, J.B.; Slupsky, C.M.; Ashwood, P.; Mills, D.A.; Smilowitz, J.T.; Angkustsiri, K. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS One, 2019, 14(1), e0210064.
[http://dx.doi.org/10.1371/journal.pone.0210064] [PMID: 30625189]
[98]
Witters, P.; Debbold, E.; Crivelly, K.; Vande Kerckhove, K.; Corthouts, K.; Debbold, B.; Andersson, H.; Vannieuwenborg, L.; Geuens, S.; Baumgartner, M.; Kozicz, T.; Settles, L.; Morava, E. Autism in patients with propionic acidemia. Mol. Genet. Metab., 2016, 119(4), 317-321.
[http://dx.doi.org/10.1016/j.ymgme.2016.10.009] [PMID: 27825584]
[99]
Choi, J.; Lee, S.; Won, J.; Jin, Y.; Hong, Y.; Hur, T.Y.; Kim, J.H.; Lee, S.R.; Hong, Y. Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PLoS One, 2018, 13(2), e0192925.
[http://dx.doi.org/10.1371/journal.pone.0192925] [PMID: 29447237]
[100]
Frye, R.E.; Rose, S.; Slattery, J.; MacFabe, D.F. Gastrointestinal dysfunction in autism spectrum disorder: The role of the mitochondria and the enteric microbiome. Microb. Ecol. Health Dis., 2015, 26(0), 27458.
[http://dx.doi.org/10.3402/mehd.v26.27458] [PMID: 25956238]
[101]
Williams, B.L.; Hornig, M.; Buie, T.; Bauman, M.L.; Cho Paik, M.; Wick, I.; Bennett, A.; Jabado, O.; Hirschberg, D.L.; Lipkin, W.I. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One, 2011, 6(9), e24585.
[http://dx.doi.org/10.1371/journal.pone.0024585] [PMID: 21949732]
[102]
Tomova, A.; Husarova, V.; Lakatosova, S.; Bakos, J.; Vlkova, B.; Babinska, K.; Ostatnikova, D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav., 2015, 138, 179-187.
[http://dx.doi.org/10.1016/j.physbeh.2014.10.033] [PMID: 25446201]
[103]
Hogan, S.; O’Gara, J.P.; O’Neill, E. Novel treatment of Staphylococcus aureus device-related infections using fibrinolytic agents. Antimicrob. Agents Chemother., 2018, 62(2), e02008-17.
[http://dx.doi.org/10.1128/AAC.02008-17] [PMID: 29203484]
[104]
Zapotoczna, M.; McCarthy, H.; Rudkin, J.K.; O’Gara, J.P.; O’Neill, E. An essential role for coagulase in Staphylococcus aureus biofilm development reveals new therapeutic possibilities for device-related infections. J. Infect. Dis., 2015, 212(12), 1883-1893.
[http://dx.doi.org/10.1093/infdis/jiv319] [PMID: 26044292]
[105]
Chang, Y.; Gu, W.; McLandsborough, L. Low concentration of ethylenediaminetetraacetic acid (EDTA) affects biofilm formation of Listeria monocytogenes by inhibiting its initial adherence. Food Microbiol., 2012, 29(1), 10-17.
[http://dx.doi.org/10.1016/j.fm.2011.07.009] [PMID: 22029913]
[106]
Miyazaki, Y.; Yokota, H.; Takahashi, H.; Fukuda, M.; Kawakami, H.; Kamiya, S.; Hanawa, T. Effect of probiotic bacterial strains of Lactobacillus, Bifidobacterium, and Enterococcus on Enteroaggregative Escherichia coli. J. Infect. Chemother., 2010, 16(1), 10-18.
[http://dx.doi.org/10.1007/s10156-009-0007-2] [PMID: 20054601]
[107]
Panksepp, J. A neurochemical theory of autism. Trends Neurosci., 1979, 2, 174-177.
[http://dx.doi.org/10.1016/0166-2236(79)90071-7]
[108]
Gillberg, C.; Terenius, L.; Lönnerholm, G. Endorphin activity in childhood psychosis. Spinal fluid levels in 24 cases. Arch. Gen. Psychiatry, 1985, 42(8), 780-783.
[http://dx.doi.org/10.1001/archpsyc.1985.01790310042005] [PMID: 4015322]
[109]
Guareschi Cazzullo, A.; Musetti, M.C.; Musetti, L.; Bajo, S.; Sacerdote, P.; Panerai, A. β-Endorphin levels in peripheral blood mononuclear cells and long-term naltrexone treatment in autistic children. Eur. Neuropsychopharmacol., 1999, 9(4), 361-366.
[http://dx.doi.org/10.1016/S0924-977X(99)00010-3] [PMID: 10422898]
[110]
Zioudrou, C.; Streaty, R.A.; Klee, W.A. Opioid peptides derived from food proteins. The exorphins. J. Biol. Chem., 1979, 254(7), 2446-2449.
[http://dx.doi.org/10.1016/S0021-9258(17)30243-0] [PMID: 372181]
[111]
Whiteley, P.; Shattock, P. Biochemical aspects in autism spectrum disorders: Updating the opioid-excess theory and presenting new opportunities for biomedical intervention. Expert Opin. Ther. Targets, 2002, 6(2), 175-183.
[http://dx.doi.org/10.1517/14728222.6.2.175] [PMID: 12223079]
[112]
Camarca, A.; Anderson, R.P.; Mamone, G.; Fierro, O.; Facchiano, A.; Costantini, S.; Zanzi, D.; Sidney, J.; Auricchio, S.; Sette, A.; Troncone, R.; Gianfrani, C. Intestinal T cell responses to gluten peptides are largely heterogeneous: Implications for a peptide-based therapy in celiac disease. J. Immunol., 2009, 182(7), 4158-4166.
[http://dx.doi.org/10.4049/jimmunol.0803181] [PMID: 19299713]
[113]
Catassi, C.; Fasano, A. Celiac disease. Curr. Opin. Gastroenterol., 2008, 24(6), 687-691.
[http://dx.doi.org/10.1097/MOG.0b013e32830edc1e] [PMID: 19122516]
[114]
Ghalichi, F.; Ghaemmaghami, J.; Malek, A.; Ostadrahimi, A. Effect of gluten free diet on gastrointestinal and behavioral indices for children with autism spectrum disorders: A randomized clinical trial. World J. Pediatr., 2016, 12(4), 436-442.
[http://dx.doi.org/10.1007/s12519-016-0040-z] [PMID: 27286693]
[115]
Pennesi, C.M.; Klein, L.C. Effectiveness of the gluten-free, casein-free diet for children diagnosed with autism spectrum disorder: Based on parental report. Nutr. Neurosci., 2012, 15(2), 85-91.
[http://dx.doi.org/10.1179/1476830512Y.0000000003] [PMID: 22564339]
[116]
Johnson, C.R.; Handen, B.L.; Zimmer, M.; Sacco, K.; Turner, K. Effects of gluten free / casein free diet in young children with autism: A pilot study. J. Dev. Phys. Disabil., 2011, 23(3), 213-225.
[http://dx.doi.org/10.1007/s10882-010-9217-x]
[117]
Elder, J.H.; Shankar, M.; Shuster, J.; Theriaque, D.; Burns, S.; Sherrill, L. The gluten-free, casein-free diet in autism: Results of a preliminary double blind clinical trial. J. Autism Dev. Disord., 2006, 36(3), 413-420.
[http://dx.doi.org/10.1007/s10803-006-0079-0] [PMID: 16555138]
[118]
Lange, K.W.; Hauser, J.; Reissmann, A. Gluten-free and casein-free diets in the therapy of autism. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(6), 572-575.
[http://dx.doi.org/10.1097/MCO.0000000000000228] [PMID: 26418822]
[119]
Desai, A.; Sequeira, J.M.; Quadros, E.V. Prevention of behavioral deficits in rats exposed to folate receptor antibodies: Implication in autism. Mol. Psychiatry, 2017, 22(9), 1291-1297.
[http://dx.doi.org/10.1038/mp.2016.153] [PMID: 27646260]
[120]
Castro, K.; Baronio, D.; Perry, I.S.; Riesgo, R.S.; Gottfried, C. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid. Nutr. Neurosci., 2017, 20(6), 343-350.
[http://dx.doi.org/10.1080/1028415X.2015.1133029] [PMID: 26856821]
[121]
Spilioti, M.; Evangeliou, A.E.; Tramma, D.; Theodoridou, Z.; Metaxas, S.; Michailidi, E.; Bonti, E.; Frysira, H.; Haidopoulou, A.; Asprangathou, D.; Tsalkidis, A.J.; Kardaras, P.; Wevers, R.A.; Jakobs, C.; Gibson, K.M. Evidence for treatable inborn errors of metabolism in a cohort of 187 Greek patients with autism spectrum disorder (ASD). Front. Hum. Neurosci., 2013, 7, 858.
[http://dx.doi.org/10.3389/fnhum.2013.00858] [PMID: 24399946]
[122]
El-Rashidy, O.; El-Baz, F.; El-Gendy, Y.; Khalaf, R.; Reda, D.; Saad, K. Ketogenic diet versus gluten free casein free diet in autistic children: A case-control study. Metab. Brain Dis., 2017, 32(6), 1935-1941.
[http://dx.doi.org/10.1007/s11011-017-0088-z] [PMID: 28808808]
[123]
Evangeliou, A.; Vlachonikolis, I.; Mihailidou, H.; Spilioti, M.; Skarpalezou, A.; Makaronas, N.; Prokopiou, A.; Christodoulou, P.; Liapi-Adamidou, G.; Helidonis, E.; Sbyrakis, S.; Smeitink, J. Application of a ketogenic diet in children with autistic behavior: Pilot study. J. Child Neurol., 2003, 18(2), 113-118.
[http://dx.doi.org/10.1177/08830738030180020501] [PMID: 12693778]
[124]
Hartman, R.E.; Patel, D. Dietary approaches to the management of autism spectrum disorders. Advances in Neurobiology; Springer, 2020, Vol. 24, pp. 547-571.
[http://dx.doi.org/10.1007/978-3-030-30402-7_19]
[125]
Nurchi, V.M.; Buha Djordjevic, A.; Crisponi, G.; Alexander, J.; Bjørklund, G.; Aaseth, J. Arsenic toxicity: Molecular targets and therapeutic agents. Biomolecules, 2020, 10(2), 235.
[http://dx.doi.org/10.3390/biom10020235] [PMID: 32033229]
[126]
Bjørklund, G.; Crisponi, G.; Nurchi, V.M.; Cappai, R.; Buha Djordjevic, A.; Aaseth, J. A review on coordination properties of thiol-containing chelating agents towards mercury, cadmium, and lead. Molecules, 2019, 24(18), 3247.
[http://dx.doi.org/10.3390/molecules24183247] [PMID: 31489907]
[127]
Bjørklund, G.; Mutter, J.; Aaseth, J. Metal chelators and neurotoxicity: Lead, mercury, and arsenic. Arch. Toxicol., 2017, 91(12), 3787-3797.
[http://dx.doi.org/10.1007/s00204-017-2100-0] [PMID: 29063135]
[128]
Yassa, H.A. Autism: A form of lead and mercury toxicity. Environ. Toxicol. Pharmacol., 2014, 38(3), 1016-1024.
[http://dx.doi.org/10.1016/j.etap.2014.10.005] [PMID: 25461563]
[129]
James, S.; Stevenson, S.W.; Silove, N.; Williams, K. Chelation for autism spectrum disorder (ASD). Cochrane Libr., 2015, 2016(10), CD010766.
[http://dx.doi.org/10.1002/14651858.CD010766.pub2] [PMID: 26114777]
[130]
T Schultz, S.; G Gould, G. Acetaminophen use for fever in children associated with autism spectrum disorder. Autism Open Access, 2016, 6(2), 170.
[http://dx.doi.org/10.4172/2165-7890.1000170] [PMID: 27695658]
[131]
Wang, T.; Shan, L.; Du, L.; Feng, J.; Xu, Z.; Staal, W.G.; Jia, F. Serum concentration of 25-hydroxyvitamin D in autism spectrum disorder: A systematic review and meta-analysis. Eur. Child Adolesc. Psychiatry, 2016, 25(4), 341-350.
[http://dx.doi.org/10.1007/s00787-015-0786-1] [PMID: 26514973]
[132]
Fernell, E.; Bejerot, S.; Westerlund, J.; Miniscalco, C.; Simila, H.; Eyles, D.; Gillberg, C.; Humble, M.B. Autism spectrum disorder and low vitamin D at birth: A sibling control study. Mol. Autism, 2015, 6(1), 3.
[http://dx.doi.org/10.1186/2040-2392-6-3] [PMID: 25874075]
[133]
Huang, Y.N.; Ho, Y.J.; Lai, C.C.; Chiu, C.T.; Wang, J.Y. 1,25-Dihydroxyvitamin D3 attenuates endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation in primary cortical neuron-glia cultures. J. Neuroinflammation, 2015, 12(1), 147.
[http://dx.doi.org/10.1186/s12974-015-0370-0] [PMID: 26259787]
[134]
Patrick, R.P.; Ames, B.N.; Vitamin, D. Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB J., 2014, 28(6), 2398-2413.
[http://dx.doi.org/10.1096/fj.13-246546] [PMID: 24558199]
[135]
Saad, K.; Abdel-Rahman, A.A.; Elserogy, Y.M.; Al-Atram, A.A.; El-Houfey, A.A.; Othman, H.A.K.; Bjørklund, G.; Jia, F.; Urbina, M.A.; Abo-Elela, M.G.M.; Ahmad, F.A.; Abd El-Baseer, K.A.; Ahmed, A.E.; Abdel-Salam, A.M. Retracted: Randomized controlled trial of vitamin D supplementation in children with autism spectrum disorder. J. Child Psychol. Psychiatry, 2018, 59(1), 20-29.
[http://dx.doi.org/10.1111/jcpp.12652] [PMID: 27868194]
[136]
Kostiukow, A.; Samborski, W. The effectiveness of hyperbaric oxygen therapy (HBOT) in children with autism spectrum disorders. Pol. Merkur. Lekarski, 2020, 48(283), 15-18.
[137]
Rossignol, D.A.; Rossignol, L.W.; Smith, S.; Schneider, C.; Logerquist, S.; Usman, A.; Neubrander, J.; Madren, E.M.; Hintz, G.; Grushkin, B.; Mumper, E.A. Hyperbaric treatment for children with autism: A multicenter, randomized, double-blind, controlled trial. BMC Pediatr., 2009, 9(1), 21.
[http://dx.doi.org/10.1186/1471-2431-9-21] [PMID: 19284641]
[138]
Sakulchit, T.; Ladish, C.; Goldman, R.D. Hyperbaric oxygen therapy for children with autism spectrum disorder. Can. Fam. Physician, 2017, 63(6), 446-448.
[PMID: 28615394]
[139]
Choi, S.; Hong, D.K.; Choi, B.Y.; Suh, S.W. Zinc in the brain: Friend or foe? Int. J. Mol. Sci., 2020, 21(23), 8941.
[http://dx.doi.org/10.3390/ijms21238941] [PMID: 33255662]
[140]
Bitanihirwe, B.K.Y.; Cunningham, M.G. Zinc: The brain’s dark horse. Synapse, 2009, 63(11), 1029-1049.
[http://dx.doi.org/10.1002/syn.20683] [PMID: 19623531]
[141]
Cope, E.C.; Levenson, C.W. Role of zinc in the development and treatment of mood disorders. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(6), 685-689.
[http://dx.doi.org/10.1097/MCO.0b013e32833df61a] [PMID: 20689416]
[142]
Russo, A. J. Decreased zinc and increased copper in individuals with anxiety. Nutr Metab Insights, 2011, 4, 1-5.
[http://dx.doi.org/10.4137/NMI.S6349]
[143]
Krall, R.; Gale, J.R.; Ross, M.M.; Tzounopoulos, T.; Aizenman, E. Intracellular zinc signaling influences NMDA receptor function by enhancing the interaction of ZnT1 with GluN2A. Neurosci. Lett., 2022, 790, 136896.
[http://dx.doi.org/10.1016/j.neulet.2022.136896] [PMID: 36202195]
[144]
Miyata, S.; Nagata, H.; Yamao, S.; Nakamura, S.; Kameyama, M. Dopamine-β-hydroxylase activities in serum and cerebrospinal fluid of aged and demented patients. J. Neurol. Sci., 1984, 63(3), 403-409.
[http://dx.doi.org/10.1016/0022-510X(84)90163-1] [PMID: 6726279]
[145]
Skalny, A.V.; Simashkova, N.V.; Klyushnik, T.P.; Grabeklis, A.R.; Radysh, I.V.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. J. Trace Elem. Med. Biol., 2017, 43, 9-14.
[http://dx.doi.org/10.1016/j.jtemb.2016.09.009] [PMID: 27707611]
[146]
Wu, H.; Zhao, G.; Liu, S.; Zhang, Q.; Wang, P.; Cao, Y.; Wu, L. Supplementation with selenium attenuates autism-like behaviors and improves oxidative stress, inflammation and related gene expression in an autism disease model. J. Nutr. Biochem., 2022, 107, 109034.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109034] [PMID: 35500829]
[147]
Skalny, A.V.; Skalnaya, M.G.; Bjørklund, G.; Gritsenko, V.A.; Aaseth, J.; Tinkov, A.A. Selenium and autism spectrum disorder. In: Selenium. Molecular and Integrative Toxicology; Springer: Cham, 2018; pp. 193-210.
[http://dx.doi.org/10.1007/978-3-319-95390-8_10]
[148]
Raymond, L.J.; Deth, R.C.; Ralston, N.V.C. Potential role of selenoenzymes and antioxidant metabolism in relation to autism etiology and pathology. Autism Res. Treat., 2014, 2014, 1-15.
[http://dx.doi.org/10.1155/2014/164938] [PMID: 24734177]
[149]
Bjørklund, G.; Aaseth, J.; Ajsuvakova, O.P.; Nikonorov, A.A.; Skalny, A.V.; Skalnaya, M.G.; Tinkov, A.A. Molecular interaction between mercury and selenium in neurotoxicity. Coord. Chem. Rev., 2017, 332, 30-37.
[http://dx.doi.org/10.1016/j.ccr.2016.10.009]
[150]
Bjørklund, G. Selenium as an antidote in the treatment of mercury intoxication. Biometals, 2015, 28(4), 605-614.
[http://dx.doi.org/10.1007/s10534-015-9857-5] [PMID: 25947386]
[151]
El-Ansary, A.; Bjørklund, G.; Tinkov, A.A.; Skalny, A.V.; Al Dera, H. Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab. Brain Dis., 2017, 32(4), 1073-1080.
[http://dx.doi.org/10.1007/s11011-017-9996-1] [PMID: 28326463]
[152]
Kirkland, A.; Sarlo, G.; Holton, K. The role of magnesium in neurological disorders. Nutrients, 2018, 10(6), 730.
[http://dx.doi.org/10.3390/nu10060730] [PMID: 29882776]
[153]
Yasuda, H.; Tsutsui, T. Assessment of infantile mineral imbalances in autism spectrum disorders (ASDs). Int. J. Environ. Res. Public Health, 2013, 10(11), 6027-6043.
[http://dx.doi.org/10.3390/ijerph10116027] [PMID: 24284360]
[154]
Beto, J.A. The role of calcium in human aging. Clin. Nutr. Res., 2015, 4(1), 1-8.
[http://dx.doi.org/10.7762/cnr.2015.4.1.1] [PMID: 25713787]
[155]
Nguyen, R.L.; Medvedeva, Y.V.; Ayyagari, T.E.; Schmunk, G.; Gargus, J.J. Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(11), 1718-1732.
[http://dx.doi.org/10.1016/j.bbamcr.2018.08.003] [PMID: 30992134]
[156]
Chen, L.; Shi, X.J.; Liu, H.; Mao, X.; Gui, L.N.; Wang, H.; Cheng, Y. Oxidative stress marker aberrations in children with autism spectrum disorder: A systematic review and meta-analysis of 87 studies (N = 9109). Transl. Psychiatry, 2021, 11(1), 15.
[http://dx.doi.org/10.1038/s41398-020-01135-3] [PMID: 33414386]
[157]
Vetter, T.; Lohse, M.J. Magnesium and the parathyroid. Curr. Opin. Nephrol. Hypertens., 2002, 11(4), 403-410.
[http://dx.doi.org/10.1097/00041552-200207000-00006] [PMID: 12105390]
[158]
Pangrazzi, L.; Balasco, L.; Bozzi, Y. Oxidative stress and immune system dysfunction in autism spectrum disorders. Int. J. Mol. Sci., 2020, 21(9), 3293.
[http://dx.doi.org/10.3390/ijms21093293] [PMID: 32384730]
[159]
Saghazadeh, A.; Ahangari, N.; Hendi, K.; Saleh, F.; Rezaei, N. Status of essential elements in autism spectrum disorder: Systematic review and meta-analysis. Rev. Neurosci., 2017, 28(7), 783-809.
[http://dx.doi.org/10.1515/revneuro-2017-0015] [PMID: 28665792]
[160]
Skalny, A.V.; Mazaletskaya, A.L.; Ajsuvakova, O.P.; Bjørklund, G.; Skalnaya, M.G.; Chernova, L.N.; Skalny, A.A.; Tinkov, A.A. Magnesium status in children with attention-deficit/hyperactivity disorder and/or autism spectrum disorder. J. Korean Acad. Child Adolesc. Psychiatry, 2020, 31(1), 41-45.
[http://dx.doi.org/10.5765/jkacap.190036] [PMID: 32612412]
[161]
Uwitonze, A.M.; Razzaque, M.S. Role of magnesium in vitamin D activation and function. J. Am. Osteopath. Assoc., 2018, 118(3), 181-189.
[http://dx.doi.org/10.7556/jaoa.2018.037] [PMID: 29480918]
[162]
Muir, K.W. Magnesium in stroke treatment. Postgrad. Med. J., 2002, 78(925), 641-645.
[http://dx.doi.org/10.1136/pmj.78.925.641] [PMID: 12496316]
[163]
Schmunk, G.; Gargus, J.J. Channelopathy pathogenesis in autism spectrum disorders. Front. Genet., 2013, 4, 222.
[http://dx.doi.org/10.3389/fgene.2013.00222] [PMID: 24204377]
[164]
Martineau, J.; Barthelemy, C.; Garreau, B.; Lelord, G. Vitamin B6, magnesium, and combined B6-Mg: Therapeutic effects in childhood autism. Biol. Psychiatry, 1985, 20(5), 467-478.
[http://dx.doi.org/10.1016/0006-3223(85)90019-8] [PMID: 3886023]
[165]
Bjørklund, G.; Waly, M.I.; Al-Farsi, Y.; Saad, K.; Dadar, M.; Rahman, M.M.; Elhoufey, A.; Chirumbolo, S.; Jóźwik-Pruska, J.; Kałużna-Czaplińska, J. The role of vitamins in autism spectrum disorder: What do we know? J. Mol. Neurosci., 2019, 67(3), 373-387.
[http://dx.doi.org/10.1007/s12031-018-1237-5] [PMID: 30607900]
[166]
Saad, K.; Abdel-rahman, A.A.; Elserogy, Y.M.; Al-Atram, A.A.; Cannell, J.J.; Bjørklund, G.; Abdel-Reheim, M.K.; Othman, H.A.K.; El-Houfey, A.A.; Abd El-Aziz, N.H.R.; Abd El-Baseer, K.A.; Ahmed, A.E.; Ali, A.M. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr. Neurosci., 2016, 19(8), 346-351.
[http://dx.doi.org/10.1179/1476830515Y.0000000019] [PMID: 25876214]
[167]
Chirumbolo, S.; Bjørklund, G.; Sboarina, A.; Vella, A. The role of vitamin D in the immune system as a pro-survival molecule. Clin. Ther., 2017, 39(5), 894-916.
[http://dx.doi.org/10.1016/j.clinthera.2017.03.021] [PMID: 28438353]
[168]
Patrick, R.P.; Ames, B.N. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J., 2015, 29(6), 2207-2222.
[http://dx.doi.org/10.1096/fj.14-268342] [PMID: 25713056]
[169]
Cui, X.; Eyles, D.W. Vitamin D and the central nervous system: Causative and preventative mechanisms in brain disorders. Nutrients, 2022, 14(20), 4353.
[http://dx.doi.org/10.3390/nu14204353] [PMID: 36297037]
[170]
Zastre, J.A.; Sweet, R.L.; Hanberry, B.S.; Ye, S. Linking vitamin B1 with cancer cell metabolism. Cancer Metab., 2013, 1(1), 16.
[http://dx.doi.org/10.1186/2049-3002-1-16] [PMID: 24280319]
[171]
Jung, H.Y.; Kwon, H.J.; Kim, W.; Nam, S.M.; Kim, J.W.; Hahn, K.R.; Yoo, D.Y.; Yoon, Y.S.; Choi, S.Y.; Kim, D.W.; Hwang, I.K. Role of pyridoxine in GABA synthesis and degradation in the hippocampus. Tissue Cell, 2019, 61, 72-78.
[http://dx.doi.org/10.1016/j.tice.2019.09.005] [PMID: 31759410]
[172]
Stover, P.J.; Field, M.S. Vitamin B-6. Adv. Nutr., 2015, 6(1), 132-133.
[http://dx.doi.org/10.3945/an.113.005207] [PMID: 25593152]
[173]
Scott, J.M. Folate and vitamin B 12. Proc. Nutr. Soc., 1999, 58(2), 441-448.
[http://dx.doi.org/10.1017/S0029665199000580] [PMID: 10466189]
[174]
Bjørklund, G.; Doşa, M.D.; Maes, M.; Dadar, M.; Frye, R.E.; Peana, M.; Chirumbolo, S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol. Res., 2021, 166, 105437.
[http://dx.doi.org/10.1016/j.phrs.2021.105437] [PMID: 33493659]
[175]
Bjørklund, G.; Tinkov, A.A.; Hosnedlová, B.; Kizek, R.; Ajsuvakova, O.P.; Chirumbolo, S.; Skalnaya, M.G.; Peana, M.; Dadar, M.; El-Ansary, A.; Qasem, H.; Adams, J.B.; Aaseth, J.; Skalny, A.V. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic. Biol. Med., 2020, 160, 149-162.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.017] [PMID: 32745763]
[176]
Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlová, B.; Kizek, R.; Osredkar, J.; Urbina, M.A.; Fabjan, T.; El-Houfey, A.A.; Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S. Oxidative stress in autism spectrum disorder. Mol. Neurobiol., 2020, 57(5), 2314-2332.
[http://dx.doi.org/10.1007/s12035-019-01742-2] [PMID: 32026227]
[177]
Rimland, B.; Callaway, E.; Dreyfus, P. The effect of high doses of vitamin B6 on autistic children: A double- blind crossover study. Am. J. Psychiatry, 1978, 135(4), 472-475.
[http://dx.doi.org/10.1176/ajp.135.4.472] [PMID: 345827]
[178]
El-Ansary, A.; Cannell, J.J.; Bjørklund, G.; Bhat, R.S.; Al Dbass, A.M.; Alfawaz, H.A.; Chirumbolo, S.; Al-Ayadhi, L. In the search for reliable biomarkers for the early diagnosis of autism spectrum disorder: The role of vitamin D. Metab. Brain Dis., 2018, 33(3), 917-931.
[http://dx.doi.org/10.1007/s11011-018-0199-1] [PMID: 29497932]
[179]
Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S.; Chartrand, M.S.; Bjørklund, G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr., 2019, 59(1), 72-88.
[http://dx.doi.org/10.1080/10408398.2017.1357534] [PMID: 28799778]
[180]
Kałużna-Czaplińska, J.; Jóźwik-Pruska, J.; Chirumbolo, S.; Bjørklund, G. Tryptophan status in autism spectrum disorder and the influence of supplementation on its level. Metab. Brain Dis., 2017, 32(5), 1585-1593.
[http://dx.doi.org/10.1007/s11011-017-0045-x] [PMID: 28608247]
[181]
Bjørklund, G.; Saad, K.; Chirumbolo, S.; Kern, J.K.; Geier, D.A.; Geier, M.R.; Urbina, M.A. Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol. Exp., 2016, 76(4), 257-268.
[http://dx.doi.org/10.21307/ane-2017-025] [PMID: 28094817]
[182]
Connery, K.; Tippett, M.; Delhey, L.M.; Rose, S.; Slattery, J.C.; Kahler, S.G.; Hahn, J.; Kruger, U.; Cunningham, M.W.; Shimasaki, C.; Frye, R.E. Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Transl. Psychiatry, 2018, 8(1), 148.
[http://dx.doi.org/10.1038/s41398-018-0214-7] [PMID: 30097568]
[183]
Abrams, D.I. The therapeutic effects of Cannabis and cannabinoids: An update from the National Academies of Sciences, Engineering and Medicine report. Eur. J. Intern. Med., 2018, 49, 7-11.
[http://dx.doi.org/10.1016/j.ejim.2018.01.003] [PMID: 29325791]
[184]
Agarwal, R.; Burke, S.L.; Maddux, M. Current state of evidence of cannabis utilization for treatment of autism spectrum disorders. BMC Psychiatry, 2019, 19(1), 328.
[http://dx.doi.org/10.1186/s12888-019-2259-4] [PMID: 31664964]
[185]
Aran, A.; Cayam-Rand, D. Medical cannabis in children. Rambam Maimonides Med. J., 2020, 11(1), e0003.
[http://dx.doi.org/10.5041/RMMJ.10386] [PMID: 32017680]
[186]
Fusar-Poli, L.; Cavone, V.; Tinacci, S.; Concas, I.; Petralia, A.; Signorelli, M.S.; Díaz-Caneja, C.M.; Aguglia, E. Cannabinoids for people with ASD: A systematic review of published and ongoing studies. Brain Sci., 2020, 10(9), 572.
[http://dx.doi.org/10.3390/brainsci10090572] [PMID: 32825313]
[187]
Bar-Lev Schleider, L.; Mechoulam, R.; Saban, N.; Meiri, G.; Novack, V. Real life experience of medical cannabis treatment in autism: Analysis of safety and efficacy. Sci. Rep., 2019, 9(1), 200.
[http://dx.doi.org/10.1038/s41598-018-37570-y] [PMID: 30655581]
[188]
Wong, H.; Hoeffer, C. Maternal IL-17A in autism. Exp. Neurol., 2018, 299(Pt A), 228-240.
[http://dx.doi.org/10.1016/j.expneurol.2017.04.010] [PMID: 28455196]
[189]
Choi, G.B.; Yim, Y.S.; Wong, H.; Kim, S.; Kim, H.; Kim, S.V.; Hoeffer, C.A.; Littman, D.R.; Huh, J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 2016, 351(6276), 933-939.
[http://dx.doi.org/10.1126/science.aad0314] [PMID: 26822608]
[190]
Nabetani, M.; Mukai, T.; Taguchi, A. Cell therapies for autism spectrum disorder based on new pathophysiology: A review. Cell Transplant., 2023, 32
[http://dx.doi.org/10.1177/09636897231163217] [PMID: 36999673]
[191]
Qu, J.; Liu, Z.; Li, L.; Zou, Z.; He, Z.; Zhou, L.; Luo, Y.; Zhang, M.; Ye, J. Efficacy and safety of stem cell therapy in children with autism spectrum disorders: A systematic review and meta-analysis. Front Pediatr., 2022, 10, 897398.
[http://dx.doi.org/10.3389/fped.2022.897398] [PMID: 35601435]
[192]
Bradstreet, J.J.; Sych, N.; Antonucci, N.; Klunnik, M.; Ivankova, O.; Matyashchuk, I.; Demchuk, M.; Siniscalco, D. Efficacy of fetal stem cell transplantation in autism spectrum disorders: An open-labeled pilot study. Cell Transplant., 2014, 23(1_suppl)(Suppl. 1), 105-112.
[http://dx.doi.org/10.3727/096368914X684916] [PMID: 25302490]
[193]
Lv, Y.T.; Zhang, Y.; Liu, M.; Qiuwaxi, J.; Ashwood, P.; Cho, S.C.; Huan, Y.; Ge, R.C.; Chen, X.W.; Wang, Z.J.; Kim, B.J.; Hu, X. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J. Transl. Med., 2013, 11(1), 196.
[http://dx.doi.org/10.1186/1479-5876-11-196] [PMID: 23978163]
[194]
Dawson, G.; Sun, J.M.; Davlantis, K.S.; Murias, M.; Franz, L.; Troy, J.; Simmons, R.; Sabatos-DeVito, M.; Durham, R.; Kurtzberg, J. Autologous cord blood infusions are safe and feasible in young children with autism spectrum disorder: Results of a single-center phase I open-label trial. Stem Cells Transl. Med., 2017, 6(5), 1332-1339.
[http://dx.doi.org/10.1002/sctm.16-0474] [PMID: 28378499]
[195]
Dawson, G.; Sun, J.M.; Baker, J.; Carpenter, K.; Compton, S.; Deaver, M.; Franz, L.; Heilbron, N.; Herold, B.; Horrigan, J.; Howard, J.; Kosinski, A.; Major, S.; Murias, M.; Page, K.; Prasad, V.K.; Sabatos-DeVito, M.; Sanfilippo, F.; Sikich, L.; Simmons, R.; Song, A.; Vermeer, S.; Waters-Pick, B.; Troy, J.; Kurtzberg, J. A phase II randomized clinical trial of the safety and efficacy of intravenous umbilical cord blood infusion for treatment of children with autism spectrum disorder. J. Pediatr., 2020, 222, 164-173.e5.
[http://dx.doi.org/10.1016/j.jpeds.2020.03.011] [PMID: 32444220]
[196]
Siniscalco, D.; Kannan, S.; Semprún-Hernández, N.; Eshraghi, A.A.; Brigida, A.L.; Antonucci, N. Stem cell therapy in autism: Recent insights. Stem Cells Cloning, 2018, 11, 55-67.
[http://dx.doi.org/10.2147/SCCAA.S155410] [PMID: 30425534]
[197]
Kathuria, A.; Nowosiad, P.; Jagasia, R.; Aigner, S.; Taylor, R.D.; Andreae, L.C.; Gatford, N.J.F.; Lucchesi, W.; Srivastava, D.P.; Price, J. Stem cell-derived neurons from autistic individuals with SHANK3 mutation show morphogenetic abnormalities during early development. Mol. Psychiatry, 2018, 23(3), 735-746.
[http://dx.doi.org/10.1038/mp.2017.185] [PMID: 28948968]
[198]
Griesi-Oliveira, K.; Acab, A.; Gupta, A.R.; Sunaga, D.Y.; Chailangkarn, T.; Nicol, X.; Nunez, Y.; Walker, M.F.; Murdoch, J.D.; Sanders, S.J.; Fernandez, T.V.; Ji, W.; Lifton, R.P.; Vadasz, E.; Dietrich, A.; Pradhan, D.; Song, H.; Ming, G.; Gu, X.; Haddad, G.; Marchetto, M.C.N.; Spitzer, N.; Passos-Bueno, M.R.; State, M.W.; Muotri, A.R. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol. Psychiatry, 2015, 20(11), 1350-1365.
[http://dx.doi.org/10.1038/mp.2014.141] [PMID: 25385366]
[199]
Liu, X.; Campanac, E.; Cheung, H.H.; Ziats, M.N.; Canterel-Thouennon, L.; Raygada, M.; Baxendale, V.; Pang, A.L.Y.; Yang, L.; Swedo, S.; Thurm, A.; Lee, T.L.; Fung, K.P.; Chan, W.Y.; Hoffman, D.A.; Rennert, O.M. Idiopathic autism: Cellular and molecular phenotypes in pluripotent stem cell-derived neurons. Mol. Neurobiol., 2017, 54(6), 4507-4523.
[http://dx.doi.org/10.1007/s12035-016-9961-8] [PMID: 27356918]
[200]
Knoepfler, P.S. Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells, 2009, 27(5), 1050-1056.
[http://dx.doi.org/10.1002/stem.37] [PMID: 19415771]

© 2024 Bentham Science Publishers | Privacy Policy