Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Organoids Research for Colorectal Cancer: Promising Approach for Precision Medicine, their Applications and Future Perspectives

Author(s): Sonia Singh, Ashima Ahuja*, Raghavan Ramankutty and Sarada Ramaswamy

Volume 19, Issue 7, 2024

Published on: 02 October, 2023

Page: [809 - 820] Pages: 12

DOI: 10.2174/0115748855266739230919110125

Price: $65

conference banner
Abstract

Background: Organoids are three-dimensional (3D) constructs designed to emulate the complexity and functionality of organs in the body. Organoids have recently been used as powerful instruments for modeling and investigating several diseases, including colorectal cancer. Colorectal cancer is caused by altering colonic epithelial cells, which produce adenomas and carcinomas.

Objective: The objective of present study was to investigate impact of organoids on colorectal cancer and their therapeutic outcome in cancer research. Organoids can be grown from stem cells in vitro, which closely resemble the structure and function of the organ they are derived from. They have been used in a variety of research applications, including disease modeling, drug screening, and personalized medicine. Organoids have allowed researchers to understand better the mechanisms underlying colorectal cancer initiation, progression, and resistance to therapy.

Methods: The literature review was surveyed, and keywords related to cancer management, organoids, modelling, personized medicine, 3D structures were screened for colorectal cancer management were screened in SCI-hub, SCOPUS, WOS, and ABC Journals.

Results: The findings of studies suggested that organoids derived from patient tumors can recapitulate the histopathology and genetic alterations of the original tumor, making them a valuable tool for personalized medicine.

Conclusion: Organoids have been used to develop high-throughput drug screening assays and investigate the tumor microenvironment's contribution to colorectal cancer progression. In this review, we summarize recent advances in the use of organoids to study colorectal cancer and discuss their potential applications in the clinic.

Keywords: Organoids, 3D, colorectal cancer, modeling, personalized medicine, epithelial cells.

Graphical Abstract
[1]
Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 2019; 16(12): 713-32.
[http://dx.doi.org/10.1038/s41575-019-0189-8]
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492]
[3]
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66(4): 683-91.
[http://dx.doi.org/10.1136/gutjnl-2015-310912]
[4]
Yang T, Li X, Montazeri Z, et al. Gene–environment interactions and colorectal cancer risk: An umbrella review of systematic reviews and meta‐analyses of observational studies. Int J Cancer 2019; 145(9): 2315-29.
[http://dx.doi.org/10.1002/ijc.32057]
[5]
Roney MSI, Lanagan C, Sheng YH, et al. IgM and IgA augmented autoantibody signatures improve early‐stage detection of colorectal cancer prior to nodal and distant spread. Clin Transl Immunology 2021; 10(9): e1330.
[http://dx.doi.org/10.1002/cti2.1330]
[6]
Siegel RL, Fedewa SA, Anderson WF, et al. Colorectal cancer incidence patterns in the United States, 1974–2013. J Natl Cancer Inst 2017; 109(8): djw322.
[http://dx.doi.org/10.1093/jnci/djw322]
[7]
Alves Martins BA, de Bulhões GF, Cavalcanti IN, Martins MM, de Oliveira PG, Martins AMA. Biomarkers in colorectal cancer: the role of translational proteomics research. Front Oncol 2019; 9: 1284.
[http://dx.doi.org/10.3389/fonc.2019.01284]
[8]
Jung E, Choi J, Kim JS, Han TS. MicroRNA-based therapeutics for drug-resistant colorectal cancer. Pharmaceuticals (Basel) 2021; 14(2): 136.
[http://dx.doi.org/10.3390/ph14020136]
[9]
Zhou J, Su J, Fu X, Zheng L, Yin Z. Microfluidic device for primary tumor spheroid isolation. Exp Hematol Oncol 2017; 6(1): 22.
[http://dx.doi.org/10.1186/s40164-017-0084-3]
[10]
Mittal R, Woo FW, Castro CS, et al. Organ‐on‐chip models: Implications in drug discovery and clinical applications. J Cell Physiol 2019; 234(6): 8352-80.
[http://dx.doi.org/10.1002/jcp.27729]
[11]
Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459(7244): 262-5.
[http://dx.doi.org/10.1038/nature07935]
[12]
Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol 2016; 18(3): 246-54.
[http://dx.doi.org/10.1038/ncb3312]
[13]
Xu H, Jiao Y, Qin S, Zhao W, Chu Q, Wu K. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp Hematol Oncol 2018; 7(1): 30.
[http://dx.doi.org/10.1186/s40164-018-0122-9]
[14]
Xu H, Lyu X, Yi M, Zhao W, Song Y, Wu K. Organoid technology and applications in cancer research. J Hematol Oncol 2018; 11(1): 116.
[http://dx.doi.org/10.1186/s13045-018-0662-9]
[15]
Li M, Izpisua Belmonte JC. Organoids—preclinical models of human disease. N Engl J Med 2019; 380(6): 569-79.
[http://dx.doi.org/10.1056/NEJMra1806175]
[16]
Pastrana E. The developing human brain—modeled in a dish. Nat Methods 2013; 10(10): 929.
[http://dx.doi.org/10.1038/nmeth.2674]
[17]
Lancaster MA, Huch M. Disease modelling in human organoids. Dis Model Mech 2019; 12(7): dmm039347.
[http://dx.doi.org/10.1242/dmm.039347]
[18]
Tuveson D, Clevers H. Cancer modeling meets human organoid technology. Science 2019; 364(6444): 952-5.
[http://dx.doi.org/10.1126/science.aaw6985]
[19]
Shi R, Radulovich N, Ng C, et al. Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res 2020; 26(5): 1162-74.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1376]
[20]
Xuefeng X, Hou MX, Yang ZW, et al. Epithelial–mesenchymal transition and metastasis of colon cancer cells induced by the FAK pathway in cancer-associated fibroblasts. J Int Med Res 2020; 48(6)
[http://dx.doi.org/10.1177/0300060520931242]
[21]
Chaiyawat P, Chokchaichamnankit D, Lirdprapamongkol K, Srisomsap C, Svasti J, Champattanachai V. Alteration of O-GlcNAcylation affects serine phosphorylation and regulates gene expression and activity of pyruvate kinase M2 in colorectal cancer cells. Oncol Rep 2015; 34(4): 1933-42.
[http://dx.doi.org/10.3892/or.2015.4178]
[22]
Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr Biol 2017; 27(14): R713-5.
[http://dx.doi.org/10.1016/j.cub.2017.05.064]
[23]
Lau HCH, Kranenburg O, Xiao H, Yu J. Organoid models of gastrointestinal cancers in basic and translational research. Nat Rev Gastroenterol Hepatol 2020; 17(4): 203-22.
[http://dx.doi.org/10.1038/s41575-019-0255-2]
[24]
Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett’s epithelium. Gastroenterology 2011; 141(5): 1762-72.
[http://dx.doi.org/10.1053/j.gastro.2011.07.050]
[25]
Jacob F, Salinas RD, Zhang DY, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 2020; 180(1): 188-204.e22.
[http://dx.doi.org/10.1016/j.cell.2019.11.036]
[26]
Sondorp LHJ, Ogundipe VML, Groen AH, et al. Patient-derived papillary thyroid cancer organoids for radioactive iodine refractory screening. Cancers (Basel) 2020; 12(11): 3212.
[http://dx.doi.org/10.3390/cancers12113212]
[27]
Lee SH, Hu W, Matulay JT, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 2018; 173(2): 515-528.e17.
[http://dx.doi.org/10.1016/j.cell.2018.03.017]
[28]
Ukai S, Honma R, Sakamoto N, et al. Molecular biological analysis of 5-FU-resistant gastric cancer organoids; KHDRBS3 contributes to the attainment of features of cancer stem cell. Oncogene 2020; 39(50): 7265-78.
[http://dx.doi.org/10.1038/s41388-020-01492-9]
[29]
Lu Z, Xie J, Wu G, et al. Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nat Med 2017; 23(1): 79-90.
[http://dx.doi.org/10.1038/nm.4252]
[30]
Yao Y, Xu X, Yang L, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 2020; 26(1): 17-26.e6.
[http://dx.doi.org/10.1016/j.stem.2019.10.010]
[31]
Weeber F, van de Wetering M, Hoogstraat M, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci USA 2015; 112(43): 13308-11.
[http://dx.doi.org/10.1073/pnas.1516689112]
[32]
van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015; 161(4): 933-45.
[http://dx.doi.org/10.1016/j.cell.2015.03.053]
[33]
Buzzelli JN, Ouaret D, Brown G, Allen PD, Muschel RJ. Colorectal cancer liver metastases organoids retain characteristics of original tumor and acquire chemotherapy resistance. Stem Cell Res (Amst) 2018; 27: 109-20.
[http://dx.doi.org/10.1016/j.scr.2018.01.016]
[34]
Janakiraman H, Zhu Y, Becker SA, et al. Modeling rectal cancer to advance neoadjuvant precision therapy. Intern. J Cancer 2020; 147(5): 1405-18.
[35]
Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med 2015; 21(3): 256-62.
[http://dx.doi.org/10.1038/nm.3802]
[36]
Fujii M, Matano M, Nanki K, Sato T. Efficient genetic engineering of human intestinal organoids using electroporation. Nat Protoc 2015; 10(10): 1474-85.
[http://dx.doi.org/10.1038/nprot.2015.088]
[37]
Drost J, Clevers H. Organoids in cancer research. Nature Reviews Cancer 2019; 18: 407-18.
[38]
Roper J, Tammela T, Cetinbas NM, et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat Biotechnol 2017; 35(6): 569-76.
[http://dx.doi.org/10.1038/nbt.3836]
[39]
O’Rourke KP, Loizou E, Livshits G, et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol 2017; 35(6): 577-82.
[http://dx.doi.org/10.1038/nbt.3837]
[40]
Fumagalli A, Suijkerbuijk SJE, Begthel H, et al. A surgical orthotopic organoid transplantation approach in mice to visualize and study colorectal cancer progression. Nat Protoc 2018; 13(2): 235-47.
[http://dx.doi.org/10.1038/nprot.2017.137]
[41]
Fang G, Lu H, Al-Nakashli R, et al. Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication 2022; 14(1): 015006.
[http://dx.doi.org/10.1088/1758-5090/ac2ef9]
[42]
Stupar RM. Into the wild: The soybean genome meets its undomesticated relative. Proc Natl Acad Sci USA 2010; 107(51): 21947-8.
[http://dx.doi.org/10.1073/pnas.1016809108]
[43]
Vlachogiannis G, Hedayat S, Vatsiou A. Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R, Rata M, Koh Dow-Mu, Tunariu N, Collins D, Hulkki-Wilson S, Ragulan C, Spiteri I, Yu Moorcraft S, Chau I, Rao S,Watkins D, Fotiadis N, Bali M, Darvish-Damavandi M, Lote H, et al. Patientderived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018; 23; 359(6378): 920-26.
[44]
Xie BY, Wu AW. Organoid culture of isolated cells from patient-derived tissues with colorectal cancer. Chin Med J (Engl) 2016; 129(20): 2469-75.
[http://dx.doi.org/10.4103/0366-6999.191782]
[45]
Pasch CA, Favreau PF, Yueh AE, et al. Patient-derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin Cancer Res 2019; 25(17): 5376-87.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3590]
[46]
Ooft SN, Weeber F, Dijkstra KK, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med 2019; 11(513): eaay2574.
[http://dx.doi.org/10.1126/scitranslmed.aay2574]
[47]
Smith JJ, Strombom P, Chow OS, et al. Assessment of a watch-and-wait strategy for rectal cancer in patients with a complete response after neoadjuvant therapy. JAMA Oncol 2019; 5(4): e185896.
[http://dx.doi.org/10.1001/jamaoncol.2018.5896]
[48]
Ganesh K, Wu C, O’Rourke KP, et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med 2019; 25(10): 1607-14.
[http://dx.doi.org/10.1038/s41591-019-0584-2]
[49]
Chen Y, Gao D, Liu H, Lin S, Jiang Y. Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Anal Chim Acta 2015; 898: 85-92.
[http://dx.doi.org/10.1016/j.aca.2015.10.006]
[50]
Sobrino A, Phan DTT, Datta R, et al. 3D microtumors in vitro supported by perfused vascular networks. Sci Rep 2016; 6(1): 31589.
[http://dx.doi.org/10.1038/srep31589]
[51]
Hachey SJ, Movsesyan S, Nguyen QH, et al. An in vitro vascularized micro-tumor model of human colorectal cancer recapitulates in vivo responses to standard-of-care therapy. Lab Chip 2021; 21(7): 1333-51.
[http://dx.doi.org/10.1039/D0LC01216E]
[52]
Nguyen M, De Ninno A, Mencattini A, et al. Dissecting effects of anti-cancer drugs and cancer-associated fibroblasts by on-chip reconstitution of immunocompetent tumor microenvironments. Cell Rep 2018; 25(13): 3884-3893.e3.
[http://dx.doi.org/10.1016/j.celrep.2018.12.015]
[53]
Walsh CL, Babin BM, Kasinskas RW, Foster JA, McGarry MJ, Forbes NS. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 2009; 9(4): 545-54.
[http://dx.doi.org/10.1039/B810571E]
[54]
Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 2019; 19(2): 65-81.
[http://dx.doi.org/10.1038/s41568-018-0104-6]
[55]
Jenkins RW, Aref AR, Lizotte PH, et al. Ex vivo profiling of PD-1 blockade using organotypic tumor Spheroids Ex vivo profiling of immune checkpoint blockade. Cancer Discov 2018; 8(2): 196-215.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0833]
[56]
Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 2018; 172(1-2): 373-386.e10.
[http://dx.doi.org/10.1016/j.cell.2017.11.010]
[57]
Jabs J, Zickgraf FM, Park J, et al. Screening drug effects in patient‐derived cancer cells links organoid responses to genome alterations. Mol Syst Biol 2017; 13(11): 955.
[http://dx.doi.org/10.15252/msb.20177697]
[58]
Onozato D, Yamashita M, Nakanishi A, et al. Generation of intestinal organoids suitable for pharmacokinetic studies from human induced pluripotent stem cells. Drug Metab Dispos 2018; 46(11): 1572-80.
[http://dx.doi.org/10.1124/dmd.118.080374]
[59]
Onozato D, Yamashita M, Fukuyama R, et al. Efficient generation of cynomolgus monkey induced pluripotent stem cell-derived intestinal organoids with pharmacokinetic functions. Stem Cells Dev 2018; 27(15): 1033-45.
[http://dx.doi.org/10.1089/scd.2017.0216]
[60]
Kostadinova R, Boess F, Applegate D, et al. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicol Appl Pharmacol 2013; 268(1): 1-16.
[http://dx.doi.org/10.1016/j.taap.2013.01.012]
[61]
Meng Q. Three-dimensional culture of hepatocytes for prediction of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2010; 6(6): 733-46.
[http://dx.doi.org/10.1517/17425251003674356]
[62]
Katsuda T, Kawamata M, Hagiwara K, et al. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell 2017; 20(1): 41-55.
[http://dx.doi.org/10.1016/j.stem.2016.10.007]
[63]
Li A, Zhang T, Zheng M, Liu Y, Chen Z. Exosomal proteins as potential markers of tumor diagnosis. J Hematol Oncol 2017; 10(1): 175.
[http://dx.doi.org/10.1186/s13045-017-0542-8]
[64]
Eder A, Vollert I, Hansen A, Eschenhagen T. Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev 2016; 96: 214-24.
[http://dx.doi.org/10.1016/j.addr.2015.05.010]
[65]
Voges HK, Mills RJ, Elliott DA, Parton RG, Porrello ER, Hudson JE. Development of a human cardiac organoid injury model reveals innate regenerative potential. Development 2017; 144(6): dev.143966.
[http://dx.doi.org/10.1242/dev.143966]
[66]
Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 2015; 526(7574): 564-8.
[http://dx.doi.org/10.1038/nature15695]
[67]
Sato T, Clevers H. SnapShot, growing organoids from stem cells. Cell 2015; 161(7): 1700-1700.e1.
[http://dx.doi.org/10.1016/j.cell.2015.06.028]
[68]
Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 2015; 348(6230): 124-8.
[http://dx.doi.org/10.1126/science.aaa1348]
[69]
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372(26): 2509-20.
[http://dx.doi.org/10.1056/NEJMoa1500596]
[70]
Nozaki K, Mochizuki W, Matsumoto Y, et al. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J Gastroenterol 2016; 51(3): 206-13.
[http://dx.doi.org/10.1007/s00535-016-1170-8]
[71]
Finnberg NK, Gokare P, Lev A, et al. Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures. Oncotarget 2017; 8(40): 66747-57.
[http://dx.doi.org/10.18632/oncotarget.19965]
[72]
Zumwalde NA, Haag JD, Sharma D, et al. Analysis of immune cells from human mammary ductal epithelial organoids reveals vδ2+ t cells that efficiently target breast carcinoma cells in the presence of bisphosphonatebisphosphonate activates human breast t cells. Cancer Prev Res (Phila) 2016; 9(4): 305-16.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0370-T]
[73]
Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359(17): 1757-65.
[http://dx.doi.org/10.1056/NEJMoa0804385]
[74]
Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26(10): 1626-34.
[http://dx.doi.org/10.1200/JCO.2007.14.7116]
[75]
Peeters M, Oliner KS, Parker A, et al. Massively parallel tumor multigene sequencing to evaluate response to panitumumab in a randomized phase iii study of metastatic colorectal cancer. Clin Cancer Res 2013; 19(7): 1902-12.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1913]
[76]
Loupakis F, Ruzzo A, Cremolini C, et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 2009; 101(4): 715-21.
[http://dx.doi.org/10.1038/sj.bjc.6605177]
[77]
Malik AM, Miguez RA, Li X, Ho YS, Feldman EL, Barmada SJ. Matrin 3-dependent neurotoxicity is modified by nucleic acid binding and nucleocytoplasmic localization. eLife 2018; 7: e35977.
[http://dx.doi.org/10.7554/eLife.35977]
[78]
Zhai Z, Yu X, Yang B, et al. Colorectal cancer heterogeneity and targeted therapy: Clinical implications, challenges and solutions for treatment resistance. Semin Cell Dev Biol 2017; 64: 107-15.
[http://dx.doi.org/10.1016/j.semcdb.2016.08.033]
[79]
Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 2016; 18(6): 827-38.
[http://dx.doi.org/10.1016/j.stem.2016.04.003]
[80]
Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 2015; 521(7550): 43-7.
[http://dx.doi.org/10.1038/nature14415]
[81]
IJspeert JEG, Vermeulen L, Meijer GA, Dekker E. Serrated neoplasia—role in colorectal carcinogenesis and clinical implications. Nat Rev Gastroenterol Hepatol 2015; 12(7): 401-9.
[http://dx.doi.org/10.1038/nrgastro.2015.73]
[82]
Janda CY, Dang LT, You C, et al. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 2017; 545(7653): 234-7.
[http://dx.doi.org/10.1038/nature22306]
[83]
Mihara E, Hirai H, Yamamoto H, et al. Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin. eLife 2016; 5(5): e11621.
[http://dx.doi.org/10.7554/eLife.11621]
[84]
Chaturvedi S, Verma A, Saharan VA. Lipid drug carriers for cancer therapeutics: An insight into lymphatic targeting, P-gp, CYP3A4 modulation and bioavailability enhancement. Adv Pharm Bull 2020; 10(4): 524-41.
[http://dx.doi.org/10.34172/apb.2020.064]
[85]
Deshmukh R, Prajapati M, Harwansh RK. A review on emerging targeted therapies for the management of metastatic colorectal cancers. Med Oncol 2023; 40(6): 159.
[http://dx.doi.org/10.1007/s12032-023-02020-x]
[86]
Rizwanullah M, Ahmad MZ, Garg A, Ahmad J. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochim Biophys Acta, Gen Subj 2021; 1865(9): 129936.
[http://dx.doi.org/10.1016/j.bbagen.2021.129936]
[87]
Agrawal KK, Murti Y. Jyoti, Agrawal N, Gupta T. In silico studies of bioactive compounds from hibiscus rosa-sinensis against her2 and esr1 for breast cancer treatment. International Journal of Pharmaceutical Sciences and Nanotechnology 2021; 14(6): 5665-71.
[http://dx.doi.org/10.37285/ijpsn.2021.14.6.3]
[88]
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application progress of organoids in colorectal cancer. Front Cell Dev Biol 2022; 10: 815067.
[http://dx.doi.org/10.3389/fcell.2022.815067]
[89]
Lo Y-H, Karlsson K, Kuo CJ. Applications of organoids for cancer biology and precision medicine. Nat Can 2020; 1(8): 761-73.
[http://dx.doi.org/10.1038/s43018-020-0102-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy