Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Targeting Mutant-p53 for Cancer Treatment: Are We There Yet?

Author(s): Dhi Vya Lim, Wei Hwei Woo, Jing Xuan Lim, Xin Yee Loh, Hui Ting Soh, Seng Yung Adrian Lim, Zheng Yang Lee, Hui Yin Yow, Sharina Binti Hamzah, Renukha Sellappans and Jhi Biau Foo*

Volume 17, 2024

Published on: 13 October, 2023

Article ID: e140923221042 Pages: 16

DOI: 10.2174/1874467217666230914090621

open_access

Open Access Journals Promotions 2
Abstract

Background: Mutations in the TP53 gene are the most common among genetic alterations in human cancers, resulting in the formation of mutant p53 protein (mutp53). Mutp53 promotes proliferation, migration, invasion, and metastasis in cancer cells. Not only does the initiation of oncogenesis ensue due to mutp53, but resistance towards chemotherapy and radiotherapy in cancer cells also occurs. This review aims to summarise and discuss the oncogenesis of mutant p53 in cancer cells and introduce the various mutant p53 inhibitors currently being evaluated at the pre-clinical and clinical stages. Compounds that induce the wild-type conformation on the targeted p53 missense mutation, restore or enhance the DNA binding of mutant p53, and inhibit cancer cells' growth are highlighted. In addition, the progression and development of the mutant p53 inhibitors in clinical trials are updated.

Conclusion: The progress of developing a cancer treatment that may successfully and efficiently target mutant p53 is on the verge of development. Mutant p53 proteins not only initiate oncogenesis but also cause resistance in cancer cells to certain chemo or radiotherapies, further endorse cancer cell survival and promote migration as well as metastasis of cancerous cells. With this regard, many mutant p53 inhibitors have been developed, some of which are currently being evaluated at the pre-clinical level and have been identified and discussed. To date, APR-246 is the most prominent one that has progressed to the Phase III clinical trial.

Keywords: Cancer, p53, Inhibitors, Preclinical, Clinical, Chemo or radiotherapies, mutp53, Oncogenesis.

[1]
Stein, Y.; Aloni-Grinstein, R.; Rotter, V. Mutant p53 oncogenicity: Dominant-negative or gain-of-function? Carcinogenesis, 2020, 41(12), 1635-1647.
[http://dx.doi.org/10.1093/carcin/bgaa117] [PMID: 33159515]
[2]
de Oliveira, G.A.P.; Petronilho, E.C.; Pedrote, M.M.; Marques, M.A.; Vieira, T.C.R.G.; Cino, E.A.; Silva, J.L. The status of p53 oligomeric and aggregation states in cancer. Biomolecules, 2020, 10(4), 548.
[http://dx.doi.org/10.3390/biom10040548] [PMID: 32260447]
[3]
Sakamuro, D.; Sabbatini, P.; White, E.; Prendergast, G.C. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene, 1997, 15(8), 887-898.
[http://dx.doi.org/10.1038/sj.onc.1201263] [PMID: 9285684]
[4]
Kim, H.; Kim, K.; Choi, J.; Heo, K.; Baek, H.J.; Roeder, R.G.; An, W. p53 requires an intact C-terminal domain for DNA binding and transactivation. J. Mol. Biol., 2012, 415(5), 843-854.
[http://dx.doi.org/10.1016/j.jmb.2011.12.001] [PMID: 22178617]
[5]
Yue, X.; Zhao, Y.; Xu, Y.; Zheng, M.; Feng, Z.; Hu, W. Mutant p53 in cancer: Accumulation, gain-of-function, and therapy. J. Mol. Biol., 2017, 429(11), 1595-1606.
[http://dx.doi.org/10.1016/j.jmb.2017.03.030] [PMID: 28390900]
[6]
Vaughan, C.; Pearsall, I.; Yeudall, A.; Deb, S.P.; Deb, S. p53: Its mutations and their impact on transcription. Subcell. Biochem., 2014, 85, 71-90.
[http://dx.doi.org/10.1007/978-94-017-9211-0_4] [PMID: 25201189]
[7]
Kang, H.J.; Chun, S.M.; Kim, K.R.; Sohn, I.; Sung, C.O. Clinical relevance of gain-of-function mutations of p53 in high-grade serous ovarian carcinoma. PLoS One, 2013, 8(8), e72609.
[http://dx.doi.org/10.1371/journal.pone.0072609] [PMID: 23967324]
[8]
Li, Y.; Guessous, F.; Kwon, S.; Kumar, M.; Ibidapo, O.; Fuller, L.; Johnson, E.; Lal, B.; Hussaini, I.; Bao, Y.; Laterra, J.; Schiff, D.; Abounader, R. PTEN has tumor promoting properties in the setting of gain-of-function P53 mutations. Cancer Res., 2008, 68(6), 1723-31.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1963]
[9]
Di Agostino, S.; Sorrentino, G.; Ingallina, E.; Valenti, F.; Ferraiuolo, M.; Bicciato, S.; Piazza, S.; Strano, S.; Del Sal, G.; Blandino, G. YAP enhances the pro‐proliferative transcriptional activity of mutant p53 proteins. EMBO Rep., 2016, 17(2), 188-201.
[http://dx.doi.org/10.15252/embr.201540488] [PMID: 26691213]
[10]
Liao, P.; Zeng, S.X.; Zhou, X.; Chen, T.; Zhou, F.; Cao, B.; Jung, J.H.; Del Sal, G.; Luo, S.; Lu, H. Mutant p53 gains its function via c-Myc activation upon CDK4 phosphorylation at serine 249 and consequent PIN1 binding. Mol. Cell, 2017, 68(6), 1134-1146.e6.
[http://dx.doi.org/10.1016/j.molcel.2017.11.006] [PMID: 29225033]
[11]
Kalo, E.; Kogan-Sakin, I.; Solomon, H.; Bar-Nathan, E.; Shay, M.; Shetzer, Y.; Dekel, E.; Goldfinger, N.; Buganim, Y.; Stambolsky, P.; Goldstein, I.; Madar, S.; Rotter, V. Mutant p53R273H attenuates the expression of phase 2 detoxifying enzymes and promotes the survival of cells with high levels of reactive oxygen species. J. Cell Sci., 2012, 125(Pt 22), 5578-5586.
[http://dx.doi.org/10.1242/jcs.106815] [PMID: 22899716]
[12]
Zhou, X.; Hao, Q.; Lu, H. Mutant p53 in cancer therapy—the barrier or the path. J. Mol. Cell Biol., 2019, 11(4), 293-305.
[http://dx.doi.org/10.1093/jmcb/mjy072] [PMID: 30508182]
[13]
Freed-Pastor, W.A.; Mizuno, H.; Zhao, X.; Langerød, A.; Moon, S.H.; Rodriguez-Barrueco, R.; Barsotti, A.; Chicas, A.; Li, W.; Polotskaia, A.; Bissell, M.J.; Osborne, T.F.; Tian, B.; Lowe, S.W.; Silva, J.M.; Børresen-Dale, A.L.; Levine, A.J.; Bargonetti, J.; Prives, C. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell, 2012, 148(1-2), 244-258.
[http://dx.doi.org/10.1016/j.cell.2011.12.017] [PMID: 22265415]
[14]
Zhu, G.; Pan, C.; Bei, J.X.; Li, B.; Liang, C.; Xu, Y.; Fu, X. Mutant p53 in cancer progression and targeted therapies. Front. Oncol., 2020, 10, 595187.
[http://dx.doi.org/10.3389/fonc.2020.595187] [PMID: 33240819]
[15]
Adorno, M.; Cordenonsi, M.; Montagner, M.; Dupont, S.; Wong, C.; Hann, B.; Solari, A.; Bobisse, S.; Rondina, M.B.; Guzzardo, V.; Parenti, A.R.; Rosato, A.; Bicciato, S.; Balmain, A.; Piccolo, S. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell, 2009, 137(1), 87-98.
[http://dx.doi.org/10.1016/j.cell.2009.01.039] [PMID: 19345189]
[16]
Muller, P.A.J.; Caswell, P.T.; Doyle, B.; Iwanicki, M.P.; Tan, E.H.; Karim, S.; Lukashchuk, N.; Gillespie, D.A.; Ludwig, R.L.; Gosselin, P.; Cromer, A.; Brugge, J.S.; Sansom, O.J.; Norman, J.C.; Vousden, K.H. Mutant p53 drives invasion by promoting integrin recycling. Cell, 2009, 139(7), 1327-1341.
[http://dx.doi.org/10.1016/j.cell.2009.11.026] [PMID: 20064378]
[17]
Selivanova, G.; Ivaska, J. Integrins and mutant p53 on the road to metastasis. Cell, 2009, 139(7), 1220-1222.
[http://dx.doi.org/10.1016/j.cell.2009.12.016] [PMID: 20064366]
[18]
Xiong, S.; Tu, H.; Kollareddy, M.; Pant, V.; Li, Q.; Zhang, Y.; Jackson, J.G.; Suh, Y.A.; Elizondo-Fraire, A.C.; Yang, P.; Chau, G.; Tashakori, M.; Wasylishen, A.R.; Ju, Z.; Solomon, H.; Rotter, V.; Liu, B.; El-Naggar, A.K.; Donehower, L.A.; Martinez, L.A.; Lozano, G. Pla2g16 phospholipase mediates gain-of-function activities of mutant p53. Proc. Natl. Acad. Sci., 2014, 111(30), 11145-11150.
[http://dx.doi.org/10.1073/pnas.1404139111] [PMID: 25024203]
[19]
Mills, G.B.; Moolenaar, W.H. The emerging role of lysophosphatidic acid in cancer. Nat. Rev. Cancer, 2003, 3(8), 582-591.
[http://dx.doi.org/10.1038/nrc1143] [PMID: 12894246]
[20]
Lu, C.; El-Deiry, W.S. Targeting p53 for enhanced radio- and chemo-sensitivity. Apoptosis, 2009, 14(4), 597-606.
[http://dx.doi.org/10.1007/s10495-009-0330-1] [PMID: 19259822]
[21]
Takara, K.; Sakaeda, T.; Okumura, K. An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr. Pharm. Des., 2006, 12(3), 273-286.
[http://dx.doi.org/10.2174/138161206775201965] [PMID: 16454744]
[22]
Chin, K.V.; Ueda, K.; Pastan, I.; Gottesman, M.M. Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science, 1992, 255(5043), 459-462.
[http://dx.doi.org/10.1126/science.1346476] [PMID: 1346476]
[23]
Sampath, J.; Sun, D.; Kidd, V.J.; Grenet, J.; Gandhi, A.; Shapiro, L.H.; Wang, Q.; Zambetti, G.P.; Schuetz, J.D. Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J. Biol. Chem., 2001, 276(42), 39359-39367.
[http://dx.doi.org/10.1074/jbc.M103429200] [PMID: 11483599]
[24]
Zhan, M.; Yu, D.; Liu, J.; Hannay, J.; Pollock, R.E.; Pollock, R.E. Transcriptional repression of protein kinase Calpha via Sp1 by wild type p53 is involved in inhibition of multidrug resistance 1 P-glycoprotein phosphorylation. J. Biol. Chem., 2005, 280(6), 4825-4833.
[http://dx.doi.org/10.1074/jbc.M407450200] [PMID: 15563462]
[25]
Rojo de la Vega, M.; Chapman, E.; Zhang, D.D. NRF2 and the hallmarks of cancer. Cancer Cell, 2018, 34(1), 21-43.
[http://dx.doi.org/10.1016/j.ccell.2018.03.022] [PMID: 29731393]
[26]
Gilardini Montani, M.S.; Cecere, N.; Granato, M.; Romeo, M.A.; Falcinelli, L.; Ciciarelli, U.; D’Orazi, G.; Faggioni, A.; Cirone, M. Mutant p53, stabilized by its interplay with HSP90, activates a positive feed-back loop between NRF2 and p62 that induces chemo-resistance to apigenin in pancreatic cancer cells. Cancers, 2019, 11(5), 703.
[http://dx.doi.org/10.3390/cancers11050703] [PMID: 31121848]
[27]
Jeong, Y.; Hoang, N.T.; Lovejoy, A.; Stehr, H.; Newman, A.M.; Gentles, A.J.; Kong, W.; Truong, D.; Martin, S.; Chaudhuri, A.; Heiser, D.; Zhou, L.; Say, C.; Carter, J.N.; Hiniker, S.M.; Loo, B.W., Jr; West, R.B.; Beachy, P.; Alizadeh, A.A.; Diehn, M. Role of KEAP1 / NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance. Cancer Discov., 2017, 7(1), 86-101.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0127] [PMID: 27663899]
[28]
Tung, M.C.; Lin, P.L.; Wang, Y.C.; He, T.Y.; Lee, M.C.; Yeh, S.D.; Chen, C.Y.; Lee, H. Mutant p53 confers chemoresistance in non-small cell lung cancer by upregulating Nrf2. Oncotarget, 2015, 6(39), 41692-41705.
[http://dx.doi.org/10.18632/oncotarget.6150] [PMID: 26497680]
[29]
Walerych, D.; Lisek, K.; Sommaggio, R.; Piazza, S.; Ciani, Y.; Dalla, E.; Rajkowska, K.; Gaweda-Walerych, K.; Ingallina, E.; Tonelli, C.; Morelli, M.J.; Amato, A.; Eterno, V.; Zambelli, A.; Rosato, A.; Amati, B.; Wiśniewski, J.R.; Del Sal, G. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat. Cell Biol., 2016, 18(8), 897-909.
[http://dx.doi.org/10.1038/ncb3380] [PMID: 27347849]
[30]
Garufi, A.; Baldari, S.; Pettinari, R.; Gilardini Montani, M.S.; D’Orazi, V.; Pistritto, G.; Crispini, A.; Giorno, E.; Toietta, G.; Marchetti, F.; Cirone, M.; D’Orazi, G. A ruthenium(II)-curcumin compound modulates NRF2 expression balancing the cancer cell death/survival outcome according to p53 status. J. Exp. Clin. Cancer Res., 2020, 39(1), 122.
[http://dx.doi.org/10.1186/s13046-020-01628-5] [PMID: 32605658]
[31]
Liu, K.; Ling, S.; Lin, W.C. TopBP1 mediates mutant p53 gain of function through NF-Y and p63/p73. Mol. Cell. Biol., 2011, 31(22), 4464-4481.
[http://dx.doi.org/10.1128/MCB.05574-11] [PMID: 21930790]
[32]
Najafi, M.; Farhood, B.; Mortezaee, K. Cancer stem cells (CSCs) in cancer progression and therapy. J. Cell. Physiol., 2019, 234(6), 8381-8395.
[http://dx.doi.org/10.1002/jcp.27740] [PMID: 30417375]
[33]
Prieto-Vila, M.; Takahashi, R.; Usuba, W.; Kohama, I.; Ochiya, T. Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci., 2017, 18(12), 2574.
[http://dx.doi.org/10.3390/ijms18122574] [PMID: 29194401]
[34]
Shetzer, Y.; Solomon, H.; Koifman, G.; Molchadsky, A.; Horesh, S.; Rotter, V. The paradigm of mutant p53-expressing cancer stem cells and drug resistance. Carcinogenesis, 2014, 35(6), 1196-1208.
[http://dx.doi.org/10.1093/carcin/bgu073] [PMID: 24658181]
[35]
Olivos, D.; Mayo, L. Emerging non-canonical functions and regulation by p53: p53 and stemness. Int. J. Mol. Sci., 2016, 17(12), 1982.
[http://dx.doi.org/10.3390/ijms17121982] [PMID: 27898034]
[36]
Fagin, J. A.; Matsuo, K.; Karmakar, A.; Chen, D. L.; Tang, S. H.; Koeffler, H. P. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Invest., 1993, 91(1), 179-84.
[http://dx.doi.org/10.1172/JCI116168]
[37]
Mizuno, H.; Spike, B.T.; Wahl, G.M.; Levine, A.J. Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc. Natl. Acad. Sci., 2010, 107(52), 22745-22750.
[http://dx.doi.org/10.1073/pnas.1017001108] [PMID: 21149740]
[38]
Blanden, A.R.; Yu, X.; Wolfe, A.J.; Gilleran, J.A.; Augeri, D.J.; O’Dell, R.S.; Olson, E.C.; Kimball, S.D.; Emge, T.J.; Movileanu, L.; Carpizo, D.R.; Loh, S.N. Synthetic metallochaperone ZMC1 rescues mutant p53 conformation by transporting zinc into cells as an ionophore. Mol. Pharmacol., 2015, 87(5), 825-831.
[http://dx.doi.org/10.1124/mol.114.097550] [PMID: 25710967]
[39]
Kogan, S.; Carpizo, D. Zinc metallochaperones as mutant p53 reactivators: A new paradigm in cancer therapeutics. Cancers, 2018, 10(6), 166.
[http://dx.doi.org/10.3390/cancers10060166] [PMID: 29843463]
[40]
Yu, X.; Vazquez, A.; Levine, A.J.; Carpizo, D.R. Allele-specific p53 mutant reactivation. Cancer Cell, 2012, 21(5), 614-625.
[http://dx.doi.org/10.1016/j.ccr.2012.03.042] [PMID: 22624712]
[41]
Sun, S.; Liang, Y.; Li, K.; Wang, Y.; Li, H.; Ji, X.; Zhang, Y. Inhibitory effect of the zinc metallochaperone NSC319726 on ovarian cancer cells via the regulation of P53. Res. Square, 2021, 2021, 53.
[http://dx.doi.org/10.21203/rs.3.rs-882503/v1]
[42]
Zache, N.; Lambert, J.M.R.; Rökaeus, N.; Shen, J.; Hainaut, P.; Bergman, J.; Wiman, K.G.; Bykov, V.J.N. Mutant p53 targeting by the low molecular weight compound STIMA-1. Mol. Oncol., 2008, 2(1), 70-80.
[http://dx.doi.org/10.1016/j.molonc.2008.02.004] [PMID: 19383329]
[43]
Weinmann, L.; Wischhusen, J.; Demma, M.J.; Naumann, U.; Roth, P.; DasMahapatra, B.; Weller, M. A novel p53 rescue compound induces p53-dependent growth arrest and sensitises glioma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ., 2008, 15(4), 718-729.
[http://dx.doi.org/10.1038/sj.cdd.4402301] [PMID: 18202704]
[44]
Bykov, V.J.N.; Issaeva, N.; Zache, N.; Shilov, A.; Hultcrantz, M.; Bergman, J.; Selivanova, G.; Wiman, K.G. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J. Biol. Chem., 2005, 280(34), 30384-30391.
[http://dx.doi.org/10.1074/jbc.M501664200] [PMID: 15998635]
[45]
Saha, M.N.; Chen, Y.; Chen, M-H.; Chen, G.; Chang, H. Small molecule MIRA-1 induces in vitro and in vivo anti-myeloma activity and synergizes with current anti-myeloma agents. Br. J. Cancer, 2014, 110(9), 2224-2231.
[http://dx.doi.org/10.1038/bjc.2014.164] [PMID: 24691427]
[46]
Liu, X.; Wilcken, R.; Joerger, A.C.; Chuckowree, I.S.; Amin, J.; Spencer, J.; Fersht, A.R. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res., 2013, 41(12), 6034-6044.
[http://dx.doi.org/10.1093/nar/gkt305] [PMID: 23630318]
[47]
Soragni, A.; Janzen, D.M.; Johnson, L.M.; Lindgren, A.G.; Thai-Quynh Nguyen, A.; Tiourin, E.; Soriaga, A.B.; Lu, J.; Jiang, L.; Faull, K.F.; Pellegrini, M.; Memarzadeh, S.; Eisenberg, D.S. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell, 2016, 29(1), 90-103.
[http://dx.doi.org/10.1016/j.ccell.2015.12.002] [PMID: 26748848]
[48]
Neal, A.; Lai, T.; Singh, T.; Rahseparian, N.; Grogan, T.; Elashoff, D.; Scott, P.; Pellegrini, M.; Memarzadeh, S. Combining ReACp53 with carboplatin to target high-grade serous ovarian cancers. Cancers, 2021, 13(23), 5908.
[http://dx.doi.org/10.3390/cancers13235908] [PMID: 34885017]
[49]
Zhang, Y.; Xu, L.; Chang, Y.; Li, Y.; Butler, W.; Jin, E.; Wang, A.; Tao, Y.; Chen, X.; Liang, C.; Huang, J. Therapeutic potential of ReACp53 targeting mutant p53 protein in CRPC. Prostate Cancer Prostatic Dis., 2020, 23(1), 160-171.
[http://dx.doi.org/10.1038/s41391-019-0172-z] [PMID: 31471556]
[50]
Loh, S.N. The missing Zinc: p53 misfolding and cancer. Metallomics, 2010, 2(7), 442-449.
[http://dx.doi.org/10.1039/c003915b] [PMID: 21072344]
[51]
Parrales, A.; Iwakuma, T. Targeting oncogenic mutant P53 for cancer therapy. Front Oncol., 2015, 5, 288.
[http://dx.doi.org/10.3389/fonc.2015.00288] [PMID: 26732534]
[52]
Binayke, A.; Mishra, S.; Suman, P.; Das, S.; Chander, H. Awakening the “guardian of genome”: Reactivation of mutant p53. Cancer Chemother. Pharmacol., 2019, 83(1), 1-15.
[http://dx.doi.org/10.1007/s00280-018-3701-x] [PMID: 30324219]
[53]
Nguyen, D.; Liao, W.; Zeng, S.X.; Lu, H. Reviving the guardian of the genome: Small molecule activators of p53. Pharmacol. Ther., 2017, 178, 92-108.
[http://dx.doi.org/10.1016/j.pharmthera.2017.03.013] [PMID: 28351719]
[54]
Baud, M.G.J.; Bauer, M.R.; Verduci, L.; Dingler, F.A.; Patel, K.J.; Horil Roy, D.; Joerger, A.C.; Fersht, A.R. Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. Eur. J. Med. Chem., 2018, 152, 101-114.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.035] [PMID: 29702446]
[55]
Aprea Therapeutics. An open-label phase I dose escalating study of APR-246 for infusion in patients with refractory hematologic malignancies or prostate carcinoma. NCT00900614, 2019.
[56]
Lehmann, S.; Bykov, V.J.N.; Ali, D.; Andrén, O.; Cherif, H.; Tidefelt, U.; Uggla, B.; Yachnin, J.; Juliusson, G.; Moshfegh, A.; Paul, C.; Wiman, K.G.; Andersson, P.O. Targeting p53 in vivo: A first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J. Clin. Oncol., 2012, 30(29), 3633-3639.
[http://dx.doi.org/10.1200/JCO.2011.40.7783] [PMID: 22965953]
[57]
Aprea Therapeutics. PiSARRO: P53 suppressor activation in recurrent high grade serous ovarian cancer, a phase Ib/II study of systemic carboplatin combination chemotherapy with or without APR-246. NCT02098343, 2019.
[58]
H. Lee Moffitt Cancer Center and Research Institute. A phase 1b/2 study to evaluate the safety and efficacy of APR-246 in combination with azacitidine for the treatment of TP53 mutant myeloid neoplasms. NCT03072043, 2021.
[59]
Sallman, D.A.; DeZern, A.E.; Garcia-Manero, G.; Steensma, D.P.; Roboz, G.J.; Sekeres, M.A.; Cluzeau, T.; Sweet, K.L.; McLemore, A.; McGraw, K.L.; Puskas, J.; Zhang, L.; Yao, J.; Mo, Q.; Nardelli, L.; Al Ali, N.H.; Padron, E.; Korbel, G.; Attar, E.C.; Kantarjian, H.M.; Lancet, J.E.; Fenaux, P.; List, A.F.; Komrokji, R.S. Eprenetapopt (APR-246) and Azacitidine in TP53 -Mutant Myelodysplastic Syndromes. J. Clin. Oncol., 2021, 39(14), 1584-1594.
[http://dx.doi.org/10.1200/JCO.20.02341] [PMID: 33449813]
[60]
Peter MacCallum Cancer Centre. A Phase1b/2 study evaluating the efficacy of APR-246, a first-in-class agent targeting mutant P53 in the treatment of platinum resistant advanced and metastatic oesophageal or gastro-oesophageal junction cancers. NCT02999893, 2019.
[61]
Groupe Francophone des Myelodysplasies. A Phase 1b/2 study to evaluate the safety and efficacy of APR-246 in combination with azacitidine for the treatment of mutation TP53 (TP53) mutant myeloid neoplasms. NCT03588078, 2020.
[62]
Aprea Therapeutics. A phase III multicenter, randomized, open label study of APR-246 in combination with azacitidine versus azacitidine alone for the treatment of (tumor protein) TP53 mutant myelodysplastic syndromes. NCT03745716, 2021.
[63]
Lu, M. Combination of decitabine and ATO to Treat AML/MDS expressing a classified type of mutant P53. NCT03855371, 2021.
[64]
National Cancer Institute (NCI). Phase I study of AZD1775 (Adavosertib) with radiation and temozolomide in patients with newly diagnosed glioblastoma and evaluation of intratumoral drug distribution in patients with recurrent glioblastoma. NCT01849146, 2021.
[65]
AstraZeneca. A Phase Ib, dose finding study evaluating AZD1775 in monotherapy, in combination with carboplatin and paclitaxel, and in combination with only carboplatin in adult asian patients with advanced solid tumours. NCT02341456, 2019.
[66]
Kato, H.; de Souza, P.; Kim, S.W.; Lickliter, J.D.; Naito, Y.; Park, K.; Kumar, S.; Mugundu, G.M.; Bang, Y.J. Safety, pharmacokinetics, and clinical activity of adavosertib in combination with chemotherapy in asian patients with advanced solid tumors: phase Ib study. Target. Oncol., 2020, 15(1), 75-84.
[http://dx.doi.org/10.1007/s11523-020-00701-5] [PMID: 32034630]
[67]
AstraZeneca. A multicentre phase II study of adavosertib plus chemotherapy in patients with platinum-resistant epithelial ovarian, fallopian tube, or primary peritoneal cancer. NCT02272790, 2021.
[68]
Moore, K.; Hamilton, E.; Chen, L.; Oza, A.; Ghamande, S.; Konecny, G.; Plaxe, S.; Spitz, D.; Geenen, J.; Troso-Sandoval, T.; Cragun, J.; Imedio, E.; Kumar, S.; Mugundu, G.; Lai, Z.; Chmielecki, J.; Jones, S.; Spigel, D.; Cadoo, K. Adavosertib with Chemotherapy (CT) in Patients (Pts) with Platinum-Resistant Ovarian Cancer (PPROC): An open label, four-arm, phase II study. J. Clin. Oncol., 2019, 37(15), 5513.
[69]
MD, J.L. A Phase 2 Study of the wee1 inhibitor AZD1775 in women with recurrent or persistent uterine serous carcinoma or uterine carcinosarcoma. NCT03668340, 2021.
[70]
Merck Sharp & Dohme Corp. A Randomized, phase II study evaluating MK-1775 in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin alone in adult patients with platinum sensitive P53 mutant ovarian cancer. NCT01357161, 2018.
[71]
Critical Outcome Technologies Inc. A Phase 1 Study of COTI-2 as monotherapy or combination therapy for the treatment of advanced or recurrent malignancies. NCT02433626, 2019.
[72]
Yilmaz, U.; Eskazan, A.E. Replacing chemotherapy with arsenic trioxide for the treatment of acute promyelocytic leukemia in the frontline setting: Is it cost‐effective? Cancer, 2020, 126(2), 256-259.
[http://dx.doi.org/10.1002/cncr.32608] [PMID: 31714587]
[73]
Jiang, L.; Zawacka-Pankau, J. The p53/MDM2/MDMX-targeted therapies-a clinical synopsis. Cell Death Dis., 2020, 11(4), 237.
[http://dx.doi.org/10.1038/s41419-020-2445-9] [PMID: 32303678]
[74]
Yan, W.; Zhang, Y.; Zhang, J.; Liu, S.; Cho, S.J.; Chen, X. Mutant p53 protein is targeted by arsenic for degradation and plays a role in arsenic-mediated growth suppression. J. Biol. Chem., 2011, 286(20), 17478-17486.
[http://dx.doi.org/10.1074/jbc.M111.231639] [PMID: 21454520]
[75]
Hirai, H.; Iwasawa, Y.; Okada, M.; Arai, T.; Nishibata, T.; Kobayashi, M.; Kimura, T.; Kaneko, N.; Ohtani, J.; Yamanaka, K.; Itadani, H.; Takahashi-Suzuki, I.; Fukasawa, K.; Oki, H.; Nambu, T.; Jiang, J.; Sakai, T.; Arakawa, H.; Sakamoto, T.; Sagara, T.; Yoshizumi, T.; Mizuarai, S.; Kotani, H. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol. Cancer Ther., 2009, 8(11), 2992-3000.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0463] [PMID: 19887545]
[76]
Lindemann, A.; Patel, A. A.; Tang, L.; Liu, Z.; Wang, L.; Silver, N. L.; Tanaka, N.; Rao, X.; Takahashi, H.; Maduka, N. K.; Zhao, M.; Chen, T.-C.; Liu, W.; Gao, M.; Wang, J.; Frank, S. J.; Hittelman, W. N.; Mills, G. B.; Myers, J. N.; Osman, A. A. COTI-2, a novel thiosemicarbazone derivative, exhibits antitumor activity in HNSCC through P53-dependent and -independent mechanisms. Clin. Cancer Res., 2019, 25(18), 5650-5662.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0096]
[77]
Kanapathipillai, M. Treating p53 mutant aggregation-associated cancer. Cancers, 2018, 10(6), 154.
[http://dx.doi.org/10.3390/cancers10060154] [PMID: 29789497]
[78]
Hong, B.; Heuvel, A.; Prabhu, V.; Zhang, S.; El-Deiry, W. Targeting tumor suppressor p53 for cancer therapy: Strategies, challenges and opportunities. Curr. Drug Targets, 2014, 15(1), 80-89.
[http://dx.doi.org/10.2174/1389450114666140106101412] [PMID: 24387333]
[79]
Stegh, A.H. Targeting the p53 signaling pathway in cancer therapy - the promises, challenges and perils. Expert Opin. Ther. Targets, 2012, 16(1), 67-83.
[http://dx.doi.org/10.1517/14728222.2011.643299] [PMID: 22239435]

© 2024 Bentham Science Publishers | Privacy Policy