Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Systematic Review Article

Risk Prediction Models and Novel Prognostic Factors for Heart Failure with Preserved Ejection Fraction: A Systematic and Comprehensive Review

Author(s): Shanshan Lin, Zhihua Yang, Yangxi Liu, Yingfei Bi, Yu Liu, Zeyu Zhang, Xuan Zhang, Zhuangzhuang Jia, Xianliang Wang* and Jingyuan Mao*

Volume 29, Issue 25, 2023

Published on: 07 September, 2023

Page: [1992 - 2008] Pages: 17

DOI: 10.2174/1381612829666230830105740

open access plus

conference banner
Abstract

Background: Patients with heart failure with preserved ejection fraction (HFpEF) have large individual differences, unclear risk stratification, and imperfect treatment plans. Risk prediction models are helpful for the dynamic assessment of patients' prognostic risk and early intensive therapy of high-risk patients. The purpose of this study is to systematically summarize the existing risk prediction models and novel prognostic factors for HFpEF, to provide a reference for the construction of convenient and efficient HFpEF risk prediction models.

Methods: Studies on risk prediction models and prognostic factors for HFpEF were systematically searched in relevant databases including PubMed and Embase. The retrieval time was from inception to February 1, 2023. The Quality in Prognosis Studies (QUIPS) tool was used to assess the risk of bias in included studies. The predictive value of risk prediction models for end outcomes was evaluated by sensitivity, specificity, the area under the curve, C-statistic, C-index, etc. In the literature screening process, potential novel prognostic factors with high value were explored.

Results: A total of 21 eligible HFpEF risk prediction models and 22 relevant studies were included. Except for 2 studies with a high risk of bias and 2 studies with a moderate risk of bias, other studies that proposed risk prediction models had a low risk of bias overall. Potential novel prognostic factors for HFpEF were classified and described in terms of demographic characteristics (age, sex, and race), lifestyle (physical activity, body mass index, weight change, and smoking history), laboratory tests (biomarkers), physical inspection (blood pressure, electrocardiogram, imaging examination), and comorbidities.

Conclusion: It is of great significance to explore the potential novel prognostic factors of HFpEF and build a more convenient and efficient risk prediction model for improving the overall prognosis of patients. This review can provide a substantial reference for further research.

Keywords: Heart failure with preserved ejection fraction, risk prediction model, prognostic factor, risk stratification, dynamic assessment, biomarkers.

[1]
Shah SJ, Katz DH, Deo RC. Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail Clin 2014; 10(3): 407-18.
[http://dx.doi.org/10.1016/j.hfc.2014.04.008] [PMID: 24975905]
[2]
Shah KS, Xu H, Matsouaka RA, et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol 2017; 70(20): 2476-86.
[http://dx.doi.org/10.1016/j.jacc.2017.08.074] [PMID: 29141781]
[3]
Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 2017; 14(10): 591-602.
[http://dx.doi.org/10.1038/nrcardio.2017.65] [PMID: 28492288]
[4]
Higgins J, Thomas J. Cochrane Handbook for Systematic Reviews of Interventions. Cochrane. 2020.
[5]
Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med 2013; 158(4): 280-6.
[http://dx.doi.org/10.7326/0003-4819-158-4-201302190-00009] [PMID: 23420236]
[6]
Thorvaldsen T, Claggett BL, Shah A, et al. Predicting risk in patients hospitalized for acute decompensated heart failure and preserved ejection fraction: The atherosclerosis risk in communities study heart failure community surveillance. Circ Heart Fail 2017; 10(12): e003992.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.117.003992] [PMID: 29242352]
[7]
Pocock SJ, Ariti CA, McMurray JJV, et al. Predicting survival in heart failure: A risk score based on 39 372 patients from 30 studies. Eur Heart J 2013; 34(19): 1404-13.
[http://dx.doi.org/10.1093/eurheartj/ehs337] [PMID: 23095984]
[8]
Rich JD, Burns J, Freed BH, Maurer MS, Burkhoff D, Shah SJ. Meta-Analysis Global Group in Chronic (MAGGIC) heart failure risk score: Validation of a simple tool for the prediction of morbidity and mortality in heart failure with preserved ejection fraction. J Am Heart Assoc 2018; 7(20): e009594.
[http://dx.doi.org/10.1161/JAHA.118.009594] [PMID: 30371285]
[9]
Kanagala P, Arnold JR, Khan JN, et al. Plasma P‐selectin is a predictor of mortality in heart failure with preserved ejection fraction. ESC Heart Fail 2021; 8(3): 2328-33.
[http://dx.doi.org/10.1002/ehf2.13280] [PMID: 33694306]
[10]
Sueta D, Yamamoto E, Nishihara T, et al. H2FPEF score as a prognostic value in HFpEF patients. Am J Hypertens 2019; 32(11): 1082-90.
[http://dx.doi.org/10.1093/ajh/hpz108] [PMID: 31271191]
[11]
Sun Y, Wang N, Li X, et al. Predictive value of H2 FPEF score in patients with heart failure with preserved ejection fraction. ESC Heart Fail 2021; 8(2): 1244-52.
[http://dx.doi.org/10.1002/ehf2.13187] [PMID: 33403825]
[12]
Kasahara S, Sakata Y, Nochioka K, et al. The 3A3B score: The simple risk score for heart failure with preserved ejection fraction - A report from the CHART-2 Study. Int J Cardiol 2019; 284: 42-9.
[http://dx.doi.org/10.1016/j.ijcard.2018.10.076] [PMID: 30413304]
[13]
Nishi I, Seo Y, Hamada-Harimura Y, et al. Geriatric nutritional risk index predicts all‐cause deaths in heart failure with preserved ejection fraction. ESC Heart Fail 2019; 6(2): 396-405.
[http://dx.doi.org/10.1002/ehf2.12405] [PMID: 30706996]
[14]
Ignacio de Ulíbarri J, González-Madroño A, de Villar NG, et al. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr Hosp 2005; 20(1): 38-45.
[PMID: 15762418]
[15]
Komorita T, Yamamoto E, Sueta D, et al. The controlling nutritional status score predicts outcomes of cardiovascular events in patients with heart failure with preserved ejection fraction. Int J Cardiol Heart Vasc 2020; 29: 100563.
[http://dx.doi.org/10.1016/j.ijcha.2020.100563] [PMID: 32637567]
[16]
Bolat I, Biteker M. Modified glasgow prognostic score is a novel predictor of clinical outcome in heart failure with preserved ejection fraction. Scand Cardiovasc J 2020; 54(3): 174-8.
[http://dx.doi.org/10.1080/14017431.2019.1709656] [PMID: 31965867]
[17]
Adabag S, Rector TS, Anand IS, et al. A prediction model for sudden cardiac death in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 2014; 16(11): 1175-82.
[http://dx.doi.org/10.1002/ejhf.172] [PMID: 25302657]
[18]
Adabag S, Langsetmo L. Sudden cardiac death risk prediction in heart failure with preserved ejection fraction. Heart Rhythm 2020; 17(3): 358-64.
[http://dx.doi.org/10.1016/j.hrthm.2019.12.009] [PMID: 31838199]
[19]
Ghafoor A, Pedersen R, Zlochiver V, et al. Novel risk stratification score for HFpEF and AFIB: HAD-AFIB. J Card Fail 2020; 26(10): S40.
[http://dx.doi.org/10.1016/j.cardfail.2020.09.120]
[20]
Pugliese NR, De Biase N, Gargani L, et al. Predicting the transition to and progression of heart failure with preserved ejection fraction: A weighted risk score using bio-humoural, cardiopulmonary, and echocardiographic stress testing. Eur J Prev Cardiol 2021; 28(15): 1650-61.
[http://dx.doi.org/10.1093/eurjpc/zwaa129] [PMID: 33624088]
[21]
Huttin O, Fraser AG, Lund LH, et al. Risk stratification with echocardiographic biomarkers in heart failure with preserved ejection fraction: The media echo score. ESC Heart Fail 2021; 8(3): 1827-39.
[http://dx.doi.org/10.1002/ehf2.13251] [PMID: 33656803]
[22]
Pieske B, Tschöpe C, de Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 2019; 40(40): 3297-317.
[http://dx.doi.org/10.1093/eurheartj/ehz641] [PMID: 31504452]
[23]
Sun Y, Si J, Li J, et al. Predictive value of HFA-PEFF score in patients with heart failure with preserved ejection fraction. Front Cardiovasc Med 2021; 8: 656536.
[http://dx.doi.org/10.3389/fcvm.2021.656536] [PMID: 34778384]
[24]
Egashira K, Sueta D, Komorita T, et al. HFA-PEFF scores: Prognostic value in heart failure with preserved left ventricular ejection fraction. Korean J Intern Med (Korean Assoc Intern Med) 2022; 37(1): 96-108.
[http://dx.doi.org/10.3904/kjim.2021.272] [PMID: 34929994]
[25]
Zamfirescu MB, Ghilencea LN, Popescu MR, et al. A practical risk score for prediction of early readmission after a first episode of acute heart failure with preserved ejection fraction. Diagnostics (Basel) 2021; 11(2): 198.
[http://dx.doi.org/10.3390/diagnostics11020198] [PMID: 33572844]
[26]
Garg P, Lewis RA, Johns CS, et al. Cardiovascular magnetic resonance predicts all-cause mortality in pulmonary hypertension associated with heart failure with preserved ejection fraction. Int J Cardiovasc Imaging 2021; 37(10): 3019-25.
[http://dx.doi.org/10.1007/s10554-021-02279-z] [PMID: 33978936]
[27]
Zhu W, Cao Y, Ye M, et al. Essen stroke risk score predicts clinical outcomes in heart failure patients with preserved ejection fraction: Evidence from the TOPCAT trial. Thromb Haemost 2023; 123(1): 085-96.
[http://dx.doi.org/10.1055/a-1932-8854] [PMID: 36037830]
[28]
Liu M, Lee AP, Sun JP, et al. Risk stratification for 1 year mortality in patients with heart failure and normal ejection fraction. Eur Heart J 2012; 33: 518-9.
[29]
Shen L, Jhund PS, Anand IS, et al. Developing and validating models to predict sudden death and pump failure death in patients with heart failure and preserved ejection fraction. Clin Res Cardiol 2021; 110(8): 1234-48.
[http://dx.doi.org/10.1007/s00392-020-01786-8] [PMID: 33301080]
[30]
Pocock SJ, Ferreira JP, Packer M, et al. Biomarker‐driven prognostic models in chronic heart failure with preserved ejection fraction: The EMPEROR-preserved trial. Eur J Heart Fail 2022; 24(10): 1869-78.
[http://dx.doi.org/10.1002/ejhf.2607] [PMID: 35796209]
[31]
Pandey A, Omar W, Ayers C, et al. Sex and race differences in lifetime risk of heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Circulation 2018; 137(17): 1814-23.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031622] [PMID: 29352072]
[32]
Pandey A, LaMonte M, Klein L, et al. Relationship between physical activity, body mass index, and risk of heart failure. J Am Coll Cardiol 2017; 69(9): 1129-42.
[http://dx.doi.org/10.1016/j.jacc.2016.11.081] [PMID: 28254175]
[33]
Zhu W, Liang W, Ye Z, et al. Association of physical activity and risk of atrial fibrillation in heart failure with preserved ejection fraction. Nutr Metab Cardiovasc Dis 2021; 31(1): 247-53.
[http://dx.doi.org/10.1016/j.numecd.2020.08.022] [PMID: 33097408]
[34]
Haass M, Kitzman DW, Anand IS, et al. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: Results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail 2011; 4(3): 324-31.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.110.959890] [PMID: 21350053]
[35]
Pandey A, Berry JD, Drazner MH, Fang JC, Tang WHW, Grodin JL. Body mass index, natriuretic peptides, and risk of adverse outcomes in patients with heart failure and preserved ejection fraction: Analysis from the TOPCAT trial. J Am Heart Assoc 2018; 7(21): e009664.
[http://dx.doi.org/10.1161/JAHA.118.009664] [PMID: 30376747]
[36]
Huang P, Guo Z, Liang W, et al. Weight change and mortality risk in heart failure with preserved ejection fraction. Front Cardiovasc Med 2021; 8: 681726.
[http://dx.doi.org/10.3389/fcvm.2021.681726] [PMID: 34150872]
[37]
Chen J, Li M, Hao B, et al. Waist to height ratio is associated with an increased risk of mortality in Chinese patients with heart failure with preserved ejection fraction. BMC Cardiovasc Disord 2021; 21(1): 263.
[http://dx.doi.org/10.1186/s12872-021-02080-9] [PMID: 34049494]
[38]
Sandesara PB, Samman-Tahhan A, Topel M, Venkatesh S, O’Neal WT. Effect of cigarette smoking on risk for adverse events in patients with heart failure and preserved ejection fraction. Am J Cardiol 2018; 122(3): 400-4.
[http://dx.doi.org/10.1016/j.amjcard.2018.04.016] [PMID: 30201107]
[39]
Eggers KM, Venge P, Lind L. Mid-regional pro-atrial natriuretic peptide levels in the elderly: Clinical and prognostic implications, and comparison to B-type natriuretic peptides. Clin Chim Acta 2013; 419: 62-6.
[http://dx.doi.org/10.1016/j.cca.2013.01.020] [PMID: 23415698]
[40]
Jensen J, Schou M, Kistorp C, et al. MR-proANP and incident cardiovascular disease in patients with type 2 diabetes with and without heart failure with preserved ejection fraction. Cardiovasc Diabetol 2020; 19(1): 180.
[http://dx.doi.org/10.1186/s12933-020-01155-9] [PMID: 33066783]
[41]
Putko BN, Savu A, Kaul P, et al. Left atrial remodelling, mid-regional pro-atrial natriuretic peptide, and prognosis across a range of ejection fractions in heart failure. Eur Heart J Cardiovasc Imaging 2021; 22(2): 220-8.
[http://dx.doi.org/10.1093/ehjci/jeaa041] [PMID: 32356860]
[42]
Binder C, Poglitsch M, Duca F, et al. Renin feedback is an independent predictor of outcome in HFpEF. J Pers Med 2021; 11(5): 370.
[http://dx.doi.org/10.3390/jpm11050370] [PMID: 34063595]
[43]
Tsai CH, Pan CT, Chang YY, et al. Left ventricular remodeling and dysfunction in primary aldosteronism. J Hum Hypertens 2021; 35(2): 131-47.
[http://dx.doi.org/10.1038/s41371-020-00426-y] [PMID: 33067554]
[44]
Ke B, Tan X, Ren L, et al. Aldosterone dysregulation predicts the risk of mortality and rehospitalization in heart failure with a preserved ejection fraction. Sci China Life Sci 2022; 65(3): 631-42.
[http://dx.doi.org/10.1007/s11427-021-1945-6] [PMID: 34258711]
[45]
Altay H, Zorlu A, Bilgi M, Erol T, Yilmaz MB. Usefulness of parathyroid hormone as a predictor of heart failure with preserved ejection fraction. Biomarkers 2012; 17(5): 447-54.
[http://dx.doi.org/10.3109/1354750X.2012.685182] [PMID: 22582762]
[46]
Fang Z. Study of sST2 and Cystatin C in the diagnosis and prognosis of patients with heart failure with preserved ejection fraction. Wuhan University 2016.
[47]
Unsicker K, Spittau B, Krieglstein K. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev 2013; 24(4): 373-84.
[http://dx.doi.org/10.1016/j.cytogfr.2013.05.003] [PMID: 23787157]
[48]
Wang J, Wei L, Yang X, Zhong J. Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. J Am Heart Assoc 2019; 8(17): e012826.
[http://dx.doi.org/10.1161/JAHA.119.012826] [PMID: 31432727]
[49]
Izumiya Y, Hanatani S, Kimura Y, et al. Growth differentiation factor-15 is a useful prognostic marker in patients with heart failure with preserved ejection fraction. Can J Cardiol 2014; 30(3): 338-44.
[http://dx.doi.org/10.1016/j.cjca.2013.12.010] [PMID: 24484911]
[50]
Chan MMY, Santhanakrishnan R, Chong JPC, et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail 2016; 18(1): 81-8.
[http://dx.doi.org/10.1002/ejhf.431] [PMID: 26497848]
[51]
Yin D, Yan X, Bai X, Tian A, Gao Y, Li J. Prognostic value of growth differentiation factors 15 in acute heart failure patients with preserved ejection fraction. ESC Heart Fail 2023; 10(2): 1025-34.
[http://dx.doi.org/10.1002/ehf2.14271] [PMID: 36519216]
[52]
Lakhani I, Wong MV, Hung JKF, et al. Diagnostic and prognostic value of serum C-reactive protein in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Heart Fail Rev 2021; 26(5): 1141-50.
[http://dx.doi.org/10.1007/s10741-020-09927-x] [PMID: 32030562]
[53]
Kanagala P, Arnold JR, Khan JN, et al. Plasma Tenascin-C: A prognostic biomarker in heart failure with preserved ejection fraction. Biomarkers 2020; 25(7): 556-65.
[http://dx.doi.org/10.1080/1354750X.2020.1810319] [PMID: 32803990]
[54]
Aramburu-Bodas Ó, García-Casado B, Salamanca-Bautista P, et al. Relationship between osteoprotegerin and mortality in decompensated heart failure with preserved ejection fraction. J Cardiovasc Med (Hagerstown) 2015; 16(6): 438-43.
[http://dx.doi.org/10.2459/JCM.0000000000000229] [PMID: 25469731]
[55]
Luedike P, Alatzides G, Papathanasiou M, et al. Predictive potential of macrophage migration inhibitory factor (MIF) in patients with heart failure with preserved ejection fraction (HFpEF). Eur J Med Res 2018; 23(1): 22.
[http://dx.doi.org/10.1186/s40001-018-0321-1] [PMID: 29728137]
[56]
Roy C, Lejeune S, Slimani A, et al. Fibroblast growth factor 23: A biomarker of fibrosis and prognosis in heart failure with preserved ejection fraction. ESC Heart Fail 2020; 7(5): 2494-507.
[http://dx.doi.org/10.1002/ehf2.12816] [PMID: 32578967]
[57]
Bayes-Genis A, de Antonio M, Vila J, et al. Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification: ST2 versus galectin-3. J Am Coll Cardiol 2014; 63(2): 158-66.
[http://dx.doi.org/10.1016/j.jacc.2013.07.087] [PMID: 24076531]
[58]
Beltrami M, Ruocco G, Dastidar AG, et al. Additional value of Galectin-3 to BNP in acute heart failure patients with preserved ejection fraction. Clin Chim Acta 2016; 457: 99-105.
[http://dx.doi.org/10.1016/j.cca.2016.04.007] [PMID: 27067445]
[59]
Vianello E, Dozio E, Tacchini L, Frati L, Corsi Romanelli MM. ST2/IL-33 signaling in cardiac fibrosis. Int J Biochem Cell Biol 2019; 116: 105619.
[http://dx.doi.org/10.1016/j.biocel.2019.105619] [PMID: 31561019]
[60]
Zhao YN, Li H, Zhao C, Liu GH. ST2 silencing aggravates ventricular remodeling and chronic heart failure in rats by mediating the IL‐33/ST2 axis. J Tissue Eng Regen Med 2020; 14(9) term.3091
[http://dx.doi.org/10.1002/term.3091] [PMID: 32592632]
[61]
Piper SE, Sherwood RA, Amin-Youssef GF, Shah AM, McDonagh TA. Serial soluble ST2 for the monitoring of pharmacologically optimised chronic stable heart failure. Int J Cardiol 2015; 178: 284-91.
[http://dx.doi.org/10.1016/j.ijcard.2014.11.097] [PMID: 25465308]
[62]
Hong T, Shaw RM. Cardiac T-tubule microanatomy and function. Physiol Rev 2017; 97(1): 227-52.
[http://dx.doi.org/10.1152/physrev.00037.2015] [PMID: 27881552]
[63]
Frisk M, Ruud M, Espe EKS, et al. Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis. Cardiovasc Res 2016; 112(1): 443-51.
[http://dx.doi.org/10.1093/cvr/cvw111] [PMID: 27226008]
[64]
Seidel T, Navankasattusas S, Ahmad A, et al. Sheet-like remodeling of the transverse tubular system in human heart failure impairs excitation-contraction coupling and functional recovery by mechanical unloading. Circulation 2017; 135(17): 1632-45.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024470] [PMID: 28073805]
[65]
Nikolova AP, Hitzeman TC, Baum R, et al. Association of a novel diagnostic biomarker, the plasma cardiac bridging integrator 1 score, with heart failure with preserved ejection fraction and cardiovascular hospitalization. JAMA Cardiol 2018; 3(12): 1206-10.
[http://dx.doi.org/10.1001/jamacardio.2018.3539] [PMID: 30383171]
[66]
Nuerbahaer R, Peng H. Research progress of von willebrand factor in cardiovascular diseases. Xinjiang Med J 2018; 48: 1234-6.
[67]
Kleber ME, Koller L, Goliasch G, et al. Von Willebrand factor improves risk prediction in addition to N-terminal pro-B-type natriuretic peptide in patients referred to coronary angiography and signs and symptoms of heart failure and preserved ejection fraction. Circ Heart Fail 2015; 8(1): 25-32.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.114.001478] [PMID: 25342739]
[68]
Harman JL, Sayers J, Chapman C, Pellet-Many C. Emerging roles for neuropilin-2 in cardiovascular disease. Int J Mol Sci 2020; 21(14): 5154.
[http://dx.doi.org/10.3390/ijms21145154] [PMID: 32708258]
[69]
Matsui Y, Jia N, Okamoto H, et al. Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy. Hypertension 2004; 43(6): 1195-201.
[http://dx.doi.org/10.1161/01.HYP.0000128621.68160.dd] [PMID: 15123578]
[70]
Sawaki D, Czibik G, Pini M, et al. Visceral adipose tissue drives cardiac aging through modulation of fibroblast senescence by osteopontin production. Circulation 2018; 138(8): 809-22.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031358] [PMID: 29500246]
[71]
López B, González A, Lindner D, et al. Osteopontin-mediated myocardial fibrosis in heart failure: A role for lysyl oxidase? Cardiovasc Res 2013; 99(1): 111-20.
[http://dx.doi.org/10.1093/cvr/cvt100] [PMID: 23619422]
[72]
Tromp J, Khan MAF, Klip IJT, et al. Biomarker profiles in heart failure patients with preserved and reduced ejection fraction. J Am Heart Assoc 2017; 6(4): e003989.
[http://dx.doi.org/10.1161/JAHA.116.003989] [PMID: 28360225]
[73]
Watanabe Y, Tatsuno I. Omega-3 polyunsaturated fatty acids focusing on eicosapentaenoic acid and docosahexaenoic acid in the prevention of cardiovascular diseases: A review of the state-of-the-art. Expert Rev Clin Pharmacol 2021; 14(1): 79-93.
[http://dx.doi.org/10.1080/17512433.2021.1863784] [PMID: 33306922]
[74]
Kaikkonen JE, Jula A, Viikari JSA, et al. Associations of serum fatty acid proportions with obesity, insulin resistance, blood pressure, and fatty liver: The cardiovascular risk in young Finns study. J Nutr 2021; 151(4): 970-8.
[http://dx.doi.org/10.1093/jn/nxaa409] [PMID: 33561215]
[75]
Matsuo N, Miyoshi T, Takaishi A, et al. High plasma docosahexaenoic acid associated to better prognoses of patients with acute decompensated heart failure with preserved ejection fraction. Nutrients 2021; 13(2): 371.
[http://dx.doi.org/10.3390/nu13020371] [PMID: 33530352]
[76]
Harada T, Sunaga H, Sorimachi H, et al. Pathophysiological role of fatty acid‐binding protein 4 in Asian patients with heart failure and preserved ejection fraction. ESC Heart Fail 2020; 7(6): 4256-66.
[http://dx.doi.org/10.1002/ehf2.13071] [PMID: 33140584]
[77]
Wu ZY, Liu MJ, Tan LL, et al. Research progress of tMAO and cardiovascular diseases. Chinese Journal of Laboratory Diagnosis 2020; 24(11): 1916-9.
[78]
Salzano A, Israr MZ, Yazaki Y, Heaney LM, Suzuki T. Combined use of trimethylamine N-oxide with BNP for risk stratification in heart failure with preserved ejection fraction: Findings from the DIAMONDHFpEF study. Eur J Prev Cardiol 2020; 27(19): 2159-62.
[PMID: 31412713]
[79]
Thawabi M, Hawatmeh A, Studyvin S, Habib H, Shamoon F, Cohen M. Cardiac troponin and outcome in decompensated heart failure with preserved ejection fraction. Cardiovasc Diagn Ther 2017; 7(4): 359-66.
[http://dx.doi.org/10.21037/cdt.2017.03.17] [PMID: 28890872]
[80]
Myhre PL, O’Meara E, Claggett BL, et al. Cardiac troponin I and risk of cardiac events in patients with heart failure and preserved ejection fraction. Circ Heart Fail 2018; 11(11): e005312.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.118.005312] [PMID: 30571192]
[81]
Llàcer P, Núñez J, Manzano L, et al. Carbohydrate antigen 125 (CA125) as a prognostic marker in the elderly with acute heart failure and preserved ejection fraction. Med Clin 2021; 159: 164-70.
[82]
Nakagawa A, Yasumura Y, Yoshida C, et al. Prognostic relevance of elevated plasma osmolality on admission in acute decompensated heart failure with preserved ejection fraction: Insights from PURSUIT-HFpEF registry. BMC Cardiovasc Disord 2021; 21(1): 281.
[http://dx.doi.org/10.1186/s12872-021-02098-z] [PMID: 34098878]
[83]
Zhen Z, Liang W, Tan W, et al. Prognostic significance of blood urea nitrogen/creatinine ratio in chronic HFpEF. Eur J Clin Invest 2022; 52(7): e13761.
[http://dx.doi.org/10.1111/eci.13761] [PMID: 35199851]
[84]
Huang P, Yu Y, Wei F, et al. Association of long-term SBP with clinical outcomes and quality of life in heart failure with preserved ejection fraction: An analysis of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. J Hypertens 2021; 39(7): 1378-85.
[http://dx.doi.org/10.1097/HJH.0000000000002807] [PMID: 33534342]
[85]
Fuchida A, Suzuki S, Motoki H, et al. Prognostic significance of diastolic blood pressure in patients with heart failure with preserved ejection fraction. Heart Vessels 2021; 36(8): 1159-65.
[http://dx.doi.org/10.1007/s00380-021-01788-0] [PMID: 33528797]
[86]
Huang R, Wu R, Lin Y, et al. Time-averaged cumulative blood pressure and cardiovascular outcomes in heart failure with preserved ejection fraction: Analysis from the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. J Hypertens 2022; 40(10): 1918-26.
[http://dx.doi.org/10.1097/HJH.0000000000003177] [PMID: 36018222]
[87]
Suzuki K, Claggett B, Minamisawa M, et al. Pulse pressure, prognosis, and influence of sacubitril/valsartan in heart failure with preserved ejection fraction. Hypertension 2021; 77(2): 546-56.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.16277] [PMID: 33356401]
[88]
O’Neal WT, Sandesara PB, Samman-Tahhan A, Kelli HM, Hammadah M, Soliman EZ. Heart rate and the risk of adverse outcomes in patients with heart failure with preserved ejection fraction. Eur J Prev Cardiol 2017; 24(11): 1212-9.
[http://dx.doi.org/10.1177/2047487317708676] [PMID: 28482692]
[89]
Shang X, Lu R, Liu M, Xiao S, Dong N. Heart rate and outcomes in patients with heart failure with preserved ejection fraction. Medicine (Baltimore) 2017; 96(43): e8431.
[http://dx.doi.org/10.1097/MD.0000000000008431] [PMID: 29069045]
[90]
Oliva F, Sormani P, Contri R, et al. Heart rate as a prognostic marker and therapeutic target in acute and chronic heart failure. Int J Cardiol 2018; 253: 97-104.
[http://dx.doi.org/10.1016/j.ijcard.2017.09.191] [PMID: 29249470]
[91]
Mu F. Relationship between QRS duration and prognosis in elderly patients with acute myocardial infarction. Zhongguo Laonianxue Zazhi 2015; 35: 3609-10.
[92]
Lund LH, Jurga J, Edner M, et al. Prevalence, correlates, and prognostic significance of QRS prolongation in heart failure with reduced and preserved ejection fraction. Eur Heart J 2013; 34(7): 529-39.
[http://dx.doi.org/10.1093/eurheartj/ehs305] [PMID: 23041499]
[93]
Pei JH, Pu JL. The pathogenesis and clinical significance of Tp-Te interval. Chin J Cardiac Pac Electrophy 2010; 24: 483-5.
[94]
Li GJ, Liu LM. The predictive value of increased Tp-Te interval for adverse cardiovascular events in patients with ejection fraction retention heart failure. Shandong Yiyao 2018; 58: 68-70.
[95]
Shin SH, Claggett B, Inciardi RM, et al. Prognostic value of minimal left atrial volume in heart failure with preserved ejection fraction. J Am Heart Assoc 2021; 10(15): e019545.
[http://dx.doi.org/10.1161/JAHA.120.019545] [PMID: 34325519]
[96]
Kammerlander AA, Donà C, Nitsche C, et al. Feature tracking of global longitudinal strain by using cardiovascular MRI improves risk stratification in heart failure with preserved ejection fraction. Radiology 2020; 296(2): 290-8.
[http://dx.doi.org/10.1148/radiol.2020200195] [PMID: 32484413]
[97]
Sakaguchi E, Yamada A, Naruse H, et al. Long-term prognostic value of changes in left ventricular global longitudinal strain in patients with heart failure with preserved ejection fraction. Heart Vessels 2023; 38(5): 645-52.
[http://dx.doi.org/10.1007/s00380-022-02211-y] [PMID: 36450933]
[98]
Lee SH, Lhagvasuren P, Seo J, et al. Prognostic implications of left ventricular global longitudinal strain in patients with surgically treated mitral valve disease and preserved ejection fraction. Front Cardiovasc Med 2022; 8: 775533.
[http://dx.doi.org/10.3389/fcvm.2021.775533] [PMID: 35127853]
[99]
Harada T, Yamaguchi M, Omote K, et al. Cardiac power output is independently and incrementally associated with adverse outcomes in heart failure with preserved ejection fraction. Circ Cardiovasc Imaging 2022; 15(2): e013495.
[http://dx.doi.org/10.1161/CIRCIMAGING.121.013495] [PMID: 35144484]
[100]
Harada D, Asanoi H, Noto T, Takagawa J. Prominent ‘Y’ descent is an ominous sign of a poorer prognosis in heart failure with preserved ejection fraction. ESC Heart Fail 2019; 6(4): 799-808.
[http://dx.doi.org/10.1002/ehf2.12460] [PMID: 31111677]
[101]
Parrinello G, Torres D, Buscemi S, et al. Right ventricular diameter predicts all-cause mortality in heart failure with preserved ejection fraction. Intern Emerg Med 2019; 14(7): 1091-100.
[http://dx.doi.org/10.1007/s11739-019-02071-x] [PMID: 30895427]
[102]
Gorter TM, Hoendermis ES, van Veldhuisen DJ, et al. Right ventricular dysfunction in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Eur J Heart Fail 2016; 18(12): 1472-87.
[http://dx.doi.org/10.1002/ejhf.630] [PMID: 27650220]
[103]
Zhao YH, Zhao L, Yang XC. Mechanism of involvement of epicardial adipose tissue in cardiovascular disease. Int J Cardiovasc Dis 2020; 47: 331-4.
[104]
White IA. Cardiac sympathetic denervation in the failing heart: A role for epicardial adipose tissue. Circ Res 2016; 118(8): 1189-91.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308621] [PMID: 27081107]
[105]
Parisi V, Rengo G, Perrone-Filardi P, et al. Increased epicardial adipose tissue volume correlates with cardiac sympathetic denervation in patients with heart failure. Circ Res 2016; 118(8): 1244-53.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307765] [PMID: 26926470]
[106]
Wu CK, Tsai HY, Su MYM, et al. Evolutional change in epicardial fat and its correlation with myocardial diffuse fibrosis in heart failure patients. J Clin Lipidol 2017; 11(6): 1421-31.
[http://dx.doi.org/10.1016/j.jacl.2017.08.018] [PMID: 29050981]
[107]
Pugliese NR, Paneni F, Mazzola M, et al. Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. Eur J Heart Fail 2021; 23(11): 1858-71.
[http://dx.doi.org/10.1002/ejhf.2337] [PMID: 34427016]
[108]
Sato Y, Yoshihisa A, Oikawa M, et al. Hyponatremia at discharge is associated with adverse prognosis in acute heart failure syndromes with preserved ejection fraction: A report from the JASPER registry. Eur Heart J Acute Cardiovasc Care 2019; 8(7): 623-33.
[http://dx.doi.org/10.1177/2048872618822459] [PMID: 30667275]
[109]
Zhou Y, Fu L, Sun J, et al. Association between metabolic syndrome and an increased risk of hospitalization for heart failure in population of HFpEF. Front Cardiovasc Med 2021; 8: 698117.
[http://dx.doi.org/10.3389/fcvm.2021.698117] [PMID: 34595217]
[110]
Williams D, Stout MJ, Rosenbloom JI, et al. Preeclampsia predicts risk of hospitalization for heart failure with preserved ejection fraction. J Am Coll Cardiol 2021; 78(23): 2281-90.
[http://dx.doi.org/10.1016/j.jacc.2021.09.1360] [PMID: 34857089]
[111]
Konishi M, Kagiyama N, Kamiya K, et al. Impact of sarcopenia on prognosis in patients with heart failure with reduced and preserved ejection fraction. Eur J Prev Cardiol 2021; 28(9): 1022-9.
[http://dx.doi.org/10.1093/eurjpc/zwaa117] [PMID: 33624112]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy