Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

General Review Article

Unfolded Protein Response Signaling in Hepatic Stem Cell Activation in Liver Fibrosis

Author(s): Zohreh Salimi, Mehdi Rostami, Yaser Eshaghi Milasi, Alireza Mafi, Ramin Raoufinia, Amirhossein Kiani, Fariba Sakhaei, Behrooz Ghezelbash, Alexandra E. Butler, Maryam Mohammad-Sadeghipour* and Amirhossein Sahebkar*

Volume 25, Issue 1, 2024

Published on: 06 September, 2023

Page: [59 - 70] Pages: 12

DOI: 10.2174/1389203724666230822085951

Price: $65

conference banner
Abstract

Frequent exposure to various external and internal adverse forces (stresses) disrupts cell protein homeostasis through endoplasmic reticulum (ER) capacity saturation. This process leads to the unfolded protein response (UPR), which aims to re-establish/maintain optimal cellular equilibrium. This complex mechanism is involved in the pathogenesis of various disorders, such as metabolic syndrome, fibrotic diseases, neurodegeneration, and cancer, by altering cellular metabolic changes integral to activating the hepatic stellate cells (HSCs). The development of hepatic fibrosis is one of the consequences of UPR activation. Therefore, novel therapies that target the UPR pathway effectively and specifically are being studied. This article covers the involvement of the UPR signaling pathway in cellular damage in liver fibrosis. Investigating the pathogenic pathways related to the ER/UPR stress axis that contribute to liver fibrosis can help to guide future drug therapy approaches.

Keywords: Stresses, endoplasmic reticulum, hepatic satellite cells, unfolded protein response, liver fibrosis, drug therapy.

Graphical Abstract
[1]
Ozgur, R.; Uzilday, B.; Iwata, Y.; Koizumi, N.; Turkan, I. Interplay between the unfolded protein response and reactive oxygen species: A dynamic duo. J. Exp. Bot., 2018, 69(14), 3333-3345.
[http://dx.doi.org/10.1093/jxb/ery040] [PMID: 29415271]
[2]
Chen, X.; Cubillos-Ruiz, J.R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer, 2021, 21(2), 71-88.
[http://dx.doi.org/10.1038/s41568-020-00312-2] [PMID: 33214692]
[3]
Schröder, M. Endoplasmic reticulum stress responses. Cell. Mol. Life Sci., 2008, 65(6), 862-894.
[http://dx.doi.org/10.1007/s00018-007-7383-5] [PMID: 18038217]
[4]
Kapoor, A.; Sanyal, A.J. Endoplasmic reticulum stress and the unfolded protein response. Clin. Liver Dis., 2009, 13(4), 581-590.
[http://dx.doi.org/10.1016/j.cld.2009.07.004] [PMID: 19818306]
[5]
Aghaei, M.; Dastghaib, S.; Aftabi, S.; Aghanoori, M.R.; Alizadeh, J.; Mokarram, P.; Mehrbod, P.; Ashrafizadeh, M.; Zarrabi, A.; McAlinden, K.D.; Eapen, M.S.; Sohal, S.S.; Sharma, P.; Zeki, A.A.; Ghavami, S. The ER stress/UPR axis in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Life., 2020, 11(1), 1.
[http://dx.doi.org/10.3390/life11010001] [PMID: 33374938]
[6]
Salminen, A.; Kaarniranta, K. ER stress and hormetic regulation of the aging process. Ageing Res. Rev., 2010, 9(3), 211-217.
[http://dx.doi.org/10.1016/j.arr.2010.04.003] [PMID: 20416402]
[7]
Kim, I.; Xu, W.; Reed, J.C. Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov., 2008, 7(12), 1013-1030.
[http://dx.doi.org/10.1038/nrd2755] [PMID: 19043451]
[8]
Kim, S.R.; Lee, Y.C. Endoplasmic reticulum stress and the related signaling networks in severe asthma. Allergy Asthma Immunol. Res., 2015, 7(2), 106-117.
[http://dx.doi.org/10.4168/aair.2015.7.2.106] [PMID: 25729617]
[9]
Kelsen, SG The unfolded protein response in chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc., 2016, 13(S2)
[10]
Wang, M.; Wey, S.; Zhang, Y.; Ye, R.; Lee, A.S. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid. Redox Signal., 2009, 11(9), 2307-2316.
[http://dx.doi.org/10.1089/ars.2009.2485] [PMID: 19309259]
[11]
Walter, P.; Ron, D. The unfolded protein response: From stress pathway to homeostatic regulation. Science., 2011, 334(6059), 1081-1086.
[http://dx.doi.org/10.1126/science.1209038] [PMID: 22116877]
[12]
Koo, J.H.; Lee, H.J.; Kim, W.; Kim, S.G. Endoplasmic reticulum stress in hepatic stellate cells promotes liver fibrosis via PERK-Mediated degradation of HNRNPA1 and up-regulation of SMAD2. Gastroenterology., 2016, 150(1), 181-193.e8.
[http://dx.doi.org/10.1053/j.gastro.2015.09.039] [PMID: 26435271]
[13]
Li, X; Wang, Y; Wang, H; Huang, C; Huang, Y; Li, J Endoplasmic reticulum stress is the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in liver fibrosis. Inflamm Res., 2015, 64(1), 1-7.
[http://dx.doi.org/10.1007/s00011-014-0772-y]
[14]
Maiers, J.; Malhi, H. Endoplasmic reticulum stress in metabolic liver diseases and hepatic fibrosis. Semin. Liver Dis., 2019, 39(2), 235-248.
[http://dx.doi.org/10.1055/s-0039-1681032] [PMID: 30912096]
[15]
Iracheta-Vellve, A.; Petrasek, J.; Gyongyosi, B.; Satishchandran, A.; Lowe, P.; Kodys, K.; Catalano, D.; Calenda, C.D.; Kurt-Jones, E.A.; Fitzgerald, K.A.; Szabo, G. Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes. J. Biol. Chem., 2016, 291(52), 26794-26805.
[http://dx.doi.org/10.1074/jbc.M116.736991] [PMID: 27810900]
[16]
Dastghaib, S.; Shojaei, S.; Mostafavi-Pour, Z.; Sharma, P.; Patterson, J.B.; Samali, A.; Mokarram, P.; Ghavami, S. Simvastatin induces unfolded protein response and enhances temozolomide-induced cell death in glioblastoma cells. Cells, 2020, 9(11), 2339.
[http://dx.doi.org/10.3390/cells9112339] [PMID: 33105603]
[17]
Dastghaib, S.; Kumar, P.S.; Aftabi, S.; Damera, G.; Dalvand, A.; Sepanjnia, A.; Kiumarsi, M.; Aghanoori, M.R.; Sohal, S.S.; Ande, S.R.; Alizadeh, J.; Mokarram, P.; Ghavami, S.; Sharma, P.; Zeki, A.A. Mechanisms targeting the unfolded protein response in asthma. Am. J. Respir. Cell Mol. Biol., 2021, 64(1), 29-38.
[http://dx.doi.org/10.1165/rcmb.2019-0235TR] [PMID: 32915643]
[18]
Arsène, F.; Tomoyasu, T.; Bukau, B. The heat shock response of Escherichia coli. Int. J. Food Microbiol., 2000, 55(1-3), 3-9.
[http://dx.doi.org/10.1016/S0168-1605(00)00206-3] [PMID: 10791710]
[19]
Anckar, J.; Sistonen, L. Regulation of HSF1 function in the heat stress response: Implications in aging and disease. Annu. Rev. Biochem., 2011, 80(1), 1089-1115.
[http://dx.doi.org/10.1146/annurev-biochem-060809-095203] [PMID: 21417720]
[20]
Yeganeh, B.; Rezaei Moghadam, A.; Tran, A.T.; Rahim, M.N.; Ande, S.R.; Hashemi, M.; Coombs, K.M.; Ghavami, S. Asthma and influenza virus infection:focusing on cell death and stress pathways in influenza virus replication. Iran. J. Allergy Asthma Immunol., 2013, 12(1), 1-17.
[PMID: 23454774]
[21]
Bertolotti, A.; Zhang, Y.; Hendershot, L.M.; Harding, H.P.; Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol., 2000, 2(6), 326-332.
[http://dx.doi.org/10.1038/35014014] [PMID: 10854322]
[22]
Oikawa, D.; Kimata, Y.; Kohno, K.; Iwawaki, T. Activation of mammalian IRE1α upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins. Exp. Cell Res., 2009, 315(15), 2496-2504.
[http://dx.doi.org/10.1016/j.yexcr.2009.06.009] [PMID: 19538957]
[23]
Carrara, M.; Prischi, F.; Nowak, P.R.; Kopp, M.C.; Ali, M.M.U. Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein CH1 to initiate ER stress signaling. eLife, 2015, 4, e03522.
[http://dx.doi.org/10.7554/eLife.03522] [PMID: 25692299]
[24]
Mehrbod, P.; Ande, S.R.; Alizadeh, J.; Rahimizadeh, S.; Shariati, A.; Malek, H.; Hashemi, M.; Glover, K.K.M.; Sher, A.A.; Coombs, K.M.; Ghavami, S. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence., 2019, 10(1), 376-413.
[http://dx.doi.org/10.1080/21505594.2019.1605803] [PMID: 30966844]
[25]
Veyron, S.; Peyroche, G.; Cherfils, J. FIC proteins: from bacteria to humans and back again. Pathog. Dis., 2018, 76(2)
[http://dx.doi.org/10.1093/femspd/fty012] [PMID: 29617857]
[26]
Preissler, S.; Rato, C.; Perera, L.A.; Saudek, V.; Ron, D. FICD acts bifunctionally to AMPylate and de-AMPylate the endoplasmic reticulum chaperone BiP. Nat. Struct. Mol. Biol., 2017, 24(1), 23-29.
[http://dx.doi.org/10.1038/nsmb.3337] [PMID: 27918543]
[27]
Ham, H.; Woolery, A.R.; Tracy, C.; Stenesen, D.; Krämer, H.; Orth, K. Unfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis. J. Biol. Chem., 2014, 289(52), 36059-36069.
[http://dx.doi.org/10.1074/jbc.M114.612515] [PMID: 25395623]
[28]
McMahon, M.; Samali, A.; Chevet, E. Regulation of the unfolded protein response by noncoding RNA. Am. J. Physiol. Cell Physiol., 2017, 313(3), C243-C254.
[http://dx.doi.org/10.1152/ajpcell.00293.2016] [PMID: 28637678]
[29]
Preissler, S.; Ron, D. Early events in the endoplasmic reticulum unfolded protein response. Cold Spring Harb. Perspect. Biol., 2019, 11(4), a033894.
[http://dx.doi.org/10.1101/cshperspect.a033894] [PMID: 30396883]
[30]
Casey, A.K.; Moehlman, A.T.; Zhang, J.; Servage, K.A.; Krämer, H.; Orth, K. Fic-mediated deAMPylation is not dependent on homodimerization and rescues toxic AMPylation in flies. J. Biol. Chem., 2017, 292(51), 21193-21204.
[http://dx.doi.org/10.1074/jbc.M117.799296] [PMID: 29089387]
[31]
Kimata, Y.; Ishiwata-Kimata, Y.; Ito, T.; Hirata, A.; Suzuki, T.; Oikawa, D.; Takeuchi, M.; Kohno, K. Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J. Cell Biol., 2007, 179(1), 75-86.
[http://dx.doi.org/10.1083/jcb.200704166] [PMID: 17923530]
[32]
Fu, J; Tao, T; Li, Z; Chen, Y; Li, J; Peng, L. The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications. Biomed. Pharmacother., 2020, 131, 110658..
[33]
Sundaram, A.; Plumb, R.; Appathurai, S.; Mariappan, M. The Sec61 translocon limits IRE1α signaling during the unfolded protein response. eLife, 2017, 6, e27187.
[http://dx.doi.org/10.7554/eLife.27187] [PMID: 28504640]
[34]
Sundaram, A.; Appathurai, S.; Plumb, R.; Mariappan, M. Dynamic changes in complexes of IRE1α, PERK, and ATF6α during endoplasmic reticulum stress. Mol. Biol. Cell, 2018, 29(11), 1376-1388.
[http://dx.doi.org/10.1091/mbc.E17-10-0594] [PMID: 29851562]
[35]
Sano, R.; Reed, J.C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(12), 3460-3470.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.028] [PMID: 23850759]
[36]
Wang, M.; Kaufman, R.J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature., 2016, 529(7586), 326-335.
[http://dx.doi.org/10.1038/nature17041] [PMID: 26791723]
[37]
Rutkowski, D.T.; Arnold, S.M.; Miller, C.N.; Wu, J.; Li, J.; Gunnison, K.M.; Mori, K.; Sadighi Akha, A.A.; Raden, D.; Kaufman, R.J. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol., 2006, 4(11), e374.
[http://dx.doi.org/10.1371/journal.pbio.0040374] [PMID: 17090218]
[38]
Lin, J.H.; Li, H.; Yasumura, D.; Cohen, H.R.; Zhang, C.; Panning, B.; Shokat, K.M.; LaVail, M.M.; Walter, P. IRE1 signaling affects cell fate during the unfolded protein response. Science., 2007, 318(5852), 944-949.
[http://dx.doi.org/10.1126/science.1146361] [PMID: 17991856]
[39]
Deegan, S.; Saveljeva, S.; Gorman, A.M.; Samali, A. Stress-induced self-cannibalism: On the regulation of autophagy by endoplasmic reticulum stress. Cell. Mol. Life Sci., 2013, 70(14), 2425-2441.
[http://dx.doi.org/10.1007/s00018-012-1173-4] [PMID: 23052213]
[40]
Tsuru, A.; Fujimoto, N.; Takahashi, S.; Saito, M.; Nakamura, D.; Iwano, M.; Iwawaki, T.; Kadokura, H.; Ron, D.; Kohno, K. Negative feedback by IRE1β optimizes mucin production in goblet cells. Proc. Natl. Acad. Sci., 2013, 110(8), 2864-2869.
[http://dx.doi.org/10.1073/pnas.1212484110] [PMID: 23386727]
[41]
Iwawaki, T.; Akai, R.; Yamanaka, S.; Kohno, K. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc. Natl. Acad. Sci., 2009, 106(39), 16657-16662.
[http://dx.doi.org/10.1073/pnas.0903775106] [PMID: 19805353]
[42]
Upton, J.P.; Wang, L.; Han, D.; Wang, E.S.; Huskey, N.E.; Lim, L.; Truitt, M.; McManus, M.T.; Ruggero, D.; Goga, A.; Papa, F.R.; Oakes, S.A. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science., 2012, 338(6108), 818-822.
[http://dx.doi.org/10.1126/science.1226191] [PMID: 23042294]
[43]
Han, D.; Lerner, A.G.; Vande Walle, L.; Upton, J.P.; Xu, W.; Hagen, A.; Backes, B.J.; Oakes, S.A.; Papa, F.R. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell., 2009, 138(3), 562-575.
[http://dx.doi.org/10.1016/j.cell.2009.07.017] [PMID: 19665977]
[44]
Yeganeh, B.; Rezaei Moghadam, A.; Alizadeh, J.; Wiechec, E.; Alavian, S.M.; Hashemi, M.; Geramizadeh, B.; Samali, A.; Bagheri, L.K.; Post, M.; Peymani, P.; Coombs, K.M.; Ghavami, S. Hepatitis B and C virus-induced hepatitis: Apoptosis, autophagy, and unfolded protein response. World J. Gastroenterol., 2015, 21(47), 13225-13239.
[http://dx.doi.org/10.3748/wjg.v21.i47.13225] [PMID: 26715805]
[45]
Yanagitani, K.; Imagawa, Y.; Iwawaki, T.; Hosoda, A.; Saito, M.; Kimata, Y.; Kohno, K. Cotranslational targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA. Mol. Cell, 2009, 34(2), 191-200.
[http://dx.doi.org/10.1016/j.molcel.2009.02.033] [PMID: 19394296]
[46]
Yoshida, H.; Matsui, T.; Yamamoto, A.; Okada, T.; Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell., 2001, 107(7), 881-891.
[http://dx.doi.org/10.1016/S0092-8674(01)00611-0] [PMID: 11779464]
[47]
Lee, K.; Tirasophon, W.; Shen, X.; Michalak, M.; Prywes, R.; Okada, T.; Yoshida, H.; Mori, K.; Kaufman, R.J. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev., 2002, 16(4), 452-466.
[http://dx.doi.org/10.1101/gad.964702] [PMID: 11850408]
[48]
Ghavami, S.; Sharma, P.; Yeganeh, B.; Ojo, O.O.; Jha, A.; Mutawe, M.M.; Kashani, H.H.; Los, M.J.; Klonisch, T.; Unruh, H.; Halayko, A.J. Airway mesenchymal cell death by mevalonate cascade inhibition: Integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(7), 1259-1271.
[http://dx.doi.org/10.1016/j.bbamcr.2014.03.006] [PMID: 24637330]
[49]
Ghavami, S.; Yeganeh, B.; Stelmack, G.L.; Kashani, H.H.; Sharma, P.; Cunnington, R.; Rattan, S.; Bathe, K.; Klonisch, T.; Dixon, I.M.C.; Freed, D.H.; Halayko, A.J. Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts. Cell Death Dis., 2012, 3(6), e330.
[http://dx.doi.org/10.1038/cddis.2012.61] [PMID: 22717585]
[50]
Scorrano, L.; Oakes, S.A.; Opferman, J.T.; Cheng, E.H.; Sorcinelli, M.D.; Pozzan, T.; Korsmeyer, S.J. BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science., 2003, 300(5616), 135-139.
[http://dx.doi.org/10.1126/science.1081208] [PMID: 12624178]
[51]
Bultynck, G.; Kiviluoto, S.; Henke, N.; Ivanova, H.; Schneider, L.; Rybalchenko, V.; Luyten, T.; Nuyts, K.; De Borggraeve, W.; Bezprozvanny, I.; Parys, J.B.; De Smedt, H.; Missiaen, L.; Methner, A. The C terminus of Bax inhibitor-1 forms a Ca2+-permeable channel pore. J. Biol. Chem., 2012, 287(4), 2544-2557.
[http://dx.doi.org/10.1074/jbc.M111.275354] [PMID: 22128171]
[52]
Varadarajan, S.; Bampton, E.T.W.; Smalley, J.L.; Tanaka, K.; Caves, R.E.; Butterworth, M.; Wei, J.; Pellecchia, M.; Mitcheson, J.; Gant, T.W.; Dinsdale, D.; Cohen, G.M. A novel cellular stress response characterised by a rapid reorganisation of membranes of the endoplasmic reticulum. Cell Death Differ., 2012, 19(12), 1896-1907.
[http://dx.doi.org/10.1038/cdd.2012.108] [PMID: 22955944]
[53]
Ishikawa, T.; Watanabe, N.; Nagano, M.; Kawai-Yamada, M.; Lam, E. Bax inhibitor-1: A highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ., 2011, 18(8), 1271-1278.
[http://dx.doi.org/10.1038/cdd.2011.59] [PMID: 21597463]
[54]
Gaddam, D.; Stevens, N.; Hollien, J. Comparison of mRNA localization and regulation during endoplasmic reticulum stress in Drosophila cells. Mol. Biol. Cell, 2013, 24(1), 14-20.
[http://dx.doi.org/10.1091/mbc.e12-06-0491] [PMID: 23135994]
[55]
Hollien, J.; Weissman, J.S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science., 2006, 313(5783), 104-107.
[http://dx.doi.org/10.1126/science.1129631] [PMID: 16825573]
[56]
Srinivasan, V.; Korhonen, L.; Lindholm, D. The unfolded protein response and autophagy as drug targets in neuropsychiatric disorders. Front. Cell. Neurosci., 2020, 14, 554548.
[http://dx.doi.org/10.3389/fncel.2020.554548] [PMID: 33132844]
[57]
McGrath, E.; Logue, S.; Mnich, K.; Deegan, S.; Jäger, R.; Gorman, A.; Samali, A. The unfolded protein response in breast cancer. Cancers., 2018, 10(10), 344.
[http://dx.doi.org/10.3390/cancers10100344] [PMID: 30248920]
[58]
Cnop, M.; Toivonen, S.; Igoillo-Esteve, M.; Salpea, P. Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells. Mol. Metab., 2017, 6(9), 1024-1039.
[http://dx.doi.org/10.1016/j.molmet.2017.06.001] [PMID: 28951826]
[59]
Okamura, K.; Kimata, Y.; Higashio, H.; Tsuru, A.; Kohno, K. Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem. Biophys. Res. Commun., 2000, 279(2), 445-450.
[http://dx.doi.org/10.1006/bbrc.2000.3987] [PMID: 11118306]
[60]
Amin-Wetzel, N.; Neidhardt, L.; Yan, Y.; Mayer, M.P.; Ron, D. Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR. eLife, 2019, 8, e50793.
[http://dx.doi.org/10.7554/eLife.50793] [PMID: 31873072]
[61]
Wang, X.; Ron, D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science, 1996, 272(5266), 1347-1349.
[http://dx.doi.org/10.1126/science.272.5266.1347] [PMID: 8650547]
[62]
Kim, B.J.; Ryu, S.W.; Song, B.J. JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J. Biol. Chem., 2006, 281(30), 21256-21265.
[http://dx.doi.org/10.1074/jbc.M510644200] [PMID: 16709574]
[63]
Hetz, C.; Bernasconi, P.; Fisher, J.; Lee, A.H.; Bassik, M.C.; Antonsson, B.; Brandt, G.S.; Iwakoshi, N.N.; Schinzel, A.; Glimcher, L.H.; Korsmeyer, S.J. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science., 2006, 312(5773), 572-576.
[http://dx.doi.org/10.1126/science.1123480] [PMID: 16645094]
[64]
Rizzuto, R.; Pinton, P.; Carrington, W.; Fay, F.S.; Fogarty, K.E.; Lifshitz, L.M.; Tuft, R.A.; Pozzan, T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science., 1998, 280(5370), 1763-1766.
[http://dx.doi.org/10.1126/science.280.5370.1763] [PMID: 9624056]
[65]
Roy, B.; Lee, A.S. The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res., 1999, 27(6), 1437-1443.
[http://dx.doi.org/10.1093/nar/27.6.1437] [PMID: 10037803]
[66]
Sano, R.; Hou, Y.C.C.; Hedvat, M.; Correa, R.G.; Shu, C.W.; Krajewska, M.; Diaz, P.W.; Tamble, C.M.; Quarato, G.; Gottlieb, R.A.; Yamaguchi, M.; Nizet, V.; Dahl, R.; Thomas, D.D.; Tait, S.W.; Green, D.R.; Fisher, P.B.; Matsuzawa, S.I.; Reed, J.C. Endoplasmic reticulum protein BI-1 regulates Ca 2+ -mediated bioenergetics to promote autophagy. Genes Dev., 2012, 26(10), 1041-1054.
[http://dx.doi.org/10.1101/gad.184325.111] [PMID: 22588718]
[67]
Cavener, D.R.; Gupta, S.; McGrath, B.C. PERK in beta cell biology and insulin biogenesis. Trends Endocrinol. Metab., 2010, 21(12), 714-721.
[http://dx.doi.org/10.1016/j.tem.2010.08.005] [PMID: 20850340]
[68]
Delépine, M.; Nicolino, M.; Barrett, T.; Golamaully, M.; Mark Lathrop, G.; Julier, C. EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat. Genet., 2000, 25(4), 406-409.
[http://dx.doi.org/10.1038/78085] [PMID: 10932183]
[69]
Deng, X.; Xiao, L.; Lang, W.; Gao, F.; Ruvolo, P.; May, W.S., Jr Novel role for JNK as a stress-activated Bcl2 kinase. J. Biol. Chem., 2001, 276(26), 23681-23688.
[http://dx.doi.org/10.1074/jbc.M100279200] [PMID: 11323415]
[70]
Wek, R.C.; Cavener, D.R. Translational control and the unfolded protein response. Antioxid. Redox Signal., 2007, 9(12), 2357-2372.
[http://dx.doi.org/10.1089/ars.2007.1764] [PMID: 17760508]
[71]
Mahameed, M.; Wilhelm, T.; Darawshi, O.; Obiedat, A.; Tommy, W.S.; Chintha, C.; Schubert, T.; Samali, A.; Chevet, E.; Eriksson, L.A.; Huber, M.; Tirosh, B. The unfolded protein response modulators GSK2606414 and KIRA6 are potent KIT inhibitors. Cell Death Dis., 2019, 10(4), 300.
[http://dx.doi.org/10.1038/s41419-019-1523-3] [PMID: 30931942]
[72]
Puthalakath, H.; O’Reilly, L.A.; Gunn, P.; Lee, L.; Kelly, P.N.; Huntington, N.D.; Hughes, P.D.; Michalak, E.M.; McKimm-Breschkin, J.; Motoyama, N.; Gotoh, T.; Akira, S.; Bouillet, P.; Strasser, A. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell., 2007, 129(7), 1337-1349.
[http://dx.doi.org/10.1016/j.cell.2007.04.027] [PMID: 17604722]
[73]
Li, G.; Mongillo, M.; Chin, K.T.; Harding, H.; Ron, D.; Marks, A.R.; Tabas, I. Role of ERO1-α–mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress–induced apoptosis. J. Cell Biol., 2009, 186(6), 783-792.
[http://dx.doi.org/10.1083/jcb.200904060] [PMID: 19752026]
[74]
Dai, X.; Yan, X.; Wintergerst, K.A.; Cai, L.; Keller, B.B.; Tan, Y. Nrf2: Redox and metabolic regulator of stem cell state and function. Trends Mol. Med., 2020, 26(2), 185-200.
[http://dx.doi.org/10.1016/j.molmed.2019.09.007] [PMID: 31679988]
[75]
Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ., 2004, 11(4), 381-389.
[http://dx.doi.org/10.1038/sj.cdd.4401373] [PMID: 14685163]
[76]
Novoa, I.; Zeng, H.; Harding, H.P.; Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol., 2001, 153(5), 1011-1022.
[http://dx.doi.org/10.1083/jcb.153.5.1011] [PMID: 11381086]
[77]
McCullough, K.D.; Martindale, J.L.; Klotz, L.O.; Aw, T.Y.; Holbrook, N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol., 2001, 21(4), 1249-1259.
[http://dx.doi.org/10.1128/MCB.21.4.1249-1259.2001] [PMID: 11158311]
[78]
Rainbolt, T.K.; Saunders, J.M.; Wiseman, R.L. Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol. Metab., 2014, 25(10), 528-537.
[http://dx.doi.org/10.1016/j.tem.2014.06.007] [PMID: 25048297]
[79]
Shutt, T.E.; McBride, H.M. Staying cool in difficult times: Mitochondrial dynamics, quality control and the stress response. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(2), 417-424.
[http://dx.doi.org/10.1016/j.bbamcr.2012.05.024] [PMID: 22683990]
[80]
Wai, T.; Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab., 2016, 27(2), 105-117.
[http://dx.doi.org/10.1016/j.tem.2015.12.001] [PMID: 26754340]
[81]
Lebeau, J.; Saunders, J.M.; Moraes, V.W.R.; Madhavan, A.; Madrazo, N.; Anthony, M.C.; Wiseman, R.L. The PERK arm of the unfolded protein response regulates mitochondrial morphology during acute endoplasmic reticulum stress. Cell Rep., 2018, 22(11), 2827-2836.
[http://dx.doi.org/10.1016/j.celrep.2018.02.055] [PMID: 29539413]
[82]
Logue, S.E.; McGrath, E.P.; Cleary, P.; Greene, S.; Mnich, K.; Almanza, A.; Chevet, E.; Dwyer, R.M.; Oommen, A.; Legembre, P.; Godey, F.; Madden, E.C.; Leuzzi, B.; Obacz, J.; Zeng, Q.; Patterson, J.B.; Jäger, R.; Gorman, A.M.; Samali, A. Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat. Commun., 2018, 9(1), 3267.
[http://dx.doi.org/10.1038/s41467-018-05763-8] [PMID: 30111846]
[83]
Almanza, A.; Carlesso, A.; Chintha, C.; Creedican, S.; Doultsinos, D.; Leuzzi, B.; Luís, A.; McCarthy, N.; Montibeller, L.; More, S.; Papaioannou, A.; Püschel, F.; Sassano, M.L.; Skoko, J.; Agostinis, P.; de Belleroche, J.; Eriksson, L.A.; Fulda, S.; Gorman, A.M.; Healy, S.; Kozlov, A.; Muñoz-Pinedo, C.; Rehm, M.; Chevet, E.; Samali, A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J., 2019, 286(2), 241-278.
[http://dx.doi.org/10.1111/febs.14608] [PMID: 30027602]
[84]
Hombach-Klonisch, S.; Mehrpour, M.; Shojaei, S.; Harlos, C.; Pitz, M.; Hamai, A.; Siemianowicz, K.; Likus, W.; Wiechec, E.; Toyota, B.D.; Hoshyar, R.; Seyfoori, A.; Sepehri, Z.; Ande, S.R.; Khadem, F.; Akbari, M.; Gorman, A.M.; Samali, A.; Klonisch, T.; Ghavami, S. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol. Ther., 2018, 184, 13-41.
[http://dx.doi.org/10.1016/j.pharmthera.2017.10.017] [PMID: 29080702]
[85]
Szegezdi, E.; Logue, S.E.; Gorman, A.M.; Samali, A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep., 2006, 7(9), 880-885.
[http://dx.doi.org/10.1038/sj.embor.7400779] [PMID: 16953201]
[86]
Shojaei, S.; Suresh, M.; Klionsky, D.J.; Labouta, H.I.; Ghavami, S. Autophagy and SARS-CoV-2 infection: A possible smart targeting of the autophagy pathway. Virulence, 2020, 11(1), 805-810.
[http://dx.doi.org/10.1080/21505594.2020.1780088] [PMID: 32567972]
[87]
Sureda, A.; Alizadeh, J.; Nabavi, S.F.; Berindan-Neagoe, I.; Cismaru, C.A.; Jeandet, P.; Łos, M.J.; Clementi, E.; Nabavi, S.M.; Ghavami, S. Endoplasmic reticulum as a potential therapeutic target for covid-19 infection management? Eur. J. Pharmacol., 2020, 882, 173288.
[http://dx.doi.org/10.1016/j.ejphar.2020.173288] [PMID: 32561291]
[88]
Shore, G.C.; Papa, F.R.; Oakes, S.A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol., 2011, 23(2), 143-149.
[http://dx.doi.org/10.1016/j.ceb.2010.11.003] [PMID: 21146390]
[89]
Senft, D.; Ronai, Z.A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci., 2015, 40(3), 141-148.
[http://dx.doi.org/10.1016/j.tibs.2015.01.002] [PMID: 25656104]
[90]
B’chir, W.; Maurin, A.C.; Carraro, V.; Averous, J.; Jousse, C.; Muranishi, Y.; Parry, L.; Stepien, G.; Fafournoux, P.; Bruhat, A. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res., 2013, 41(16), 7683-7699.
[http://dx.doi.org/10.1093/nar/gkt563] [PMID: 23804767]
[91]
Wei, Y.; Pattingre, S.; Sinha, S.; Bassik, M.; Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell, 2008, 30(6), 678-688.
[http://dx.doi.org/10.1016/j.molcel.2008.06.001] [PMID: 18570871]
[92]
Haberzettl, P.; Hill, B.G. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biol., 2013, 1(1), 56-64.
[http://dx.doi.org/10.1016/j.redox.2012.10.003] [PMID: 24024137]
[93]
Adolph, T.E.; Tomczak, M.F.; Niederreiter, L.; Ko, H.J.; Böck, J.; Martinez-Naves, E.; Glickman, J.N.; Tschurtschenthaler, M.; Hartwig, J.; Hosomi, S.; Flak, M.B.; Cusick, J.L.; Kohno, K.; Iwawaki, T.; Billmann-Born, S.; Raine, T.; Bharti, R.; Lucius, R.; Kweon, M.N.; Marciniak, S.J.; Choi, A.; Hagen, S.J.; Schreiber, S.; Rosenstiel, P.; Kaser, A.; Blumberg, R.S. Paneth cells as a site of origin for intestinal inflammation. Nature., 2013, 503(7475), 272-276.
[http://dx.doi.org/10.1038/nature12599] [PMID: 24089213]
[94]
Mandic, A.; Hansson, J.; Linder, S.; Shoshan, M.C. Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J. Biol. Chem., 2003, 278(11), 9100-9106.
[http://dx.doi.org/10.1074/jbc.M210284200] [PMID: 12509415]
[95]
Van de Craen, M.; Vandenabeele, P.; Declercq, W.; Van den Brande, I.; Van Loo, G.; Molemans, F.; Schotte, P.; Van Criekinge, W.; Beyaert, R.; Fiers, W. Characterization of seven murine caspase family members. FEBS Lett., 1997, 403(1), 61-69.
[http://dx.doi.org/10.1016/S0014-5793(97)00026-4] [PMID: 9038361]
[96]
Xie, Q.; Khaoustov, V.I.; Chung, C.C.; Sohn, J.; Krishnan, B.; Lewis, D.E.; Yoffe, B. Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress–induced caspase-12 activation. Hepatology., 2002, 36(3), 592-601.
[http://dx.doi.org/10.1053/jhep.2002.35441] [PMID: 12198651]
[97]
Morishima, N.; Nakanishi, K.; Tsuchiya, K.; Shibata, T.; Seiwa, E. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J. Biol. Chem., 2004, 279(48), 50375-50381.
[http://dx.doi.org/10.1074/jbc.M408493200] [PMID: 15452118]
[98]
Shojaei, S.; Koleini, N.; Samiei, E.; Aghaei, M.; Cole, L.K.; Alizadeh, J.; Islam, M.I.; Vosoughi, A.; Albokashy, M.; Butterfield, Y.; Marzban, H.; Xu, F.; Thliveris, J.; Kardami, E.; Hatch, G.M.; Eftekharpour, E.; Akbari, M.; Hombach-Klonisch, S.; Klonisch, T.; Ghavami, S. Simvastatin increases temozolomide-induced cell death by targeting the fusion of autophagosomes and lysosomes. FEBS J., 2020, 287(5), 1005-1034.
[http://dx.doi.org/10.1111/febs.15069] [PMID: 31545550]
[99]
Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293.
[http://dx.doi.org/10.1016/j.molcel.2010.09.023] [PMID: 20965422]
[100]
Alizadeh, J.; Glogowska, A.; Thliveris, J.; Kalantari, F.; Shojaei, S.; Hombach-Klonisch, S.; Klonisch, T.; Ghavami, S. Autophagy modulates transforming growth factor beta 1 induced epithelial to mesenchymal transition in non-small cell lung cancer cells. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(5), 749-768.
[http://dx.doi.org/10.1016/j.bbamcr.2018.02.007] [PMID: 29481833]
[101]
Alizadeh, J.; Shojaei, S.; Sepanjnia, A.; Hashemi, M.; Eftekharpour, E.; Ghavami, S. Simultaneous detection of autophagy and epithelial to mesenchymal transition in the non-small cell lung cancer cells. Methods Mol. Biol., 2017, 1854, 87-103.
[http://dx.doi.org/10.1007/7651_2017_84] [PMID: 29101677]
[102]
Morishima, N.; Nakanishi, K.; Takenouchi, H.; Shibata, T.; Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem., 2002, 277(37), 34287-34294.
[http://dx.doi.org/10.1074/jbc.M204973200] [PMID: 12097332]
[103]
Hitomi, J.; Katayama, T.; Taniguchi, M.; Honda, A.; Imaizumi, K.; Tohyama, M. Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci. Lett., 2004, 357(2), 127-130.
[http://dx.doi.org/10.1016/j.neulet.2003.12.080] [PMID: 15036591]
[104]
Sakurai, M.; Takahashi, G.; Abe, K.; Horinouchi, T.; Itoyama, Y.; Tabayashi, K. Endoplasmic reticulum stress induced in motor neurons by transient spinal cord ischemia in rabbits. J. Thorac. Cardiovasc. Surg., 2005, 130(3), 640-645.
[http://dx.doi.org/10.1016/j.jtcvs.2005.01.007] [PMID: 16153907]
[105]
Tinhofer, I.; Anether, G.; Senfter, M.; Pfaller, K.; Bernhard, D.; Hara, M.; Greil, R. Stressful death of T-ALL tumor cells following treatment with the antitumor agent Tetrocarcin-A. FASEB J., 2002, 16(10), 1295-1297.
[http://dx.doi.org/10.1096/fj.02-0020fje] [PMID: 12060673]
[106]
Cullinan, S.B.; Diehl, J.A. Coordination of ER and oxidative stress signaling: The PERK/Nrf2 signaling pathway. Int. J. Biochem. Cell Biol., 2006, 38(3), 317-332.
[http://dx.doi.org/10.1016/j.biocel.2005.09.018] [PMID: 16290097]
[107]
Belmont, P.J.; Chen, W.J.; Thuerauf, D.J.; Glembotski, C.C. Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. J. Mol. Cell. Cardiol., 2012, 52(5), 1176-1182.
[http://dx.doi.org/10.1016/j.yjmcc.2012.01.017] [PMID: 22326432]
[108]
Cullinan, S.B.; Diehl, J.A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem., 2004, 279(19), 20108-20117.
[http://dx.doi.org/10.1074/jbc.M314219200] [PMID: 14978030]
[109]
Dhar, D.; Baglieri, J.; Kisseleva, T.; Brenner, D.A. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med., 2020, 245(2), 96-108.
[http://dx.doi.org/10.1177/1535370219898141] [PMID: 31924111]
[110]
Toosi, A.E. Liver fibrosis: Causes and methods of assessment, a review. Rev. Roum. Med. Intern., 2015, 53(4), 304-314.
[111]
Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16(11), 26087-26124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[112]
Cederbaum, A.I.; Lu, Y.; Wu, D. Role of oxidative stress in alcohol-induced liver injury. Arch. Toxicol., 2009, 83(6), 519-548.
[http://dx.doi.org/10.1007/s00204-009-0432-0] [PMID: 19448996]
[113]
Czaja, A.J. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J. Gastroenterol., 2014, 20(10), 2515-2532.
[http://dx.doi.org/10.3748/wjg.v20.i10.2515] [PMID: 24627588]
[114]
Aboutwerat, A.; Pemberton, P.W.; Smith, A.; Burrows, P.C.; McMahon, R.F.T.; Jain, S.K.; Warnes, T.W. Oxidant stress is a significant feature of primary biliary cirrhosis. Biochim. Biophys. Acta Mol. Basis Dis., 2003, 1637(2), 142-150.
[http://dx.doi.org/10.1016/S0925-4439(02)00225-9] [PMID: 12633902]
[115]
Tiao, M.M.; Lin, T.K.; Wang, P.W.; Chen, J.B.; Liou, C.W. The role of mitochondria in cholestatic liver injury. Chang Gung Med. J., 2009, 32(4), 346-353.
[PMID: 19664341]
[116]
Novo, E.; Cannito, S.; Paternostro, C.; Bocca, C.; Miglietta, A.; Parola, M. Cellular and molecular mechanisms in liver fibrogenesis. Arch. Biochem. Biophys., 2014, 548, 20-37.
[http://dx.doi.org/10.1016/j.abb.2014.02.015] [PMID: 24631571]
[117]
Parola, M.; Marra, F.; Pinzani, M. Myofibroblast – like cells and liver fibrogenesis: Emerging concepts in a rapidly moving scenario. Mol. Aspects Med., 2008, 29(1-2), 58-66.
[http://dx.doi.org/10.1016/j.mam.2007.09.002] [PMID: 18022682]
[118]
Friedman, S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6), 1655-1669.
[http://dx.doi.org/10.1053/j.gastro.2008.03.003] [PMID: 18471545]
[119]
Czochra, P.; Klopcic, B.; Meyer, E.; Herkel, J.; Garcia-Lazaro, J.F.; Thieringer, F.; Schirmacher, P.; Biesterfeld, S.; Galle, P.R.; Lohse, A.W.; Kanzler, S. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J. Hepatol., 2006, 45(3), 419-428.
[http://dx.doi.org/10.1016/j.jhep.2006.04.010] [PMID: 16842882]
[120]
Jiang, J.X.; Török, N.J. Liver injury and the activation of the hepatic myofibroblasts. Curr. Pathobiol. Rep., 2013, 1(3), 215-223.
[http://dx.doi.org/10.1007/s40139-013-0019-6] [PMID: 23977452]
[121]
Dorner, A.J.; Wasley, L.C.; Kaufman, R.J. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem., 1989, 264(34), 20602-20607.
[http://dx.doi.org/10.1016/S0021-9258(19)47105-6] [PMID: 2511206]
[122]
Hernández-Gea, V.; Hilscher, M.; Rozenfeld, R.; Lim, M.P.; Nieto, N.; Werner, S.; Devi, L.A.; Friedman, S.L. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J. Hepatol., 2013, 59(1), 98-104.
[http://dx.doi.org/10.1016/j.jhep.2013.02.016] [PMID: 23485523]
[123]
Heindryckx, F.; Binet, F.; Ponticos, M.; Rombouts, K.; Lau, J.; Kreuger, J.; Gerwins, P. Endoplasmic reticulum stress enhances fibrosis through IRE 1α-mediated degradation of miR-150 and XBP -1 splicing. EMBO Mol. Med., 2016, 8(7), 729-744.
[http://dx.doi.org/10.15252/emmm.201505925] [PMID: 27226027]
[124]
Kim, R.S.; Hasegawa, D.; Goossens, N.; Tsuchida, T.; Athwal, V.; Sun, X.; Robinson, C.L.; Bhattacharya, D.; Chou, H.I.; Zhang, D.Y.; Fuchs, B.C.; Lee, Y.; Hoshida, Y.; Friedman, S.L. The XBP1 arm of the unfolded protein response induces fibrogenic activity in hepatic stellate cells through autophagy. Sci. Rep., 2016, 6(1), 39342.
[http://dx.doi.org/10.1038/srep39342] [PMID: 27996033]
[125]
Maiers, J.L.; Kostallari, E.; Mushref, M.; deAssuncao, T.M.; Li, H.; Jalan-Sakrikar, N.; Huebert, R.C.; Cao, S.; Malhi, H.; Shah, V.H. The unfolded protein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice. Hepatology, 2017, 65(3), 983-998.
[http://dx.doi.org/10.1002/hep.28921] [PMID: 28039913]
[126]
Rutkowski, D.T.; Hegde, R.S. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J. Cell Biol., 2010, 189(5), 783-794.
[http://dx.doi.org/10.1083/jcb.201003138] [PMID: 20513765]
[127]
de Galarreta, M.R.; Navarro, A.; Ansorena, E.; Garzón, A.G.; Mòdol, T.; López-Zabalza, M.J.; Martínez-Irujo, J.J.; Iraburu, M.J. Unfolded protein response induced by Brefeldin A increases collagen type I levels in hepatic stellate cells through an IRE1α, p38 MAPK and Smad-dependent pathway. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(8), 2115-2123.
[http://dx.doi.org/10.1016/j.bbamcr.2016.05.002] [PMID: 27155082]
[128]
Wei, W.; Zhang, F.; Chen, H.; Tang, Y.; Xing, T.; Luo, Q.; Yu, L.; Du, J.; Shen, J.; Zhang, L. Toxoplasma gondii dense granule protein 15 induces apoptosis in choriocarcinoma JEG-3 cells through endoplasmic reticulum stress. Parasit. Vectors, 2018, 11(1), 251.
[http://dx.doi.org/10.1186/s13071-018-2835-3] [PMID: 29665822]
[129]
Sato, H.; Shiba, Y.; Tsuchiya, Y.; Saito, M.; Kohno, K. 4μ8C inhibits insulin secretion independent of IRE1α RNase activity. Cell Struct. Funct., 2017, 42(1), 61-70.
[http://dx.doi.org/10.1247/csf.17002] [PMID: 28321016]
[130]
Darling, N.J.; Cook, S.J. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(10), 2150-2163.
[http://dx.doi.org/10.1016/j.bbamcr.2014.01.009] [PMID: 24440275]
[131]
Huang, Y.; Li, X.; Wang, Y.; Wang, H.; Huang, C.; Li, J. Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways. Mol. Cell. Biochem., 2014, 394(1-2), 1-12.
[http://dx.doi.org/10.1007/s11010-014-2073-8] [PMID: 24961950]
[132]
Zhao, G.; Hatting, M.; Nevzorova, Y.A.; Peng, J.; Hu, W.; Boekschoten, M.V.; Roskams, T.; Muller, M.; Gassler, N.; Liedtke, C.; Davis, R.J.; Cubero, F.J.; Trautwein, C. Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis. Gut, 2014, 63(7), 1159-1172.
[http://dx.doi.org/10.1136/gutjnl-2013-305507] [PMID: 24037431]
[133]
Shih, Y.C.; Chen, C.L.; Zhang, Y.; Mellor, R.L.; Kanter, E.M.; Fang, Y.; Wang, H.C.; Hung, C.T.; Nong, J.Y.; Chen, H.J.; Lee, T.H.; Tseng, Y.S.; Chen, C.N.; Wu, C.C.; Lin, S.L.; Yamada, K.A.; Nerbonne, J.M.; Yang, K.C. Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circ. Res., 2018, 122(8), 1052-1068.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.312130] [PMID: 29535165]
[134]
Groenendyk, J.; Lee, D.; Jung, J.; Dyck, J.R.B.; Lopaschuk, G.D.; Agellon, L.B.; Michalak, M. Inhibition of the unfolded protein response mechanism prevents cardiac fibrosis. PLoS One, 2016, 11(7), e0159682.
[http://dx.doi.org/10.1371/journal.pone.0159682] [PMID: 27441395]
[135]
Wang, C.; Zhang, F.; Cao, Y.; Zhang, M.; Wang, A.; Xu, M.; Su, M.; Zhang, M.; Zhuge, Y. Etoposide induces apoptosis in activated human hepatic stellate cells via ER stress. Sci. Rep., 2016, 6(1), 34330.
[http://dx.doi.org/10.1038/srep34330] [PMID: 27680712]
[136]
Li, Y.; Chen, Y.; Huang, H.; Shi, M.; Yang, W.; Kuang, J.; Yan, J. Autophagy mediated by endoplasmic reticulum stress enhances the caffeine-induced apoptosis of hepatic stellate cells. Int. J. Mol. Med., 2017, 40(5), 1405-1414.
[http://dx.doi.org/10.3892/ijmm.2017.3145] [PMID: 28949381]
[137]
He, L.; Hou, X.; Fan, F.; Wu, H. Quercetin stimulates mitochondrial apoptosis dependent on activation of endoplasmic reticulum stress in hepatic stellate cells. Pharm. Biol., 2016, 54(12), 3237-3243.
[http://dx.doi.org/10.1080/13880209.2016.1223143] [PMID: 27572285]
[138]
Tsubouchi, K.; Araya, J.; Minagawa, S.; Hara, H.; Ichikawa, A.; Saito, N.; Kadota, T.; Sato, N.; Yoshida, M.; Kurita, Y.; Kobayashi, K.; Ito, S.; Fujita, Y.; Utsumi, H.; Yanagisawa, H.; Hashimoto, M.; Wakui, H.; Yoshii, Y.; Ishikawa, T.; Numata, T.; Kaneko, Y.; Asano, H.; Yamashita, M.; Odaka, M.; Morikawa, T.; Nakayama, K.; Nakanishi, Y.; Kuwano, K. Azithromycin attenuates myofibroblast differentiation and lung fibrosis development through proteasomal degradation of NOX4. Autophagy., 2017, 13(8), 1420-1434.
[http://dx.doi.org/10.1080/15548627.2017.1328348] [PMID: 28613983]
[139]
Kawamura, K.; Ichikado, K.; Yasuda, Y.; Anan, K.; Suga, M. Azithromycin for idiopathic acute exacerbation of idiopathic pulmonary fibrosis: a retrospective single-center study. BMC Pulm. Med., 2017, 17(1), 94.
[http://dx.doi.org/10.1186/s12890-017-0437-z] [PMID: 28629448]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy