Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

The Targeted Therapies for Osteosarcoma via Six Major Pathways

Author(s): Shuxing Wang, Quanlei Ren, Guoqing Li, Xiaoxuan Zhao, Xing Zhao and Zhen Zhang*

Volume 17, 2024

Published on: 11 October, 2023

Article ID: e210823220109 Pages: 17

DOI: 10.2174/1874467217666230821142839

open_access

Open Access Journals Promotions 2
Abstract

Osteosarcoma is the most common primary bone malignancy and has a high tendency of local invasion. Although a lot of studies have focused on chemotherapy and combination chemotherapy regimens in recent years, still, there is no particularly perfect regimen for the treatment of relapsed or metastatic OS, and the prognosis is still relatively poor. As a new therapeutic method, targeted therapy provides a new scheme for patients with osteosarcoma and has a wide application prospect. This article reviews the latest progress of targeted therapy for osteosarcoma, and summarizes the research on the corresponding targets of osteosarcoma through six major pathways. These studies can pave the way for new treatments for osteosarcoma patients who need them.

Keywords: Osteosarcoma, Targeted therapy, Pathway, CCNE1/CDK2, MYC/CDK9, CDK4/CDK6/FOXM1, PTEN/PI3K/AKT1/mTOR, AURKB, VEGFA/vascular endothelial cell growth factor receptor.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Sakamoto, A.; Iwamoto, Y. Current status and perspectives regarding the treatment of osteo-sarcoma: Chemotherapy. Rev. Recent Clin. Trials, 2008, 3(3), 228-231.
[http://dx.doi.org/10.2174/157488708785700267] [PMID: 18782081]
[3]
Ritter, J.; Bielack, S.S. Osteosarcoma. Ann. Oncol., 2010, 21(Suppl. 7), vii320-vii325.
[http://dx.doi.org/10.1093/annonc/mdq276] [PMID: 20943636]
[4]
Hauben, E.I.; Weeden, S.; Pringle, J.; Van Marck, E.A.; Hogendoorn, P.C.W. Does the histological subtype of high-grade central osteosarcoma influence the response to treatment with chemotherapy and does it affect overall survival? A study on 570 patients of two consecutive trials of the European Osteosarcoma Intergroup. Eur. J. Cancer, 2002, 38(9), 1218-1225.
[http://dx.doi.org/10.1016/S0959-8049(02)00037-0] [PMID: 12044509]
[5]
WHO Classification of Tumours, Available from:https://apps.who.int/bookorders/
[6]
Berhe, S.; Danzer, E.; Meyers, P.A.; Behr, G.; LaQuaglia, M.P.; Price, A.P. Unusual abdominal metastases in osteosarcoma. J. Pediatr. Surg. Case Rep., 2018, 28, 13-16.
[http://dx.doi.org/10.1016/j.epsc.2017.09.022] [PMID: 29085778]
[7]
Wedekind, M.F.; Wagner, L.M.; Cripe, T.P. Immunotherapy for osteosarcoma: Where do we go from here? Pediatr. Blood Cancer, 2018, 65(9), e27227.
[http://dx.doi.org/10.1002/pbc.27227] [PMID: 29923370]
[8]
Chen, C.; Xie, L.; Ren, T.; Huang, Y.; Xu, J.; Guo, W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett., 2021, 500, 1-10.
[http://dx.doi.org/10.1016/j.canlet.2020.12.024] [PMID: 33359211]
[9]
Briccoli, A.; Rocca, M.; Salone, M.; Bacci, G.; Ferrari, S.; Balladelli, A.; Mercuri, M. Resection of recurrent pulmonary metastases in patients with osteosarcoma. Cancer, 2005, 104(8), 1721-1725.
[http://dx.doi.org/10.1002/cncr.21369] [PMID: 16155943]
[10]
Assi, T.; Watson, S.; Samra, B.; Rassy, E.; Le Cesne, A.; Italiano, A.; Mir, O. Targeting the VEGF pathway in osteosarcoma. Cells, 2021, 10(5), 1240.
[http://dx.doi.org/10.3390/cells10051240] [PMID: 34069999]
[11]
ESMO/European Sarcoma Network Working Group. Bone sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2014, 25(Suppl. 3), iii113-iii123.
[http://dx.doi.org/10.1093/annonc/mdu256] [PMID: 25210081]
[12]
Whelan, J.S.; Bielack, S.S.; Marina, N.; Smeland, S.; Jovic, G.; Hook, J.M.; Krailo, M.; Anninga, J.; Butterfass-Bahloul, T.; Böhling, T.; Calaminus, G.; Capra, M.; Deffenbaugh, C.; Dhooge, C.; Eriksson, M.; Flanagan, A.M.; Gelderblom, H.; Goorin, A.; Gorlick, R.; Gosheger, G.; Grimer, R.J.; Hall, K.S.; Helmke, K.; Hogendoorn, P.C.W.; Jundt, G.; Kager, L.; Kuehne, T.; Lau, C.C.; Letson, G.D.; Meyer, J.; Meyers, P.A.; Morris, C.; Mottl, H.; Nadel, H.; Nagarajan, R.; Randall, R.L.; Schomberg, P.; Schwarz, R.; Teot, L.A.; Sydes, M.R.; Bernstein, M.; Pickering, J.; Joffe, N.; Kevric, M.; Sorg, B.; Villaluna, D.; Wang, C.; Perisoglou, M.; Trani, L.; Potratz, J.; Carrle, D.; Wilhelm, M.; Zils, K.; Teske, C. EURAMOS-1, an international randomised study for osteosarcoma: Results from pre-randomisation treatment. Ann. Oncol., 2015, 26(2), 407-414.
[http://dx.doi.org/10.1093/annonc/mdu526] [PMID: 25421877]
[13]
Lev, S. Targeted therapy and drug resistance in triple-negative breast cancer: The EGFR axis. Biochem. Soc. Trans., 2020, 48(2), 657-665.
[http://dx.doi.org/10.1042/BST20191055] [PMID: 32311020]
[14]
Guan, L.Y.; Lu, Y. New developments in molecular targeted therapy of ovarian cancer. Discov. Med., 2018, 26(144), 219-229.
[PMID: 30695681]
[15]
Takeoka, H.; Yamada, K.; Naito, Y.; Matsuo, N.; Ishii, H.; Tokito, T.; Azuma, K.; Ichiki, M.; Hoshino, T.; Phase, I.I. Phase II trial of carboplatin and pemetrexed plus bevacizumab with maintenance bevacizumab as a first-line treatment for advanced non-squamous non-small cell lung cancer in elderly patients. Anticancer Res., 2018, 38(6), 3779-3784.
[http://dx.doi.org/10.21873/anticanres.12661] [PMID: 29848743]
[16]
Liu, Y.; Huang, N.; Liao, S.; Rothzerg, E.; Yao, F.; Li, Y.; Wood, D.; Xu, J. Current research progress in targeted anti‐angiogenesis therapy for osteosarcoma. Cell Prolif., 2021, 54(9), e13102.
[http://dx.doi.org/10.1111/cpr.13102] [PMID: 34309110]
[17]
Chen, Y.; Liu, R.; Wang, W.; Wang, C.; Zhang, N.; Shao, X.; He, Q.; Ying, M. Advances in targeted therapy for osteosarcoma based on molecular classification. Pharmacol. Res., 2021, 169, 105684.
[http://dx.doi.org/10.1016/j.phrs.2021.105684] [PMID: 34022396]
[18]
Gill, J.; Gorlick, R. Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol., 2021, 18(10), 609-624.
[http://dx.doi.org/10.1038/s41571-021-00519-8] [PMID: 34131316]
[19]
Wei, R.; Thanindratarn, P.; Dean, D.C.; Hornicek, F.J.; Guo, W.; Duan, Z. Cyclin E1 is a prognostic biomarker and potential therapeutic target in osteosarcoma. J. Orthop. Res., 2020, 38(9), 1952-1964.
[http://dx.doi.org/10.1002/jor.24659] [PMID: 32162720]
[20]
Lockwood, W.W.; Stack, D.; Morris, T.; Grehan, D.; O’Keane, C.; Stewart, G.L.; Cumiskey, J.; Lam, W.L.; Squire, J.A.; Thomas, D.M.; O’Sullivan, M.J. Cyclin E1 is amplified and overexpressed in osteosarcoma. J. Mol. Diagn., 2011, 13(3), 289-296.
[http://dx.doi.org/10.1016/j.jmoldx.2010.11.020] [PMID: 21458381]
[21]
Kohlmeyer, J.L.; Gordon, D.J.; Tanas, M.R.; Monga, V.; Dodd, R.D.; Quelle, D.E. CDKs in sarcoma: Mediators of disease and emerging therapeutic targets. Int. J. Mol. Sci., 2020, 21(8), 3018.
[http://dx.doi.org/10.3390/ijms21083018] [PMID: 32344731]
[22]
Jones, R.M.; Mortusewicz, O.; Afzal, I.; Lorvellec, M.; García, P.; Helleday, T.; Petermann, E. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene, 2013, 32(32), 3744-3753.
[http://dx.doi.org/10.1038/onc.2012.387] [PMID: 22945645]
[23]
Takada, M.; Zhang, W.; Suzuki, A.; Kuroda, T.S.; Yu, Z.; Inuzuka, H.; Gao, D.; Wan, L.; Zhuang, M.; Hu, L.; Zhai, B.; Fry, C.J.; Bloom, K.; Li, G.; Karpen, G.H.; Wei, W.; Zhang, Q. FBW7 loss promotes chromosomal instability and tumorigenesis via cyclin E1/CDK2–mediated phosphorylation of CENP-A. Cancer Res., 2017, 77(18), 4881-4893.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1240] [PMID: 28760857]
[24]
Chen, Y.N.P.; Sharma, S.K.; Ramsey, T.M.; Jiang, L.; Martin, M.S.; Baker, K.; Adams, P.D.; Bair, K.W.; Kaelin, W.G., Jr Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl. Acad. Sci., 1999, 96(8), 4325-4329.
[http://dx.doi.org/10.1073/pnas.96.8.4325] [PMID: 10200261]
[25]
Hydbring, P.; Larsson, L.G. Cdk2: A key regulator of the senescence control function of Myc. Aging, 2010, 2(4), 244-250.
[http://dx.doi.org/10.18632/aging.100140] [PMID: 20445224]
[26]
Campaner, S.; Doni, M.; Hydbring, P.; Verrecchia, A.; Bianchi, L.; Sardella, D.; Schleker, T.; Perna, D.; Tronnersjö, S.; Murga, M.; Fernandez-Capetillo, O.; Barbacid, M.; Larsson, L. G.; Amati, B. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol., 2010, 12(1), 54-9.
[http://dx.doi.org/10.1038/ncb2004]
[27]
Choudhary, G.S.; Tat, T.T.; Misra, S.; Hill, B.T.; Smith, M.R.; Almasan, A.; Mazumder, S. Cyclin E/Cdk2-dependent phosphorylation of Mcl-1 determines its stability and cellular sensitivity to BH3 mimetics. Oncotarget, 2015, 6(19), 16912-16925.
[http://dx.doi.org/10.18632/oncotarget.4857] [PMID: 26219338]
[28]
Chen, B.; Chen, H.; Lu, S.; Zhu, X.; Que, Y.; Zhang, Y.; Huang, J.; Zhang, L.; Zhang, Y.; Sun, F.; Wang, J.; Zhu, J.; Zhen, Z.; Zhang, Y. KDM5B promotes tumorigenesis of Ewing sarcoma via FBXW7/CCNE1 axis. Cell Death Dis., 2022, 13(4), 354.
[http://dx.doi.org/10.1038/s41419-022-04800-1] [PMID: 35428764]
[29]
Kumar, A.; Kaur, S.; Pandit, K.; Kaur, V.; Thakur, S.; Kaur, S. Onosma bracteata Wall. induces G0/G1 arrest and apoptosis in MG-63 human osteosarcoma cells via ROS generation and AKT/GSK3β/cyclin E pathway. Environ. Sci. Pollut. Res. Int., 2021, 28(12), 14983-15004.
[http://dx.doi.org/10.1007/s11356-020-11466-9] [PMID: 33222070]
[30]
Kleinsimon, S.; Longmuss, E.; Rolff, J.; Jäger, S.; Eggert, A.; Delebinski, C.; Seifert, G. GADD45A and CDKN1A are involved in apoptosis and cell cycle modulatory effects of viscumTT with further inactivation of the STAT3 pathway. Sci. Rep., 2018, 8(1), 5750.
[http://dx.doi.org/10.1038/s41598-018-24075-x] [PMID: 29636527]
[31]
Galimberti, F.; Thompson, S.L.; Liu, X.; Li, H.; Memoli, V.; Green, S.R.; DiRenzo, J.; Greninger, P.; Sharma, S.V.; Settleman, J.; Compton, D.A.; Dmitrovsky, E. Targeting the cyclin E-Cdk-2 complex represses lung cancer growth by triggering anaphase catastrophe. Clin. Cancer Res., 2010, 16(1), 109-120.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2151] [PMID: 20028770]
[32]
Tirado, O.M.; Mateo-Lozano, S.; Notario, V. Roscovitine is an effective inducer of apoptosis of Ewing’s sarcoma family tumor cells in vitro and in vivo. Cancer Res., 2005, 65(20), 9320-9327.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1276] [PMID: 16230394]
[33]
Vella, S.; Tavanti, E.; Hattinger, C.M.; Fanelli, M.; Versteeg, R.; Koster, J.; Picci, P.; Serra, M. Targeting CDKs with roscovitine increases sensitivity to DNA damaging drugs of human osteosarcoma cells. PLoS One, 2016, 11(11), e0166233.
[http://dx.doi.org/10.1371/journal.pone.0166233] [PMID: 27898692]
[34]
Fu, W.; Ma, L.; Chu, B.; Wang, X.; Bui, M.M.; Gemmer, J.; Altiok, S.; Pledger, W.J. The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells. Mol. Cancer Ther., 2011, 10(6), 1018-1027.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0167] [PMID: 21490307]
[35]
Sayles, L.C.; Breese, M.R.; Koehne, A.L.; Leung, S.G.; Lee, A.G.; Liu, H.Y.; Spillinger, A.; Shah, A.T.; Tanasa, B.; Straessler, K.; Hazard, F.K.; Spunt, S.L.; Marina, N.; Kim, G.E.; Cho, S.J.; Avedian, R.S.; Mohler, D.G.; Kim, M.O.; DuBois, S.G.; Hawkins, D.S.; Sweet-Cordero, E.A. Genome-informed targeted therapy for osteosarcoma. Cancer Discov., 2019, 9(1), 46-63.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1152] [PMID: 30266815]
[36]
Li, Y.; Tanaka, K.; Li, X.; Okada, T.; Nakamura, T.; Takasaki, M.; Yamamoto, S.; Oda, Y.; Tsuneyoshi, M.; Iwamoto, Y. Cyclin-dependent kinase inhibitor, flavopiridol, induces apoptosis and inhibits tumor growth in drug-resistant osteosarcoma and Ewing’s family tumor cells. Int. J. Cancer, 2007, 121(6), 1212-1218.
[http://dx.doi.org/10.1002/ijc.22820] [PMID: 17520676]
[37]
Duffy, M.J.; O’Grady, S.; Tang, M.; Crown, J. MYC as a target for cancer treatment. Cancer Treat. Rev., 2021, 94, 102154.
[http://dx.doi.org/10.1016/j.ctrv.2021.102154] [PMID: 33524794]
[38]
Chen, B.J.; Wu, Y.L.; Tanaka, Y.; Zhang, W. Small molecules targeting c-Myc oncogene: Promising anti-cancer therapeutics. Int. J. Biol. Sci., 2014, 10(10), 1084-1096.
[http://dx.doi.org/10.7150/ijbs.10190] [PMID: 25332683]
[39]
Amati, B.; Brooks, M.W.; Levy, N.; Littlewood, T.D.; Evan, G.I.; Land, H. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell, 1993, 72(2), 233-245.
[http://dx.doi.org/10.1016/0092-8674(93)90663-B] [PMID: 8425220]
[40]
Amati, B.; Littlewood, T.D.; Evan, G.I.; Land, H. The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J., 1993, 12(13), 5083-5087.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb06202.x] [PMID: 8262051]
[41]
Feng, W.; Dean, D.C.; Hornicek, F.J.; Spentzos, D.; Hoffman, R.M.; Shi, H.; Duan, Z. RETRACTED: Myc is a prognostic biomarker and potential therapeutic target in osteosarcoma. Ther. Adv. Med. Oncol., 2020, 12
[http://dx.doi.org/10.1177/1758835920922055] [PMID: 32426053]
[42]
Han, G.; Wang, Y.; Bi, W. C-Myc overexpression promotes osteosarcoma cell invasion via activation of MEK-ERK pathway. Oncol. Res., 2012, 20(4), 149-156.
[http://dx.doi.org/10.3727/096504012X13522227232237] [PMID: 23461061]
[43]
Adelman, K.; Lis, J.T. Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans. Nat. Rev. Genet., 2012, 13(10), 720-731.
[http://dx.doi.org/10.1038/nrg3293] [PMID: 22986266]
[44]
Rahl, P.B.; Lin, C.Y.; Seila, A.C.; Flynn, R.A.; McCuine, S.; Burge, C.B.; Sharp, P.A.; Young, R.A. c-Myc regulates transcriptional pause release. Cell, 2010, 141(3), 432-445.
[http://dx.doi.org/10.1016/j.cell.2010.03.030] [PMID: 20434984]
[45]
Fowler, T.; Ghatak, P.; Price, D.H.; Conaway, R.; Conaway, J.; Chiang, C.M.; Bradner, J.E.; Shilatifard, A.; Roy, A.L. Regulation of MYC expression and differential JQ1 sensitivity in cancer cells. PLoS One, 2014, 9(1), e87003.
[http://dx.doi.org/10.1371/journal.pone.0087003] [PMID: 24466310]
[46]
Shi, C.; Zhang, H.; Wang, P.; Wang, K.; Xu, D.; Wang, H.; Yin, L.; Zhang, S.; Zhang, Y. PROTAC induced-BET protein degradation exhibits potent anti-osteosarcoma activity by triggering apoptosis. Cell Death Dis., 2019, 10(11), 815.
[http://dx.doi.org/10.1038/s41419-019-2022-2] [PMID: 31653826]
[47]
Chen, D.; Zhao, Z.; Huang, Z.; Chen, D.C.; Zhu, X.X.; Wang, Y.Z.; Yan, Y.W.; Tang, S.; Madhavan, S.; Ni, W.; Huang, Z.; Li, W.; Ji, W.; Shen, H.; Lin, S.; Jiang, Y.Z. Super enhancer inhibitors suppress MYC driven transcriptional amplification and tumor progression in osteosarcoma. Bone Res., 2018, 6(1), 11.
[http://dx.doi.org/10.1038/s41413-018-0009-8] [PMID: 29644114]
[48]
Sayyadi, M.; Safaroghli-Azar, A.; Safa, M.; Abolghasemi, H.; Momeny, M.; Bashash, D. NF-κB-dependent mechanism of action of c-Myc inhibitor 10058-F4: Highlighting a promising effect of c-Myc inhibition in leukemia cells, irrespective of p53 status. Iran. J. Pharm. Res., 2020, 19(1), 153-165.
[PMID: 32922477]
[49]
Xiong, X.; Zhang, J.; Li, A.; Dai, L.; Qin, S.; Wang, P.; Liu, W.; Zhang, Z.; Li, X.; Liu, Z. GSK343 induces programmed cell death through the inhibition of EZH2 and FBP1 in osteosarcoma cells. Cancer Biol. Ther., 2020, 21(3), 213-222.
[http://dx.doi.org/10.1080/15384047.2019.1680061] [PMID: 31651209]
[50]
Zhao, A.; Zhang, Z.; Zhou, Y.; Li, X.; Li, X.; Ma, B.; Zhang, Q. β-Elemonic acid inhibits the growth of human Osteosarcoma through endoplasmic reticulum (ER) stress-mediated PERK/eIF2α/ATF4/CHOP activation and Wnt/β-catenin signal suppression. Phytomedicine, 2020, 69, 153183.
[http://dx.doi.org/10.1016/j.phymed.2020.153183] [PMID: 32113150]
[51]
Qi, Y.B.; Yang, W.; Si, M.; Nie, L. Wnt/β‑catenin signaling modulates piperine‑mediated antitumor effects on human osteosarcoma cells. Mol. Med. Rep., 2020, 21(5), 2202-2208.
[http://dx.doi.org/10.3892/mmr.2020.11000] [PMID: 32323765]
[52]
Dai, G.; Zheng, D.; Wang, Q.; Yang, J.; Liu, G.; Song, Q.; Sun, X.; Tao, C.; Hu, Q.; Gao, T.; Yu, L.; Guo, W. Baicalein inhibits progression of osteosarcoma cells through inactivation of the Wnt/β-catenin signaling pathway. Oncotarget, 2017, 8(49), 86098-86116.
[http://dx.doi.org/10.18632/oncotarget.20987] [PMID: 29156780]
[53]
Zhang, Q.H.; Hu, Q.X.; Xie, D.; Chang, B.; Miao, H.G.; Wang, Y.G.; Liu, D.Z.; Li, X.D. Ganoderma lucidum exerts an anticancer effect on human osteosarcoma cells via suppressing the Wnt/β-catenin signaling pathway. Integr. Cancer Ther., 2019, 18, 1534735419890917.
[http://dx.doi.org/10.1177/1534735419890917] [PMID: 31855073]
[54]
Liu, Q.; Wang, Z.; Zhou, X.; Tang, M.; Tan, W.; Sun, T.; Deng, Y. miR-342-5p inhibits osteosarcoma cell growth, migration, invasion, and sensitivity to Doxorubicin through targeting Wnt7b. Cell Cycle, 2019, 18(23), 3325-3336.
[http://dx.doi.org/10.1080/15384101.2019.1676087] [PMID: 31601147]
[55]
Han, J.; Zhang, Y.; Xu, J.; Zhang, T.; Wang, H.; Wang, Z.; Jiang, Y.; Zhou, L.; Yang, M.; Hua, Y.; Cai, Z. Her4 promotes cancer metabolic reprogramming via the c-Myc-dependent signaling axis. Cancer Lett., 2021, 496, 57-71.
[http://dx.doi.org/10.1016/j.canlet.2020.10.008] [PMID: 33038488]
[56]
Shen, S.; Yao, T.; Xu, Y.; Zhang, D.; Fan, S.; Ma, J. CircECE1 activates energy metabolism in osteosarcoma by stabilizing c-Myc. Mol. Cancer, 2020, 19(1), 151.
[http://dx.doi.org/10.1186/s12943-020-01269-4] [PMID: 33106166]
[57]
Tahbazlahafi, B.; Paknejad, M.; Khaghani, S.; Sadegh-Nejadi, S.; Khalili, E.; Vitamin, D. Vitamin D Represses the Aggressive Potential of Osteosarcoma. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(7), 1312-1318.
[http://dx.doi.org/10.2174/1871530320666200821155756] [PMID: 32955002]
[58]
Spring, L.M.; Wander, S.A.; Andre, F.; Moy, B.; Turner, N.C.; Bardia, A. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: Past, present, and future. Lancet, 2020, 395(10226), 817-827.
[http://dx.doi.org/10.1016/S0140-6736(20)30165-3] [PMID: 32145796]
[59]
Zhou, Y.; Shen, J.K.; Yu, Z.; Hornicek, F.J.; Kan, Q.; Duan, Z. Expression and therapeutic implications of cyclin-dependent kinase 4 (CDK4) in osteosarcoma. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(5), 1573-1582.
[http://dx.doi.org/10.1016/j.bbadis.2018.02.004] [PMID: 29452249]
[60]
Higuchi, T.; Igarashi, K.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Bouvet, M.; Tsuchiya, H.; Hoffman, R.M. Osteosarcoma Patient-derived Orthotopic Xenograft (PDOX) models used to identify novel and effective therapeutics: A review. Anticancer Res., 2021, 41(12), 5865-5871.
[http://dx.doi.org/10.21873/anticanres.15406] [PMID: 34848441]
[61]
Higuchi, T.; Sugisawa, N.; Miyake, K.; Oshiro, H.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Igarashi, K.; Chawla, S.P.; Bouvet, M.; Singh, S.R.; Tsuchiya, H.; Hoffman, R.M. Sorafenib and palbociclib combination regresses a cisplatinum-resistant osteosarcoma in a PDOX mouse model. Anticancer Res., 2019, 39(8), 4079-4084.
[http://dx.doi.org/10.21873/anticanres.13565] [PMID: 31366491]
[62]
Wang, D.; Bao, H. Abemaciclib is synergistic with doxorubicin in osteosarcoma pre-clinical models via inhibition of CDK4/6–Cyclin D–Rb pathway. Cancer Chemother. Pharmacol., 2022, 89(1), 31-40.
[http://dx.doi.org/10.1007/s00280-021-04363-6] [PMID: 34655298]
[63]
Dowless, M.; Lowery, C.D.; Shackleford, T.; Renschler, M.; Stephens, J.; Flack, R.; Blosser, W.; Gupta, S.; Stewart, J.; Webster, Y.; Dempsey, J.; VanWye, A.B.; Ebert, P.; Iversen, P.; Olsen, J.B.; Gong, X.; Buchanan, S.; Houghton, P.; Stancato, L. Abemaciclib is active in preclinical models of ewing sarcoma via multipronged regulation of cell cycle, DNA methylation, and interferon pathway signaling. Clin. Cancer Res., 2018, 24(23), 6028-6039.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1256] [PMID: 30131386]
[64]
Guenther, L.M.; Dharia, N.V.; Ross, L.; Conway, A.; Robichaud, A.L.; Catlett, J.L., II; Wechsler, C.S.; Frank, E.S.; Goodale, A.; Church, A.J.; Tseng, Y.Y.; Guha, R.; McKnight, C.G.; Janeway, K.A.; Boehm, J.S.; Mora, J.; Davis, M.I.; Alexe, G.; Piccioni, F.; Stegmaier, K. A combination CDK4/6 and IGF1R inhibitor strategy for ewing sarcoma. Clin. Cancer Res., 2019, 25(4), 1343-1357.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0372] [PMID: 30397176]
[65]
Harbeck, N.; Rastogi, P.; Martin, M.; Tolaney, S.M.; Shao, Z.M.; Fasching, P.A.; Huang, C.S.; Jaliffe, G.G.; Tryakin, A.; Goetz, M.P.; Rugo, H.S.; Senkus, E.; Testa, L.; Andersson, M.; Tamura, K.; Del Mastro, L.; Steger, G.G.; Kreipe, H.; Hegg, R.; Sohn, J.; Guarneri, V.; Cortés, J.; Hamilton, E.; André, V.; Wei, R.; Barriga, S.; Sherwood, S.; Forrester, T.; Munoz, M.; Shahir, A.; San Antonio, B.; Nabinger, S.C.; Toi, M.; Johnston, S.R.D.; O’Shaughnessy, J.; Jimenez, M.M.; Johnston, S.; Boyle, F.; Steger, G.G.; Neven, P.; Jiang, Z.; Campone, M.; Huober, J.; Shimizu, C.; Cicin, I.; Wardley, A.; Tolaney, S.M.; Abuin, G.G.; Zarba, J.; Lim, E.; Sant, P.; Liao, N.; Christiansen, B.; Eigeliene, N.; Martin-Babau, J.; Ettl, J.; Mavroudis, D.; Chiu, J.; Boer, K.; Nagarkar, R.; Paluch-Shimon, S.; Moscetti, L.; Sagara, Y.; Kim, S-B.; Maciel, M.M.; Tjan-Heijnen, V.; Broom, R.; Lacko, A.; Schenker, M.; Volkov, N.; Sim Yap, Y.; Coccia-Portugal, M.; Ángel García Sáenz, J.; Andersson, A.; Chao, T-Y.; Gokmen, E.; Harputluoglu, H.; Berzoy, O.; Patt, D.; McArthur, H.; Chew, H.; Chalasani, P.; Kaufman, P.; Tedesco, K.; Graff, S.L. Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: Updated efficacy and Ki-67 analysis from the monarchE study. Ann. Oncol., 2021, 32(12), 1571-1581.
[http://dx.doi.org/10.1016/j.annonc.2021.09.015] [PMID: 34656740]
[66]
Rugo, H.S.; Lerebours, F.; Ciruelos, E.; Drullinsky, P.; Ruiz-Borrego, M.; Neven, P.; Park, Y.H.; Prat, A.; Bachelot, T.; Juric, D.; Turner, N.; Sophos, N.; Zarate, J.P.; Arce, C.; Shen, Y.M.; Turner, S.; Kanakamedala, H.; Hsu, W.C.; Chia, S. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor (BYLieve): One cohort of a phase 2, multicentre, open-label, non-comparative study. Lancet Oncol., 2021, 22(4), 489-498.
[http://dx.doi.org/10.1016/S1470-2045(21)00034-6] [PMID: 33794206]
[67]
Anders, L.; Ke, N.; Hydbring, P.; Choi, Y.J.; Widlund, H.R.; Chick, J.M.; Zhai, H.; Vidal, M.; Gygi, S.P.; Braun, P.; Sicinski, P. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell, 2011, 20(5), 620-634.
[http://dx.doi.org/10.1016/j.ccr.2011.10.001] [PMID: 22094256]
[68]
Li, Y.; Zhang, T.; Zhang, Y.; Zhao, X.; Wang, W. Targeting the FOXM1-regulated long noncoding RNA TUG1 in osteosarcoma. Cancer Sci., 2018, 109(10), 3093-3104.
[http://dx.doi.org/10.1111/cas.13765] [PMID: 30099814]
[69]
Shen, B.; Zhou, N.; Hu, T.; Zhao, W.; Wu, D.; Wang, S. LncRNA MEG3 negatively modified osteosarcoma development through regulation of miR-361-5p and FoxM1. J. Cell. Physiol., 2019, 234(8), 13464-13480.
[http://dx.doi.org/10.1002/jcp.28026] [PMID: 30624782]
[70]
Sun, C.; Dai, J.; Ma, S.; Pan, Y.; Liu, F.; Wang, Y. MicroRNA-197 inhibits the progression of osteosarcoma through targeting FOXM1. Minerva Endocrinol., 2020, 45(2), 153-156.
[http://dx.doi.org/10.23736/S0391-1977.19.03108-0] [PMID: 31797655]
[71]
Hu, K.; Xie, W.; Ni, S.; Yan, S.; Tian, G.; Qi, W.; Duan, Y. Cadmium chloride enhances cisplatin sensitivity in osteosarcoma cells by reducing FOXM1 expression. Oncol. Rep., 2020, 44(2), 650-660.
[http://dx.doi.org/10.3892/or.2020.7632] [PMID: 32627005]
[72]
Wang, L.; Liu, Y.; Yu, G. Avasimibe inhibits tumor growth by targeting FoxM1-AKR1C1 in osteosarcoma. OncoTargets Ther., 2019, 12, 815-823.
[http://dx.doi.org/10.2147/OTT.S165647] [PMID: 30774369]
[73]
Radhakrishnan, S.K.; Bhat, U.G.; Hughes, D.E.; Wang, I.C.; Costa, R.H.; Gartel, A.L. Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1. Cancer Res., 2006, 66(19), 9731-9735.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1576] [PMID: 17018632]
[74]
Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell, 2017, 169(2), 361-371.
[http://dx.doi.org/10.1016/j.cell.2017.03.035] [PMID: 28388417]
[75]
Pons-Tostivint, E.; Thibault, B.; Guillermet-Guibert, J. Targeting PI3K signaling in combination cancer therapy. Trends Cancer, 2017, 3(6), 454-469.
[http://dx.doi.org/10.1016/j.trecan.2017.04.002] [PMID: 28718419]
[76]
Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-mTOR pathways: C ross-talk and compensation. Trends Biochem. Sci., 2011, 36(6), 320-328.
[http://dx.doi.org/10.1016/j.tibs.2011.03.006] [PMID: 21531565]
[77]
Yu, L.; Wei, J.; Liu, P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin. Cancer Biol., 2022, 85, 69-94.
[http://dx.doi.org/10.1016/j.semcancer.2021.06.019] [PMID: 34175443]
[78]
Zhang, J.; Yu, X.H.; Yan, Y.G.; Wang, C.; Wang, W.J. PI3K/Akt signaling in osteosarcoma. Clin. Chim. Acta, 2015, 444, 182-192.
[http://dx.doi.org/10.1016/j.cca.2014.12.041] [PMID: 25704303]
[79]
Wu, P.; Hu, Y.Z. PI3K/Akt/mTOR pathway inhibitors in cancer: A perspective on clinical progress. Curr. Med. Chem., 2010, 17(35), 4326-4341.
[http://dx.doi.org/10.2174/092986710793361234] [PMID: 20939811]
[80]
Burris, H.A., III Overcoming acquired resistance to anticancer therapy: Focus on the PI3K/AKT/mTOR pathway. Cancer Chemother. Pharmacol., 2013, 71(4), 829-842.
[http://dx.doi.org/10.1007/s00280-012-2043-3] [PMID: 23377372]
[81]
Song, R.; Tian, K.; Wang, W.; Wang, L. P53 suppresses cell proliferation, metastasis, and angiogenesis of osteosarcoma through inhibition of the PI3K/AKT/mTOR pathway. Int. J. Surg., 2015, 20, 80-87.
[http://dx.doi.org/10.1016/j.ijsu.2015.04.050] [PMID: 25936826]
[82]
Liu, Y.; Bi, T.; Dai, W.; Wang, G.; Qian, L.; Shen, G.; Gao, Q. RETRACTED: Lupeol Induces Apoptosis and Cell Cycle Arrest of Human Osteosarcoma Cells Through PI3K/AKT/mTOR Pathway. Technol. Cancer Res. Treat., 2016, 15(6), NP16-NP24.
[http://dx.doi.org/10.1177/1533034615609014] [PMID: 26443801]
[83]
Mickymaray, S.; Alfaiz, F.A.; Paramasivam, A.; Veeraraghavan, V.P.; Periadurai, N.D.; Surapaneni, K.M.; Niu, G. Rhaponticin suppresses osteosarcoma through the inhibition of PI3K-Akt-mTOR pathway. Saudi J. Biol. Sci., 2021, 28(7), 3641-3649.
[http://dx.doi.org/10.1016/j.sjbs.2021.05.006] [PMID: 34220214]
[84]
Jin, R.; Jin, Y.Y.; Tang, Y.L.; Yang, H.J.; Zhou, X.Q.; Lei, Z. GPNMB silencing suppresses the proliferation and metastasis of osteosarcoma cells by blocking the PI3K/Akt/mTOR signaling pathway. Oncol. Rep., 2018, 39(6), 3034-3040.
[http://dx.doi.org/10.3892/or.2018.6346] [PMID: 29620278]
[85]
Zheng, J.; Liu, C.; Shi, J.; Wen, K.; Wang, X. AIM2 inhibits the proliferation, invasion and migration, and promotes the apoptosis of osteosarcoma cells by inactivating the PI3K/AKT/mTOR signaling pathway. Mol. Med. Rep., 2021, 25(2), 53.
[http://dx.doi.org/10.3892/mmr.2021.12569] [PMID: 34913077]
[86]
Liu, B.; Xu, L.; Dai, E.N.; Tian, J.X.; Li, J.M. Anti-tumoral potential of MDA19 in human osteosarcoma via suppressing PI3K/Akt/mTOR signaling pathway. Biosci. Rep., 2018, 38(6), BSR20181501.
[http://dx.doi.org/10.1042/BSR20181501] [PMID: 30442873]
[87]
Niu, N.K.; Wang, Z.L.; Pan, S.T.; Ding, H.Q.; Au, G.H.; He, Z.X.; Zhou, Z.W.; Xiao, G.; Yang, Y.X.; Zhang, X.; Yang, T.; Chen, X.W.; Qiu, J.X.; Zhou, S.F. Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway. Drug Des. Devel. Ther., 2015, 9, 1555-1584.
[PMID: 25792811]
[88]
Zhu, Y.R.; Min, H.; Fang, J.F.; Zhou, F.; Deng, X.W.; Zhang, Y.Q. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against osteosarcoma. Cancer Biol. Ther., 2015, 16(4), 602-609.
[http://dx.doi.org/10.1080/15384047.2015.1017155] [PMID: 25869769]
[89]
Slotkin, E.K.; Patwardhan, P.P.; Vasudeva, S.D.; de Stanchina, E.; Tap, W.D.; Schwartz, G.K. MLN0128, an ATP-competitive mTOR kinase inhibitor with potent in vitro and in vivo antitumor activity, as potential therapy for bone and soft-tissue sarcoma. Mol. Cancer Ther., 2015, 14(2), 395-406.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0711] [PMID: 25519700]
[90]
Grignani, G.; Palmerini, E.; Ferraresi, V.; D’Ambrosio, L.; Bertulli, R.; Asaftei, S.D.; Tamburini, A.; Pignochino, Y.; Sangiolo, D.; Marchesi, E.; Capozzi, F.; Biagini, R.; Gambarotti, M.; Fagioli, F.; Casali, P.G.; Picci, P.; Ferrari, S.; Aglietta, M. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: A non-randomised phase 2 clinical trial. Lancet Oncol., 2015, 16(1), 98-107.
[http://dx.doi.org/10.1016/S1470-2045(14)71136-2] [PMID: 25498219]
[91]
Wagner, L.M.; Fouladi, M.; Ahmed, A.; Krailo, M.D.; Weigel, B.; DuBois, S.G.; Doyle, L.A.; Chen, H.; Blaney, S.M. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: A report from the children’s oncology group. Pediatr. Blood Cancer, 2015, 62(3), 440-444.
[http://dx.doi.org/10.1002/pbc.25334] [PMID: 25446280]
[92]
Wang, B.; Li, J. Piceatannol suppresses the proliferation and induced apoptosis of osteosarcoma cells through PI3K/AKT/mTOR pathway. Cancer Manag. Res., 2020, 12, 2631-2640.
[http://dx.doi.org/10.2147/CMAR.S238173] [PMID: 32368141]
[93]
Sun, H.; Yin, M.; Qian, W.; Yin, H. Calycosin, a phytoestrogen isoflavone, induces apoptosis of estrogen receptor-positive MG-63 osteosarcoma cells via the phosphatidylinositol 3-kinase (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) pathway. Med. Sci. Monit., 2018, 24, 6178-6186.
[http://dx.doi.org/10.12659/MSM.910201] [PMID: 30182951]
[94]
Kim, S.H.; Son, K.M.; Kim, K.Y.; Yu, S.N.; Park, S.G.; Kim, Y.W.; Nam, H.W.; Suh, J.T.; Ji, J.H.; Ahn, S.C. Deoxypodophyllotoxin induces cytoprotective autophagy against apoptosis via inhibition of PI3K/AKT/mTOR pathway in osteosarcoma U2OS cells. Pharmacol. Rep., 2017, 69(5), 878-884.
[http://dx.doi.org/10.1016/j.pharep.2017.04.007] [PMID: 28623712]
[95]
Pang, H.; Wu, T.; Peng, Z.; Tan, Q.; Peng, X.; Zhan, Z.; Song, L.; Wei, B. Baicalin induces apoptosis and autophagy in human osteosarcoma cells by increasing ROS to inhibit PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways. J. Bone Oncol., 2022, 33, 100415.
[http://dx.doi.org/10.1016/j.jbo.2022.100415] [PMID: 35573641]
[96]
Wang, Y.; Xu, S.; Wu, Y.; Zhang, J. Cucurbitacin E inhibits osteosarcoma cells proliferation and invasion through attenuation of PI3K/AKT/mTOR signalling pathway. Biosci. Rep., 2016, 36(6), e00405.
[http://dx.doi.org/10.1042/BSR20160165] [PMID: 27653525]
[97]
Zhang, H.; Jiang, H.; Zhang, H.; Liu, J.; Hu, X.; Chen, L. Anti-tumor efficacy of phellamurin in osteosarcoma cells: Involvement of the PI3K/AKT/mTOR pathway. Eur. J. Pharmacol., 2019, 858, 172477.
[http://dx.doi.org/10.1016/j.ejphar.2019.172477] [PMID: 31228450]
[98]
Zhang, S.; Ren, H.; Sun, H.; Cao, S. Dieckol exerts anticancer activity in human osteosarcoma (MG-63) cells through the inhibition of PI3K/AKT/mTOR signaling pathway. Saudi J. Biol. Sci., 2021, 28(9), 4908-4915.
[http://dx.doi.org/10.1016/j.sjbs.2021.07.019] [PMID: 34466065]
[99]
Yue, Z.; Guan, X.; Chao, R.; Huang, C.; Li, D.; Yang, P.; Liu, S.; Hasegawa, T.; Guo, J.; Li, M. Diallyl disulfide induces apoptosis and autophagy in human osteosarcoma MG-63 Cells through the PI3K/Akt/mTOR pathway. Molecules, 2019, 24(14), 2665.
[http://dx.doi.org/10.3390/molecules24142665] [PMID: 31340526]
[100]
Huang, Z.; Jin, G.; Licochalcone, B. Licochalcone B induced apoptosis and autophagy in osteosarcoma tumor cells <i>via</i> the inactivation of PI3K/AKT/mTOR pathway. Biol. Pharm. Bull., 2022, 45(6), 730-737.
[http://dx.doi.org/10.1248/bpb.b21-00991] [PMID: 35431285]
[101]
Li, Y.; Lu, J.; Bai, F.; Xiao, Y.; Guo, Y.; Dong, Z. Ginsenoside Rg3 suppresses proliferation and induces apoptosis in human osteosarcoma. BioMed Res. Int., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/4306579] [PMID: 29750154]
[102]
He, J.; Zhang, W.; Zhou, X.; Yan, W.; Wang, Z. Aloin induced apoptosis by enhancing autophagic flux through the PI3K/AKT axis in osteosarcoma. Chin. Med., 2021, 16(1), 123.
[http://dx.doi.org/10.1186/s13020-021-00520-4] [PMID: 34819120]
[103]
Li, C.; Gao, H.; Feng, X.; Bi, C.; Zhang, J.; Yin, J. Ginsenoside Rh2 impedes proliferation and migration and induces apoptosis by regulating NF‐κB, MAPK, and PI3K/Akt/mTOR signaling pathways in osteosarcoma cells. J. Biochem. Mol. Toxicol., 2020, 34(12), e22597.
[http://dx.doi.org/10.1002/jbt.22597] [PMID: 32762018]
[104]
Liu, D.; Wang, H.; Zhou, Z.; Mao, X.; Ye, Z.; Zhang, Z.; Tu, S.; Zhang, Y.; Cai, X.; Lan, X.; Zhang, Z.; Han, B.; Zuo, G. Integrated bioinformatic analysis and experiment confirmation of the antagonistic effect and molecular mechanism of ginsenoside Rh2 in metastatic osteosarcoma. J. Pharm. Biomed. Anal., 2021, 201, 114088.
[http://dx.doi.org/10.1016/j.jpba.2021.114088] [PMID: 33957363]
[105]
Shi, Y.; Lian, K.; Jia, J. Apigenin suppresses the warburg effect and stem-like properties in SOSP-9607 cells by inactivating the PI3K/Akt/mTOR signaling pathway. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/3983637] [PMID: 35310040]
[106]
Liu, Y.; Zhang, Y.; Zou, J.; Yan, L.; Yu, X.; Lu, P.; Wu, X.; Li, Q.; Gu, R.; Zhu, D. Andrographolide induces autophagic cell death and inhibits invasion and metastasis of human osteosarcoma cells in an autophagy-dependent manner. Cell. Physiol. Biochem., 2017, 44(4), 1396-1410.
[http://dx.doi.org/10.1159/000485536] [PMID: 29197865]
[107]
Li, J.; You, T.; Jing, J. MiR-125b inhibits cell biological progression of Ewing’s sarcoma by suppressing the PI3K/Akt signalling pathway. Cell Prolif., 2014, 47(2), 152-160.
[http://dx.doi.org/10.1111/cpr.12093] [PMID: 24517182]
[108]
Jiang, B.; Kang, X.; Zhao, G.; Lu, J.; Wang, Z. miR-138 reduces the dysfunction of t follicular helper cells in osteosarcoma via the PI3K/Akt/mTOR pathway by targeting PDK1. Comput. Math. Methods Med., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/2895893] [PMID: 34950224]
[109]
Jin, B.; Jin, D.; Zhuo, Z.; Zhang, B.; Chen, K. MiR-1224-5p activates autophagy, cell invasion and inhibits epithelial-to-mesenchymal transition in osteosarcoma cells by directly targeting PLK1 through PI3K/AKT/mTOR signaling pathway. OncoTargets Ther., 2020, 13, 11807-11818.
[http://dx.doi.org/10.2147/OTT.S274451] [PMID: 33235467]
[110]
Fleuren, E.D.G.; Versleijen-Jonkers, Y.M.H.; Roeffen, M.H.S.; Franssen, G.M.; Flucke, U.E.; Houghton, P.J.; Oyen, W.J.G.; Boerman, O.C.; van der Graaf, W.T.A. Temsirolimus combined with cisplatin or bevacizumab is active in osteosarcoma models. Int. J. Cancer, 2014, 135(12), 2770-2782.
[http://dx.doi.org/10.1002/ijc.28933] [PMID: 24771207]
[111]
Hu, K.; Dai, H.B.; Qiu, Z.L. mTOR signaling in osteosarcoma: Oncogenesis and therapeutic aspects (Review). Oncol. Rep., 2016, 36(3), 1219-1225.
[http://dx.doi.org/10.3892/or.2016.4922] [PMID: 27430283]
[112]
Liao, Y.X.; Lv, J.Y.; Zhou, Z.F.; Xu, T.Y.; Yang, D.; Gao, Q.M.; Fan, L.; Li, G.D.; Yu, H.Y.; Liu, K.Y. CXCR4 blockade sensitizes osteosarcoma to doxorubicin by inducing autophagic cell death via PI3K‑Akt‑mTOR pathway inhibition. Int. J. Oncol., 2021, 59(1), 49.
[http://dx.doi.org/10.3892/ijo.2021.5229] [PMID: 34080667]
[113]
Chen, C.; Guo, Y.; Huang, Q.; wang, B.; Wang, W.; Niu, J.; Lou, J.; Xu, J.; Ren, T.; Huang, Y.; Guo, W. PI3K inhibitor impairs tumor progression and enhances sensitivity to anlotinib in anlotinib-resistant osteosarcoma. Cancer Lett., 2022, 536, 215660.
[http://dx.doi.org/10.1016/j.canlet.2022.215660] [PMID: 35318116]
[114]
Adams, R.R.; Maiato, H.; Earnshaw, W.C.; Carmena, M. Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol., 2001, 153(4), 865-880.
[http://dx.doi.org/10.1083/jcb.153.4.865] [PMID: 11352945]
[115]
Ota, T.; Suto, S.; Katayama, H.; Han, Z.B.; Suzuki, F.; Maeda, M.; Tanino, M.; Terada, Y.; Tatsuka, M. Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res., 2002, 62(18), 5168-5177.
[PMID: 12234980]
[116]
Zhao, Z.; Jin, G.; Yao, K.; Liu, K.; Liu, F.; Chen, H.; Wang, K.; Gorja, D.R.; Reddy, K.; Bode, A.M.; Guo, Z.; Dong, Z. Aurora B kinase as a novel molecular target for inhibition the growth of osteosarcoma. Mol. Carcinog., 2019, 58(6), 1056-1067.
[http://dx.doi.org/10.1002/mc.22993] [PMID: 30790360]
[117]
Pi, W.S.; Cao, Z.Y.; Liu, J.M.; Peng, A.F.; Chen, W.Z.; Chen, J.W.; Huang, S.H.; Liu, Z.L. Potential molecular mechanisms of AURKB in the oncogenesis and progression of osteosarcoma cells: A label-free quantitative proteomics analysis. Technol. Cancer Res. Treat., 2018, 18, 1533033819853262.
[PMID: 31122179]
[118]
Lakkaniga, N.R.; Zhang, L.; Belachew, B.; Gunaganti, N.; Frett, B.; Li, H. Discovery of SP-96, the first non-ATP-competitive Aurora Kinase B inhibitor, for reduced myelosuppression. Eur. J. Med. Chem., 2020, 203, 112589.
[http://dx.doi.org/10.1016/j.ejmech.2020.112589] [PMID: 32717530]
[119]
Tavanti, E.; Sero, V.; Vella, S.; Fanelli, M.; Michelacci, F.; Landuzzi, L.; Magagnoli, G.; Versteeg, R.; Picci, P.; Hattinger, C.M.; Serra, M. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma. Br. J. Cancer, 2013, 109(10), 2607-2618.
[http://dx.doi.org/10.1038/bjc.2013.643] [PMID: 24129234]
[120]
Maitland, M.L.; Piha-Paul, S.; Falchook, G.; Kurzrock, R.; Nguyen, L.; Janisch, L.; Karovic, S.; McKee, M.; Hoening, E.; Wong, S.; Munasinghe, W.; Palma, J.; Donawho, C.; Lian, G.K.; Ansell, P.; Ratain, M.J.; Hong, D. Clinical pharmacodynamic/exposure characterisation of the multikinase inhibitor ilorasertib (ABT-348) in a phase 1 dose-escalation trial. Br. J. Cancer, 2018, 118(8), 1042-1050.
[http://dx.doi.org/10.1038/s41416-018-0020-2] [PMID: 29551775]
[121]
Kovacs, A.H.; Zhao, D.; Hou, J.; Aurora, B. Aurora B inhibitors as cancer therapeutics. Molecules, 2023, 28(8), 3385.
[http://dx.doi.org/10.3390/molecules28083385] [PMID: 37110619]
[122]
Jing, X.L.; Chen, S.W. Aurora kinase inhibitors: A patent review (2014-2020). Expert Opin. Ther. Pat., 2021, 31(7), 625-643.
[http://dx.doi.org/10.1080/13543776.2021.1890027] [PMID: 33573401]
[123]
Tsai, H.C.; Cheng, S.P.; Han, C.K.; Huang, Y.L.; Wang, S.W.; Lee, J.J.; Lai, C.T.; Fong, Y.C.; Tang, C.H. Resistin enhances angiogenesis in osteosarcoma via the MAPK signaling pathway. Aging, 2019, 11(21), 9767-9777.
[http://dx.doi.org/10.18632/aging.102423] [PMID: 31719210]
[124]
Hadjimichael, A.C.; Foukas, A.F.; Papadimitriou, E.; Kaspiris, A.; Peristiani, C.; Chaniotakis, I.; Kotsari, M.; Pergaris, A.; Theocharis, S.; Sarantis, P.; Christopoulou, M.; Psyrri, A.; Mavrogenis, A.F.; Savvidou, O.D.; Papagelopoulos, P.J.; Armakolas, A. Doxycycline inhibits the progression of metastases in early-stage osteosarcoma by downregulating the expression of MMPs, VEGF and ezrin at primary sites. Cancer Treat. Res. Commun., 2022, 32, 100617.
[http://dx.doi.org/10.1016/j.ctarc.2022.100617] [PMID: 36027697]
[125]
Liu, Y.; Zheng, Q.; Wu, H.; Guo, X.; Li, J.; Hao, S. Rapamycin increases pCREB, Bcl-2, and VEGF-A through ERK under normoxia. Acta Biochim. Biophys. Sin., 2013, 45(4), 259-267.
[http://dx.doi.org/10.1093/abbs/gmt002] [PMID: 23403511]
[126]
Okamoto, K.; Ikemori-Kawada, M.; Jestel, A.; von König, K.; Funahashi, Y.; Matsushima, T.; Tsuruoka, A.; Inoue, A.; Matsui, J. Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Med. Chem. Lett., 2015, 6(1), 89-94.
[http://dx.doi.org/10.1021/ml500394m] [PMID: 25589937]
[127]
Gaspar, N.; Venkatramani, R.; Hecker-Nolting, S.; Melcon, S.G.; Locatelli, F.; Bautista, F.; Longhi, A.; Lervat, C.; Entz-Werle, N.; Casanova, M.; Aerts, I.; Strauss, S.J.; Thebaud, E.; Morland, B.; Nieto, A.C.; Marec-Berard, P.; Gambart, M.; Rossig, C.; Okpara, C.E.; He, C.; Dutta, L.; Campbell-Hewson, Q. Lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma (ITCC-050): A multicentre, open-label, multicohort, phase 1/2 study. Lancet Oncol., 2021, 22(9), 1312-1321.
[http://dx.doi.org/10.1016/S1470-2045(21)00387-9] [PMID: 34416158]
[128]
Vimalraj, S.; Saravanan, S.; Raghunandhakumar, S.; Anuradha, D. Melatonin regulates tumor angiogenesis via miR-424-5p/VEGFA signaling pathway in osteosarcoma. Life Sci., 2020, 256, 118011.
[http://dx.doi.org/10.1016/j.lfs.2020.118011] [PMID: 32592723]
[129]
Tsai, H.C.; Tzeng, H.E.; Huang, C.Y.; Huang, Y.L.; Tsai, C.H.; Wang, S.W.; Wang, P.C.; Chang, A.C.; Fong, Y.C.; Tang, C.H. WISP-1 positively regulates angiogenesis by controlling VEGF-A expression in human osteosarcoma. Cell Death Dis., 2017, 8(4), e2750.
[http://dx.doi.org/10.1038/cddis.2016.421] [PMID: 28406476]
[130]
Lin, C.Y.; Tzeng, H.E.; Li, T.M.; Chen, H.T.; Lee, Y.; Yang, Y.C.; Wang, S.W.; Yang, W.H.; Tang, C.H. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis. Oncotarget, 2017, 8(24), 39571-39581.
[http://dx.doi.org/10.18632/oncotarget.17142] [PMID: 28465477]
[131]
Liao, Y.Y.; Tsai, H.C.; Chou, P.Y.; Wang, S.W.; Chen, H.T.; Lin, Y.M.; Chiang, I.P.; Chang, T.M.; Hsu, S.K.; Chou, M.C.; Tang, C.H.; Fong, Y.C. CCL3 promotes angiogenesis by dysregulation of miR-374b/ VEGF-A axis in human osteosarcoma cells. Oncotarget, 2016, 7(4), 4310-4325.
[http://dx.doi.org/10.18632/oncotarget.6708] [PMID: 26713602]
[132]
Zhang, L.; Lv, Z.; Xu, J.; Chen, C.; Ge, Q.; Li, P.; Wei, D.; Wu, Z.; Sun, X. Micro RNA -134 inhibits osteosarcoma angiogenesis and proliferation by targeting the VEGFA / VEGFR 1 pathway. FEBS J., 2018, 285(7), 1359-1371.
[http://dx.doi.org/10.1111/febs.14416] [PMID: 29474747]
[133]
Ma, Z.; Li, K.; Chen, P.; Pan, Q.; Li, X.; Zhao, G. MiR-134, Mediated by IRF1, Suppresses Tumorigenesis and Progression by Targeting VEGFA and MYCN in Osteosarcoma. Anticancer. Agents Med. Chem., 2020, 20(10), 1197-1208.
[http://dx.doi.org/10.2174/1871520620666200402074752] [PMID: 32238141]
[134]
Qin, Y.; Zhang, B.; Ge, B.J. MicroRNA-150-5p inhibits proliferation and invasion of osteosarcoma cells by down-regulating VEGFA. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(18), 9265-9273.
[PMID: 33015767]
[135]
Lv, T.; Liu, Y.; Li, Z.; Huang, R.; Zhang, Z.; Li, J. miR-503 is down-regulated in osteosarcoma and suppressed MG63 proliferation and invasion by targeting VEGFA/Rictor. Cancer Biomark., 2018, 23(3), 315-322.
[http://dx.doi.org/10.3233/CBM-170906] [PMID: 30223385]
[136]
Niu, J.; Sun, Y.; Guo, Q.; Niu, D.; Liu, B. miR-1 inhibits cell growth, migration, and invasion by targeting VEGFA in osteosarcoma cells. Dis. Markers, 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/7068986] [PMID: 27777493]
[137]
Shao, X.; Miao, M.; Xue, J.; Xue, J.; Ji, X.; Zhu, H. The down-regulation of MicroRNA-497 contributes to cell growth and cisplatin resistance through PI3K/Akt pathway in osteosarcoma. Cell. Physiol. Biochem., 2015, 36(5), 2051-2062.
[http://dx.doi.org/10.1159/000430172] [PMID: 26202364]
[138]
Zhang, L.; Cao, H.; Gu, G.; Hou, D.; You, Y.; Li, X.; Chen, Y.; Jiao, G. Exosomal MiR-199a-5p inhibits tumorigenesis and angiogenesis by targeting VEGFA in osteosarcoma. Front. Oncol., 2022, 12, 884559.
[http://dx.doi.org/10.3389/fonc.2022.884559] [PMID: 35651811]
[139]
Wang, L.; Shan, M.; Liu, Y.; Yang, F.; Qi, H.; Zhou, L.; Qiu, L.; Li, Y. miR-205 suppresses the proliferative and migratory capacity of human osteosarcoma Mg-63 cells by targeting VEGFA. OncoTargets Ther., 2015, 8, 2635-2642.
[PMID: 26396534]
[140]
Lopez, C.M.; Yu, P.Y.; Zhang, X.; Yilmaz, A.S.; London, C.A.; Fenger, J.M. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines. PLoS One, 2018, 13(1), e0190086.
[http://dx.doi.org/10.1371/journal.pone.0190086] [PMID: 29293555]
[141]
Raimondi, L.; Gallo, A.; Cuscino, N.; De Luca, A.; Costa, V.; Carina, V.; Bellavia, D.; Bulati, M.; Alessandro, R.; Fini, M.; Conaldi, P.G.; Giavaresi, G. Potential Anti-Metastatic Role of the Novel miR-CT3 in Tumor Angiogenesis and Osteosarcoma Invasion. Int. J. Mol. Sci., 2022, 23(2), 705.
[http://dx.doi.org/10.3390/ijms23020705] [PMID: 35054891]
[142]
Liang, J.; Zhao, H.; Hu, J.; Liu, Y.; Li, Z. SPOCD1 promotes cell proliferation and inhibits cell apoptosis in human osteosarcoma. Mol. Med. Rep., 2018, 17(2), 3218-3225.
[PMID: 29257309]
[143]
Boro, A.; Arlt, M.J.; Lengnick, H.; Robl, B.; Husmann, M.; Bertz, J.; Born, W.; Fuchs, B. Prognostic value and in vitro biological relevance of Neuropilin 1 and Neuropilin 2 in osteosarcoma. Am. J. Transl. Res., 2015, 7(3), 640-653.
[PMID: 26045903]
[144]
Al-Khalaf, H.H.; Aboussekhra, A. AUF1 positively controls angiogenesis through mRNA stabilization-dependent up-regulation of HIF-1α and VEGF-A in human osteosarcoma. Oncotarget, 2019, 10(47), 4868-4879.
[http://dx.doi.org/10.18632/oncotarget.27115] [PMID: 31448053]
[145]
Zhao, H.; Wu, Y.; Chen, Y.; Liu, H. Clinical significance of hypoxia-inducible factor 1 and VEGF-A in osteosarcoma. Int. J. Clin. Oncol., 2015, 20(6), 1233-1243.
[http://dx.doi.org/10.1007/s10147-015-0848-x] [PMID: 26077139]
[146]
Kolb, E.A.; Kamara, D.; Zhang, W.; Lin, J.; Hingorani, P.; Baker, L.; Houghton, P.; Gorlick, R. R1507, a fully human monoclonal antibody targeting IGF-1R, is effective alone and in combination with rapamycin in inhibiting growth of osteosarcoma xenografts. Pediatr. Blood Cancer, 2010, 55(1), n/a.
[http://dx.doi.org/10.1002/pbc.22479] [PMID: 20486173]
[147]
Kurmasheva, R.T.; Dudkin, L.; Billups, C.; Debelenko, L.V.; Morton, C.L.; Houghton, P.J. The insulin-like growth factor-1 receptor-targeting antibody, CP-751,871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma. Cancer Res., 2009, 69(19), 7662-7671.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1693] [PMID: 19789339]
[148]
Kolb, E.A.; Gorlick, R.; Maris, J.M.; Keir, S.T.; Morton, C.L.; Wu, J.; Wozniak, A.W.; Smith, M.A.; Houghton, P.J. Combination testing (Stage 2) of the Anti-IGF-1 receptor antibody IMC-A12 with rapamycin by the pediatric preclinical testing program. Pediatr. Blood Cancer, 2012, 58(5), 729-735.
[http://dx.doi.org/10.1002/pbc.23157] [PMID: 21630428]
[149]
Pignochino, Y.; Dell’Aglio, C.; Basiricò, M.; Capozzi, F.; Soster, M.; Marchiò, S.; Bruno, S.; Gammaitoni, L.; Sangiolo, D.; Torchiaro, E.; D’Ambrosio, L.; Fagioli, F.; Ferrari, S.; Alberghini, M.; Picci, P.; Aglietta, M.; Grignani, G. The Combination of Sorafenib and Everolimus Abrogates mTORC1 and mTORC2 upregulation in osteosarcoma preclinical models. Clin. Cancer Res., 2013, 19(8), 2117-2131.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2293] [PMID: 23434734]
[150]
Tian, Z.C.; Wang, J.Q.; Ge, H. Apatinib ameliorates doxorubicin-induced migration and cancer stemness of osteosarcoma cells by inhibiting Sox2 via STAT3 signalling. J. Orthop. Translat., 2020, 22, 132-141.
[http://dx.doi.org/10.1016/j.jot.2019.07.003] [PMID: 32440509]
[151]
Lee, D.H.; Qi, J.; Bradner, J.E.; Said, J.W.; Doan, N.B.; Forscher, C.; Yang, H.; Koeffler, H.P. Synergistic effect of JQ1 and rapamycin for treatment of human osteosarcoma. Int. J. Cancer, 2015, 136(9), 2055-2064.
[http://dx.doi.org/10.1002/ijc.29269] [PMID: 25307878]
[152]
Yamaguchi, S.I.; Ueki, A.; Sugihara, E.; Onishi, N.; Yaguchi, T.; Kawakami, Y.; Horiuchi, K.; Morioka, H.; Matsumoto, M.; Nakamura, M.; Muto, A.; Toyama, Y.; Saya, H.; Shimizu, T. Synergistic antiproliferative effect of imatinib and adriamycin in platelet‐derived growth factor receptor‐expressing osteosarcoma cells. Cancer Sci., 2015, 106(7), 875-882.
[http://dx.doi.org/10.1111/cas.12686] [PMID: 25940371]
[153]
Wu, J.; Liu, C.; Tsui, S.T.; Liu, D. Second-generation inhibitors of Bruton tyrosine kinase. J. Hematol. Oncol., 2016, 9(1), 80.
[http://dx.doi.org/10.1186/s13045-016-0313-y] [PMID: 27590878]
[154]
Wang, G.; Sun, M.; Jiang, Y.; Zhang, T.; Sun, W.; Wang, H.; Yin, F.; Wang, Z.; Sang, W.; Xu, J.; Mao, M.; Zuo, D.; Zhou, Z.; Wang, C.; Fu, Z.; Wang, Z.; Duan, Z.; Hua, Y.; Cai, Z. Anlotinib, a novel small molecular tyrosine kinase inhibitor, suppresses growth and metastasis via dual blockade of VEGFR2 and MET in osteosarcoma. Int. J. Cancer, 2019, 145(4), 979-993.
[http://dx.doi.org/10.1002/ijc.32180] [PMID: 30719715]
[155]
Kumar, R.M.; Arlt, M.J.; Kuzmanov, A.; Born, W.; Fuchs, B. Sunitinib malate (SU-11248) reduces tumour burden and lung metastasis in an intratibial human xenograft osteosarcoma mouse model. Am. J. Cancer Res., 2015, 5(7), 2156-2168.
[PMID: 26328246]
[156]
Italiano, A.; Mir, O.; Mathoulin-Pelissier, S.; Penel, N.; Piperno-Neumann, S.; Bompas, E.; Chevreau, C.; Duffaud, F.; Entz-Werlé, N.; Saada, E.; Ray-Coquard, I.; Lervat, C.; Gaspar, N.; Marec-Berard, P.; Pacquement, H.; Wright, J.; Toulmonde, M.; Bessede, A.; Crombe, A.; Kind, M.; Bellera, C.; Blay, J.Y. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): A multicentre, single-arm, phase 2 trial. Lancet Oncol., 2020, 21(3), 446-455.
[http://dx.doi.org/10.1016/S1470-2045(19)30825-3] [PMID: 32078813]
[157]
Fioramonti, M.; Fausti, V.; Pantano, F.; Iuliani, M.; Ribelli, G.; Lotti, F.; Pignochino, Y.; Grignani, G.; Santini, D.; Tonini, G.; Vincenzi, B. Cabozantinib affects osteosarcoma growth through a direct effect on tumor cells and modifications in bone microenvironment. Sci. Rep., 2018, 8(1), 4177.
[http://dx.doi.org/10.1038/s41598-018-22469-5] [PMID: 29520051]
[158]
Baranski, Z.; Booij, T.H.; Kuijjer, M.L.; de Jong, Y.; Cleton-Jansen, A.M.; Price, L.S.; van de Water, B.; Bovée, J.V.M.G.; Hogendoorn, P.C.W.; Danen, E.H.J. MEK inhibition induces apoptosis in osteosarcoma cells with constitutive ERK1/2 phosphorylation. Genes Cancer, 2015, 6(11-12), 503-512.
[http://dx.doi.org/10.18632/genesandcancer.91] [PMID: 26807203]
[159]
Dickler, M.N.; Tolaney, S.M.; Rugo, H.S.; Cortés, J.; Diéras, V.; Patt, D.; Wildiers, H.; Hudis, C.A.; O’Shaughnessy, J.; Zamora, E.; Yardley, D.A.; Frenzel, M.; Koustenis, A.; Baselga, J. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2 metastatic breast cancer. Clin. Cancer Res., 2017, 23(17), 5218-5224.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0754] [PMID: 28533223]
[160]
Sun, D.; Li, Z.; Rew, Y.; Gribble, M.; Bartberger, M.D.; Beck, H.P.; Canon, J.; Chen, A.; Chen, X.; Chow, D.; Deignan, J.; Duquette, J.; Eksterowicz, J.; Fisher, B.; Fox, B.M.; Fu, J.; Gonzalez, A.Z.; Gonzalez-Lopez De Turiso, F.; Houze, J.B.; Huang, X.; Jiang, M.; Jin, L.; Kayser, F.; Liu, J.J.; Lo, M.C.; Long, A.M.; Lucas, B.; McGee, L.R.; McIntosh, J.; Mihalic, J.; Oliner, J.D.; Osgood, T.; Peterson, M.L.; Roveto, P.; Saiki, A.Y.; Shaffer, P.; Toteva, M.; Wang, Y.; Wang, Y.C.; Wortman, S.; Yakowec, P.; Yan, X.; Ye, Q.; Yu, D.; Yu, M.; Zhao, X.; Zhou, J.; Zhu, J.; Olson, S.H.; Medina, J.C. Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2-p53 inhibitor in clinical development. J. Med. Chem., 2014, 57(4), 1454-1472.
[http://dx.doi.org/10.1021/jm401753e] [PMID: 24456472]
[161]
Wischhusen, J.; Naumann, U.; Ohgaki, H.; Rastinejad, F.; Weller, M. CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene, 2003, 22(51), 8233-8245.
[http://dx.doi.org/10.1038/sj.onc.1207198] [PMID: 14614447]
[162]
Zache, N.; Lambert, J.M.R.; Rökaeus, N.; Shen, J.; Hainaut, P.; Bergman, J.; Wiman, K.G.; Bykov, V.J.N. Mutant p53 targeting by the low molecular weight compound STIMA-1. Mol. Oncol., 2008, 2(1), 70-80.
[http://dx.doi.org/10.1016/j.molonc.2008.02.004] [PMID: 19383329]
[163]
Bykov, V.J.N.; Zache, N.; Stridh, H.; Westman, J.; Bergman, J.; Selivanova, G.; Wiman, K.G. PRIMA-1MET synergizes with cisplatin to induce tumor cell apoptosis. Oncogene, 2005, 24(21), 3484-3491.
[http://dx.doi.org/10.1038/sj.onc.1208419] [PMID: 15735745]
[164]
Wang, B.; Fang, L.; Zhao, H.; Xiang, T.; Wang, D. MDM2 inhibitor Nutlin-3a suppresses proliferation and promotes apoptosis in osteosarcoma cells. Acta Biochim. Biophys. Sin., 2012, 44(8), 685-691.
[http://dx.doi.org/10.1093/abbs/gms053] [PMID: 22843172]
[165]
Tovar, C.; Graves, B.; Packman, K.; Filipovic, Z.; Xia, B.H.M.; Tardell, C.; Garrido, R.; Lee, E.; Kolinsky, K.; To, K-H.; Linn, M.; Podlaski, F.; Wovkulich, P.; Vu, B.; Vassilev, L.T.; Vassilev, L.T. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res., 2013, 73(8), 2587-2597.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2807] [PMID: 23400593]
[166]
Yang, R.; Piperdi, S.; Gorlick, R. Activation of the RAF/mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway mediates apoptosis induced by chelerythrine in osteosarcoma. Clin. Cancer Res., 2008, 14(20), 6396-6404.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5113] [PMID: 18927278]
[167]
Homayoonfal, M.; Asemi, Z.; Yousefi, B. Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis. Cell. Mol. Biol. Lett., 2022, 27(1), 21.
[http://dx.doi.org/10.1186/s11658-022-00320-0] [PMID: 35236304]
[168]
Pan, P.J.; Liu, Y.C.; Hsu, F.T. Protein kinase B and extracellular signal-regulated kinase inactivation is associated with regorafenib-induced inhibition of osteosarcoma progression in vitro and in vivo. J. Clin. Med., 2019, 8(6), 900.
[http://dx.doi.org/10.3390/jcm8060900] [PMID: 31238539]
[169]
Pignochino, Y.; Grignani, G.; Cavalloni, G.; Motta, M.; Tapparo, M.; Bruno, S.; Bottos, A.; Gammaitoni, L.; Migliardi, G.; Camussi, G.; Alberghini, M.; Torchio, B.; Ferrari, S.; Bussolino, F.; Fagioli, F.; Picci, P.; Aglietta, M. Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol. Cancer, 2009, 8(1), 118.
[http://dx.doi.org/10.1186/1476-4598-8-118] [PMID: 20003259]

© 2024 Bentham Science Publishers | Privacy Policy