Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Systematic Review Article

Potentials of Stem Cell Therapy in Patients Infected with COVID- 19: A Systematic Review

Author(s): Zahra Tamis, Fatemeh Sadeghi, Aigin Heydari, Saima Shahzad Mirza and Mohammad Hossein Morowvat*

Volume 18, Issue 3, 2024

Published on: 24 August, 2023

Page: [227 - 240] Pages: 14

DOI: 10.2174/1872208317666230818092522

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: In the present study, we have examined different aspects and potentials of stem cells for the management of patients infected with COVID-19.

Background: The novel coronavirus disease (COVID-19) has been reported in most of the countries and territories (>230) of the world with 686 million confirmed cases (as of Apr. 22, 2023). While the scientific community is working to develop vaccines and develop drugs against the COVID-19 pandemic, novel alternative therapies may reduce the mortality rate. Recently, the application of stem cells for critically ill COVID-19 patients in a small group of patients has been examined.

Methods: We searched PubMed, Web of Science, and Google Scholar up to July 2022. Those studies that reviewed COVID-19 and cell therapy potentials were entered into the study. Moreover, some recently published patents were exploited and reviewed. Patentscope, USPTO, Espacenet, Free Patents Online, and Google Patents were used for patent searches.

Results: Cell-based therapy as a modality of regenerative medicine is considered one of the most promising disciplines in the fields of modern science and medicine. Such an advanced technology offers endless possibilities for transformative and potentially curative treatments for some of the most life-threatening diseases. This therapeutic tool can be useful to reduce the rate of mortality. There have been several published patents for different stem cell therapy platforms in recent years.

Conclusion: Stem cell therapy could be considered a safe and effective therapeutic strategy to reduce death cases in patients infected with COVID-19. Besides, stem cell therapy might increase the pulmonary functions in the patients, it suppresses the occurring inflammations and ameliorates the symptoms.

Keywords: Biotechnology, cell therapy, COVID-19, pathophysiology, recent patents, treatment.

Graphical Abstract
[1]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[2]
Suess C, Hausmann R. Gross and histopathological pulmonary findings in a COVID-19 associated death during self-isolation. Int J Legal Med 2020; 134(4): 1285-90.
[http://dx.doi.org/10.1007/s00414-020-02319-8] [PMID: 32504146]
[3]
Baj J, Karakuła-Juchnowicz H, Teresiński G, et al. COVID-19: Specific and non-specific clinical manifestations and symptoms: The current state of knowledge. J Clin Med 2020; 9(6): 1753.
[http://dx.doi.org/10.3390/jcm9061753] [PMID: 32516940]
[4]
Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis. Nat Rev Microbiol 2022; 20(5): 270-84.
[http://dx.doi.org/10.1038/s41579-022-00713-0] [PMID: 35354968]
[5]
Osuchowski MF, Winkler MS, Skirecki T, et al. The COVID-19 puzzle: Deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med 2021; 9(6): 622-42.
[http://dx.doi.org/10.1016/S2213-2600(21)00218-6] [PMID: 33965003]
[6]
Kutsuna S. Clinical manifestations of coronavirus disease. Japan Med Assoc J 2021; 4(2): 76-80.
[PMID: 33997439]
[7]
Wilk AJ, Rustagi A, Zhao NQ, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med 2020; 26(7): 1070-6.
[http://dx.doi.org/10.1038/s41591-020-0944-y] [PMID: 32514174]
[8]
Choi J, Park JE, Tsagkogeorga G, et al. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell 2020; 27(3): 366-382.e7.
[http://dx.doi.org/10.1016/j.stem.2020.06.020] [PMID: 32750316]
[9]
Khan M, Yoo SJ, Clijsters M, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 2021; 184(24): 5932-5949.e15.
[http://dx.doi.org/10.1016/j.cell.2021.10.027] [PMID: 34798069]
[10]
Zhou L, Ayeh SK, Chidambaram V, Karakousis PC. Modes of transmission of SARS-CoV-2 and evidence for preventive behavioral interventions. BMC Infect Dis 2021; 21(1): 496.
[http://dx.doi.org/10.1186/s12879-021-06222-4] [PMID: 34049515]
[11]
Biscayart C, Angeleri P, Lloveras S, Chaves TSS, Schlagenhauf P, Rodríguez-Morales AJ. The next big threat to global health? 2019 novel coronavirus (2019-nCoV): What advice can we give to travellers? – Interim recommendations January 2020, from the Latin-American society for Travel Medicine (SLAMVI). Travel Med Infect Dis 2020; 33: 101567.
[http://dx.doi.org/10.1016/j.tmaid.2020.101567] [PMID: 32006657]
[12]
Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2021; 19(3): 141-54.
[http://dx.doi.org/10.1038/s41579-020-00459-7] [PMID: 33024307]
[13]
Liu JM, Tan BH, Wu S, Gui Y, Suo JL, Li YC. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS‐CoV‐2 infection. J Med Virol 2021; 93(3): 1304-13.
[http://dx.doi.org/10.1002/jmv.26570] [PMID: 33002209]
[14]
Kariyawasam JC, Jayarajah U, Riza R, Abeysuriya V, Seneviratne SL. Gastrointestinal manifestations in COVID-19. Trans R Soc Trop Med Hyg 2021; 115(12): 1362-88.
[http://dx.doi.org/10.1093/trstmh/trab042] [PMID: 33728439]
[15]
Magadum A, Kishore R. Cardiovascular manifestations of COVID-19 infection. Cells 2020; 9(11): 2508.
[http://dx.doi.org/10.3390/cells9112508] [PMID: 33228225]
[16]
Gottlieb RL, Vaca CE, Paredes R, et al. Early remdesivir to prevent progression to severe Covid-19 in outpatients. N Engl J Med 2022; 386(4): 305-15.
[http://dx.doi.org/10.1056/NEJMoa2116846] [PMID: 34937145]
[17]
McDonald EG, Lee TC. Nirmatrelvir-ritonavir for COVID-19. CMAJ 2022; 194(6): E218.
[http://dx.doi.org/10.1503/cmaj.220081] [PMID: 35115376]
[18]
Singh AK, Singh A, Singh R, Misra A. Molnupiravir in COVID-19: A systematic review of literature. Diabetes Metab Syndr 2021; 15(6): 102329.
[http://dx.doi.org/10.1016/j.dsx.2021.102329] [PMID: 34742052]
[19]
Corti D, Purcell LA, Snell G, Veesler D. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 2021; 184(12): 3086-108.
[http://dx.doi.org/10.1016/j.cell.2021.05.005] [PMID: 34087172]
[20]
Iketani S, Liu L, Guo Y, et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 2022; 604(7906): 553-6.
[http://dx.doi.org/10.1038/s41586-022-04594-4] [PMID: 35240676]
[21]
Falcone M, Tiseo G, Valoriani B, et al. Efficacy of bamlanivimab/etesevimab and casirivimab/imdevimab in preventing progression to severe COVID-19 and role of variants of concern. Infect Dis Ther 2021; 10(4): 2479-88.
[http://dx.doi.org/10.1007/s40121-021-00525-4] [PMID: 34435337]
[22]
Pulakurthi YS, Pederson JM, Saravu K, et al. Corticosteroid therapy for COVID-19. Medicine 2021; 100(20): e25719.
[http://dx.doi.org/10.1097/MD.0000000000025719] [PMID: 34011029]
[23]
Matthay MA, Luetkemeyer AF. IL-6 receptor antagonist therapy for patients hospitalized for COVID-19. JAMA 2021; 326(6): 483-5.
[http://dx.doi.org/10.1001/jama.2021.11121] [PMID: 34228779]
[24]
Marconi VC, Ramanan AV, de Bono S, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): A randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med 2021; 9(12): 1407-18.
[http://dx.doi.org/10.1016/S2213-2600(21)00331-3] [PMID: 34480861]
[25]
Goligher EC, Bradbury CA, McVerry BJ, et al. Therapeutic anticoagulation with heparin in critically Ill patients with COVID-19. N Engl J Med 2021; 385(9): 777-89.
[http://dx.doi.org/10.1056/NEJMoa2103417] [PMID: 34351722]
[26]
Kumar P, Kumar M, Bedi O, et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology 2021; 29(4): 1001-16.
[http://dx.doi.org/10.1007/s10787-021-00826-7] [PMID: 34110533]
[27]
Zhang J, He Q, An C, et al. Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2 vaccine. Emerg Microbes Infect 2021; 10(1): 1598-608.
[http://dx.doi.org/10.1080/22221751.2021.1957401] [PMID: 34278956]
[28]
Vanaparthy R, Mohan G, Vasireddy D, Atluri P. Review of COVID-19 viral vector-based vaccines and COVID-19 variants. Infez Med 2021; 29(3): 328-38.
[http://dx.doi.org/10.53854/liim-2903-3] [PMID: 35146337]
[29]
Yang R, Deng Y, Huang B, et al. A core-shell structured COVID-19 mRNA vaccine with favorable biodistribution pattern and promising immunity. Signal Transduct Target Ther 2021; 6(1): 213.
[http://dx.doi.org/10.1038/s41392-021-00634-z] [PMID: 34059617]
[30]
Heath PT, Galiza EP, Baxter DN, et al. Safety and efficacy of NVX-CoV2373 COVID-19 vaccine. N Engl J Med 2021; 385(13): 1172-83.
[http://dx.doi.org/10.1056/NEJMoa2107659] [PMID: 34192426]
[31]
Tweedell KS. The adaptability of somatic stem cells: A review. J Stem Cells Regen Med 2017; 13(1): 3-13.
[http://dx.doi.org/10.46582/jsrm.1301002] [PMID: 28684892]
[32]
Domouky AM, Hegab AS, Al-Shahat A, Raafat N. Mesenchymal stem cells and differentiated insulin producing cells are new horizons for pancreatic regeneration in type I diabetes mellitus. Int J Biochem Cell Biol 2017; 87: 77-85.
[http://dx.doi.org/10.1016/j.biocel.2017.03.018] [PMID: 28385600]
[33]
Pavathuparambil AMN, Sivanathan KN, Nitschke J, Zhou XF, Coates PT, Drogemuller CJ. An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther 2019; 10(1): 293.
[http://dx.doi.org/10.1186/s13287-019-1396-5] [PMID: 31547868]
[34]
Kugler J, Huhse B, Tralau T, Luch A. Embryonic stem cells and the next generation of developmental toxicity testing. Expert Opin Drug Metab Toxicol 2017; 13(8): 833-41.
[http://dx.doi.org/10.1080/17425255.2017.1351548] [PMID: 28675072]
[35]
Aurora AB, Olson EN. Immune modulation of stem cells and regeneration. Cell Stem Cell 2014; 15(1): 14-25.
[http://dx.doi.org/10.1016/j.stem.2014.06.009] [PMID: 24996166]
[36]
Lunn JS, Sakowski SA, Hur J, Feldman EL. Stem cell technology for neurodegenerative diseases. Ann Neurol 2011; 70(3): 353-61.
[http://dx.doi.org/10.1002/ana.22487] [PMID: 21905078]
[37]
Bogoch II, Watts A, Thomas-Bachli A, Huber C, Kraemer MUG, Khan K. Pneumonia of unknown aetiology in Wuhan, China: Potential for international spread via commercial air travel. J Travel Med 2020; 27(2): taaa008.
[http://dx.doi.org/10.1093/jtm/taaa008] [PMID: 31943059]
[38]
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2): 216-28.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[39]
Atluri S, Manchikanti L, Hirsch JA. Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically Ill COVID-19 patients: The case for compassionate use. Pain Physician 2020; 23(2): E71-83.
[PMID: 32214286]
[40]
Meng F, Xu R, Wang S, et al. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: A phase 1 clinical trial. Signal Transduct Target Ther 2020; 5(1): 172.
[http://dx.doi.org/10.1038/s41392-020-00286-5] [PMID: 32855385]
[41]
Tang L, Jiang Y, Zhu M, et al. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19. Front Med 2020; 14(5): 664-73.
[http://dx.doi.org/10.1007/s11684-020-0810-9] [PMID: 32761491]
[42]
Bot A, Wiezorek JS, Go W, Jain R, Kochenderfer JN, Rosenberg SA. Methods of conditioing patients for T cell theapy. Patent US10322146B2, 2019.
[43]
Perez A, Sabatino M, Rosenberg SA, Restifo NP. Methods of preparing T cells for T cell therapy. Patent US20200206265A1, 2020.
[44]
Li H, Gilbert MJ, Maloney D, Riddell SR, Turtle CJ. Methods and compositions related to toxicity associated with cell therapy. Patent ES2901795T3, 2022.
[45]
Cerullo V, Hemminki A, Tahtinen S, Vaha-Koskela M. Enhanced adoptive cell therapy. Patent AU2019216631B2, 2021.
[46]
Mohler KM, Levitsky HL, Sather B. Engineered cells for adoptive cell therapy. Patent US10786533B2, 2020.
[47]
Mohler KM, Levitsky HL. Engineered cells for adoptive cell therapy. Patent US10738278B2, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy