Research Article

Expression of MicroRNA-200a/b/c in the Mediobasal Hypothalamic Nuclei with Aging

Author(s): Valentina V. Porseva, Lydia G. Pankrasheva, Konstantin Yu Moiseev, Polina A. Anfimova, Andrey I. Emanuilov, Nikolay Yu. Levshin, Andrey A. Baranov and Petr M. Masliukov*

Volume 12, Issue 3, 2023

Published on: 25 August, 2023

Page: [227 - 232] Pages: 6

DOI: 10.2174/2211536612666230810094531

Price: $65

conference banner
Abstract

Background: MicroRNAs (miRNAs) belong to small non-coding RNAs that coordinate the expression of cellular genes at the post-transcriptional level. The hypothalamus is a key regulator of homeostasis, biological rhythms and adaptation to different environmental factors. It also participates in the aging regulation. Variations in miRNA expression in the hypothalamus can affect the aging process.

Objective: Our objective of this study is to examine the expression of miR-200a-3p, miR-200b-3p, miR-200c-3p in the dorsomedial (DMN), ventromedial (VMN) and arcuate (ARN) nuclei of the hypothalamus in male and female rats during aging.

Methods: The expression of miR-200a-3p, miR-200b-3p, and miR-200c-3p in DMN, VMN and ARN was studied by qPCR-RT. The results were presented using the 2-ΔΔCq algorithm.

Results: The expression of miR-200a-3p, miR-200b-3p, miR-200c-3p microRNAs decreases with aging in the DMN of males and in the VMN of females. The level of miR-200b-3p expression decreased in aged males in the VMN and females in the DMN. The expression of miR-200c-3p declined in aged males in the ARN and in females in the DMN. The expression of miR-200a-3p, miR-200b-3p, and miR-200c-3p did not change in females in the ARN in aging.

Conclusion: We found a decrease in the expression of members of the miR-200a-3p, miR-200b-3p, and miR-200c-3p in the tuberal hypothalamic nuclei and their sex differences in aging rats.

Keywords: MicroRNA, hypothalamus, tuberal nuclei, aging, qPCR-RT, rat.

Graphical Abstract
[1]
MiRBase: The microRNA database. Available from: https://www.mirbase.org
[2]
Mao Y, Chen W, Wu H, Liu C, Zhang J, Chen S. Mechanisms and functions of mir-200 family in hepatocellular carcinoma. OncoTargets Ther 2021; 13: 13479-90.
[http://dx.doi.org/10.2147/OTT.S288791] [PMID: 33447052]
[3]
Jo H, Shim K, Jeoung D. Potential of the mir-200 family as a target for developing anti-cancer therapeutics. Int J Mol Sci 2022; 23(11): 5881.
[http://dx.doi.org/10.3390/ijms23115881] [PMID: 35682560]
[4]
Castilla MÁ, Díaz-Martín J, Sarrió D, et al. MicroRNA-200 family modulation in distinct breast cancer phenotypes. PLoS One 2012; 7(10)e47709
[http://dx.doi.org/10.1371/journal.pone.0047709] [PMID: 23112837]
[5]
Chang CJ, Chao CH, Xia W, et al. p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011; 13(3): 317-23.
[http://dx.doi.org/10.1038/ncb2173] [PMID: 21336307]
[6]
Kolesnikoff N, Attema JL, Roslan S, et al. Specificity protein 1 (Sp1) maintains basal epithelial expression of the miR-200 family: Implications for epithelial-mesenchymal transition. J Biol Chem 2014; 289(16): 11194-205.
[http://dx.doi.org/10.1074/jbc.M113.529172] [PMID: 24627491]
[7]
Humphries B, Yang C. The microRNA-200 family: Small molecules with novel roles in cancer development, progression and therapy. Oncotarget 2015; 6(9): 6472-98.
[http://dx.doi.org/10.18632/oncotarget.3052] [PMID: 25762624]
[8]
Gambari R, Brognara E, Spandidos DA, Fabbri E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 2016; 49(1): 5-32.
[http://dx.doi.org/10.3892/ijo.2016.3503] [PMID: 27175518]
[9]
Fu J, Peng L, Tao T, Chen Y, Li Z, Li J. Regulatory roles of the miR-200 family in neurodegenerative diseases. Biomed Pharmacother 2019; 119109409
[http://dx.doi.org/10.1016/j.biopha.2019.109409] [PMID: 31518873]
[10]
Zhang QS, Liu W, Lu GX. miR-200a-3p promotes β-Amyloid-induced neuronal apoptosis through down-regulation of SIRT1 in Alzheimer’s disease. J Biosci 2017; 42(3): 397-404.
[http://dx.doi.org/10.1007/s12038-017-9698-1] [PMID: 29358553]
[11]
Dini Modigliani S, Morlando M, Errichelli L, Sabatelli M, Bozzoni I. An ALS-associated mutation in the FUS 3′-UTR disrupts a microRNA–FUS regulatory circuitry. Nat Commun 2014; 5(1): 4335.
[http://dx.doi.org/10.1038/ncomms5335] [PMID: 25004804]
[12]
Wu Q, Ye X, Xiong Y, et al. The protective role of microrna-200c in alzheimer’s disease pathologies is induced by beta amyloid-triggered endoplasmic reticulum stress. Front Mol Neurosci 2016; 9: 140.
[http://dx.doi.org/10.3389/fnmol.2016.00140] [PMID: 28008308]
[13]
Masliukov PM, Nozdrachev AD. Hypothalamic regulatory mechanisms of aging. J Evol Biochem Physiol 2021; 57(3): 473-91.
[http://dx.doi.org/10.1134/S0022093021030030]
[14]
Porseva VV, Levshin NY, Moiseev KY, et al. Let-7a, mir-9, mir-132, and mir-218 microRNA Expression in the Dorsomedial and Ventromedial Hypothalamic Nuclei during Aging in Rats. Adv Gerontol 2021; 11(4): 346-50.
[http://dx.doi.org/10.1134/S207905702104010X]
[15]
Vishnyakova PA, Moiseev KY, Spirichev AA, Emanuilov AI, Nozdrachev AD, Masliukov PM. Expression of calbindin and calretinin in the dorsomedial and ventromedial hypothalamic nuclei during aging. Anat Rec 2021; 304(5): 1094-104.
[http://dx.doi.org/10.1002/ar.24536] [PMID: 33040447]
[16]
Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017; 158: 69-93.
[http://dx.doi.org/10.1016/j.pneurobio.2017.07.005] [PMID: 28779869]
[17]
Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother 2013; 4(4): 303-6.
[http://dx.doi.org/10.4103/0976-500X.119726] [PMID: 24250214]
[18]
Paxinos G, Watson C. The rat brain in stereotaxic coordinates 7th. Academic Press/Elsevier 2014.
[19]
Brabletz S, Brabletz T. The ZEB/miR‐200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep 2010; 11(9): 670-7.
[http://dx.doi.org/10.1038/embor.2010.117] [PMID: 20706219]
[20]
Pennarossa G, De Iorio T, Arcuri S, Gandolfi F, Brevini TAL. Synergistic effect of mir-200 and young extracellular matrix-based bio-scaffolds to reduce signs of aging in senescent fibroblasts. Stem Cell Rev Rep 2023; 19(2): 417-29.
[http://dx.doi.org/10.1007/s12015-022-10438-5] [PMID: 36029367]
[21]
Murphy SJ, Lusardi TA, Phillips JI, Saugstad JA. Sex differences in microRNA expression during developmentin rat cortex. Neurochem Int 2014; 77: 24-32.
[http://dx.doi.org/10.1016/j.neuint.2014.06.007] [PMID: 24969725]
[22]
Pandey A, Singh P, Jauhari A, et al. Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. J Neurochem 2015; 133(5): 640-52.
[http://dx.doi.org/10.1111/jnc.13089] [PMID: 25753155]
[23]
Jauhari A, Yadav S. MiR-34 and MiR-200: Regulator of cell fate plasticity and neural development. Neuromolecular Med 2019; 21(2): 97-109.
[http://dx.doi.org/10.1007/s12017-019-08535-9] [PMID: 30963386]
[24]
Belgardt BF, Ahmed K, Spranger M, et al. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med 2015; 21(6): 619-27.
[http://dx.doi.org/10.1038/nm.3862] [PMID: 25985365]
[25]
Hyun S, Lee JH, Jin H, et al. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 2009; 139(6): 1096-108.
[http://dx.doi.org/10.1016/j.cell.2009.11.020] [PMID: 20005803]
[26]
Guo L, Wang J, Yang P, Lu Q, Zhang T, Yang Y. MicroRNA-200 promotes lung cancer cell growth through FOG2-independent AKT activation. IUBMB Life 2015; 67(9): 720-5.
[http://dx.doi.org/10.1002/iub.1412] [PMID: 26314828]
[27]
Higaki S, Muramatsu M, Matsuda A, et al. Defensive effect of microRNA-200b/c against amyloid-beta peptide-induced toxicity in Alzheimer’s disease models. PLoS One 2018; 13(5)e0196929
[http://dx.doi.org/10.1371/journal.pone.0196929] [PMID: 29738527]
[28]
Tremblay F, Brûlé S, Hee Um S, et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci 2007; 104(35): 14056-61.
[http://dx.doi.org/10.1073/pnas.0706517104] [PMID: 17709744]
[29]
Patrick E, Rajagopal S, Wong HKA, et al. Dissecting the role of non-coding RNAs in the accumulation of amyloid and tau neuropathologies in Alzheimer’s disease. Mol Neurodegener 2017; 12(1): 51.
[http://dx.doi.org/10.1186/s13024-017-0191-y] [PMID: 28668092]
[30]
Crépin D, Benomar Y, Riffault L, Amine H, Gertler A, Taouis M. The over-expression of miR-200a in the hypothalamus of ob/ob mice is linked to leptin and insulin signaling impairment. Mol Cell Endocrinol 2014; 384(1-2): 1-11.
[http://dx.doi.org/10.1016/j.mce.2013.12.016] [PMID: 24394757]
[31]
Messina A, Langlet F, Chachlaki K, et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat Neurosci 2016; 19(6): 835-44.
[http://dx.doi.org/10.1038/nn.4298] [PMID: 27135215]
[32]
Zhang G, Li J, Purkayastha S, et al. Hypothalamic programming of systemic ageing involving IKK-β NF-κB and GnRH. Nature 2013; 497(7448): 211-6.
[http://dx.doi.org/10.1038/nature12143] [PMID: 23636330]
[33]
Kokoeva MV, Yin H, Flier JS. Neurogenesis in the hypothalamus of adult mice: Potential role in energy balance. Science 2005; 310(5748): 679-83.
[http://dx.doi.org/10.1126/science.1115360] [PMID: 16254185]
[34]
Wittmann G, Lechan RM. Prss56 expression in the rodent hypothalamus: Inverse correlation with pro-opiomelanocortin suggests oscillatory gene expression in adult rat tanycytes. J Comp Neurol 2018; 526(15): 2444-61.
[http://dx.doi.org/10.1002/cne.24504] [PMID: 30242838]
[35]
Anfimova PA, Moiseev KY, Porseva VV, Pankrasheva LG, Masliukov PM. mTOR expression in neurons of the rat tuberal hypothalamus in aging. J Evol Biochem Physiol 2022; 58(5): 1464-70.
[http://dx.doi.org/10.1134/S0022093022050167]
[36]
Oomura Y, Aou S, Koyama Y, Fujita I, Yoshimatsu H. Central control of sexual behavior. Brain Res Bull 1988; 20(6): 863-70.
[http://dx.doi.org/10.1016/0361-9230(88)90103-7] [PMID: 3409059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy