Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Discovery of a Potential Allosteric Site in the SARS-CoV-2 Spike Protein and Targeting Allosteric Inhibitor to Stabilize the RBD Down State using a Computational Approach

Author(s): Tong Li, Zheng Yan, Wei Zhou, Qun Liu*, Jinfeng Liu* and Haibing Hua*

Volume 20, Issue 6, 2024

Published on: 09 August, 2023

Page: [784 - 797] Pages: 14

DOI: 10.2174/1573409919666230726142418

Price: $65

conference banner
Abstract

Background: The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide public health crisis. At present, the development of effective drugs and/or related therapeutics is still the most urgent and important task for combating the virus. The viral entry and associated infectivity mainly rely on its envelope spike protein to recognize and bind to the host cell receptor angiotensin-converting enzyme 2 (ACE2) through a conformational switch of the spike receptor binding domain (RBD) from inactive to active state. Thus, it is of great significance to design an allosteric inhibitor targeting spike to lock it in the inactive and ACE2-inaccessible state.

Objective: This study aims to discover the potential broad-spectrum allosteric inhibitors capable of binding and stabilizing the diverse spike variants, including the wild type, Delta, and Omicron, in the inactive RBD down state.

Methods: In this work, we first detected a potential allosteric pocket within the SARS-CoV-2 spike protein. Then, we performed large-scale structure-based virtual screening by targeting the putative allosteric pocket to identify allosteric inhibitors that could stabilize the spike inactive state. Molecular dynamics simulations were further carried out to evaluate the effects of compound binding on the stability of spike RBD.

Results: Finally, we identified three potential allosteric inhibitors, CPD3, CPD5, and CPD6, against diverse SARS-CoV-2 variants, including Wild-type, Delta, and Omicron variants. Our simulation results showed that the three compounds could stably bind the predicted allosteric site and effectively stabilize the spike in the inactive state.

Conclusion: The three compounds provide novel chemical structures for rational drug design targeting spike protein, which is expected to greatly assist in the development of new drugs against SARS-CoV-2.

Keywords: Allosteric site, SARS-CoV-2, spike protein, allosteric inhibitor, RBD down state, ACE2-inaccessible state.

Graphical Abstract
[1]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[2]
World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. 2022. Available from: https://covid19.who.int/
[3]
Rahman, S.; Montero, M.T.V.; Rowe, K.; Kirton, R.; Kunik, F., Jr Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: A review of current evidence. Expert Rev. Clin. Pharmacol., 2021, 14(5), 601-621.
[http://dx.doi.org/10.1080/17512433.2021.1902303] [PMID: 33705239]
[4]
Food and Drug Administration. Coronavirus (COVID-19) | Drugs. 2022. Available from: https://www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-covid-19-drugs
[5]
Tang, J.W.; Tambyah, P.A.; Hui, D.S.C. Emergence of a new SARS-CoV-2 variant in the UK. J. Infect., 2021, 82(4), e27-e28.
[http://dx.doi.org/10.1016/j.jinf.2020.12.024] [PMID: 33383088]
[6]
Boehm, E.; Kronig, I.; Neher, R.A.; Eckerle, I.; Vetter, P.; Kaiser, L. Novel SARS-CoV-2 variants: The pandemics within the pandemic. Clin. Microbiol. Infect., 2021, 27(8), 1109-1117.
[http://dx.doi.org/10.1016/j.cmi.2021.05.022] [PMID: 34015535]
[7]
Tang, J.W.; Toovey, O.T.R.; Harvey, K.N.; Hui, D.S.C. Introduction of the South African SARS-CoV-2 variant 501Y.V2 into the UK. J. Infect., 2021, 82(4), e8-e10.
[http://dx.doi.org/10.1016/j.jinf.2021.01.007] [PMID: 33472093]
[8]
Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; Myers, R.; Campbell, C.N.J.; Amirthalingam, G.; Edmunds, M.; Zambon, M.; Brown, K.E.; Hopkins, S.; Chand, M.; Ramsay, M. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta). Variant. N. Engl. J. Med., 2021, 385(7), 585-594.
[http://dx.doi.org/10.1056/NEJMoa2108891] [PMID: 34289274]
[9]
Lipsitch, M.; Krammer, F.; Regev-Yochay, G.; Lustig, Y.; Balicer, R.D. SARS-CoV-2 breakthrough infections in vaccinated individuals: Measurement, causes and impact. Nat. Rev. Immunol., 2022, 22(1), 57-65.
[http://dx.doi.org/10.1038/s41577-021-00662-4] [PMID: 34876702]
[10]
Artese, A.; Svicher, V.; Costa, G.; Salpini, R.; Di Maio, V.C.; Alkhatib, M.; Ambrosio, F.A.; Santoro, M.M.; Assaraf, Y.G.; Alcaro, S.; Ceccherini-Silberstein, F. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resist. Updat., 2020, 53, 100721.
[http://dx.doi.org/10.1016/j.drup.2020.100721] [PMID: 33132205]
[11]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[12]
Jamalipour Soufi, G.; Iravani, S. Potential inhibitors of SARS-CoV-2: Recent advances. J. Drug Target., 2021, 29(4), 349-364.
[http://dx.doi.org/10.1080/1061186X.2020.1853736] [PMID: 33210953]
[13]
Li, Q.; Yi, D.; Lei, X.; Zhao, J.; Zhang, Y.; Cui, X.; Xiao, X.; Jiao, T.; Dong, X.; Zhao, X.; Zeng, H.; Liang, C.; Ren, L.; Guo, F.; Li, X.; Wang, J.; Cen, S. Corilagin inhibits SARS-CoV-2 replication by targeting viral RNA-dependent RNA polymerase. Acta Pharm. Sin. B, 2021, 11(6), 1555-1567.
[http://dx.doi.org/10.1016/j.apsb.2021.02.011] [PMID: 33614402]
[14]
Maio, N.; Lafont, B.A.P.; Sil, D.; Li, Y.; Bollinger, J.M., Jr; Krebs, C.; Pierson, T.C.; Linehan, W.M.; Rouault, T.A. Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science, 2021, 373(6551), 236-241.
[http://dx.doi.org/10.1126/science.abi5224] [PMID: 34083449]
[15]
Xiong, M.; Su, H.; Zhao, W.; Xie, H.; Shao, Q.; Xu, Y. What coronavirus 3C‐like protease tells us: From structure, substrate selectivity, to inhibitor design. Med. Res. Rev., 2021, 41(4), 1965-1998.
[http://dx.doi.org/10.1002/med.21783] [PMID: 33460213]
[16]
Drayman, N.; DeMarco, J.K.; Jones, K.A.; Azizi, S.A.; Froggatt, H.M.; Tan, K.; Maltseva, N.I.; Chen, S.; Nicolaescu, V.; Dvorkin, S.; Furlong, K.; Kathayat, R.S.; Firpo, M.R.; Mastrodomenico, V.; Bruce, E.A.; Schmidt, M.M.; Jedrzejczak, R.; Muñoz-Alía, M.Á.; Schuster, B.; Nair, V.; Han, K.; O’Brien, A.; Tomatsidou, A.; Meyer, B.; Vignuzzi, M.; Missiakas, D.; Botten, J.W.; Brooke, C.B.; Lee, H.; Baker, S.C.; Mounce, B.C.; Heaton, N.S.; Severson, W.E.; Palmer, K.E.; Dickinson, B.C.; Joachimiak, A.; Randall, G.; Tay, S. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, 2021, 373(6557), 931-936.
[http://dx.doi.org/10.1126/science.abg5827] [PMID: 34285133]
[17]
Petushkova, A.I.; Zamyatnin, A.A., Jr Papain-like proteases as coronaviral drug targets: Current inhibitors, opportunities, and limitations. pharmaceuticals, 2020, 13(10), 277.
[http://dx.doi.org/10.3390/ph13100277] [PMID: 32998368]
[18]
Gao, X.; Qin, B.; Chen, P.; Zhu, K.; Hou, P.; Wojdyla, J.A.; Wang, M.; Cui, S. Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm. Sin. B, 2021, 11(1), 237-245.
[http://dx.doi.org/10.1016/j.apsb.2020.08.014] [PMID: 32895623]
[19]
Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[20]
Costa, C.F.S.; Barbosa, A.J.M.; Dias, A.M.G.C.; Roque, A.C.A. Native, engineered and de novo designed ligands targeting the SARS-CoV-2 spike protein. Biotechnol. Adv., 2022, 59, 107986.
[http://dx.doi.org/10.1016/j.biotechadv.2022.107986] [PMID: 35598822]
[21]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R.W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T.F.; Paredes, R.; Sweeney, D.A.; Short, W.R.; Touloumi, G.; Lye, D.C.; Ohmagari, N.; Oh, M.; Ruiz-Palacios, G.M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M.G.; Atmar, R.L.; Creech, C.B.; Lundgren, J.; Babiker, A.G.; Pett, S.; Neaton, J.D.; Burgess, T.H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H.C. Remdesivir for the treatment of Covid-19 - Final report. N. Engl. J. Med., 2020, 383(19), 1813-1826.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[22]
Mahase, E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ, 2021, 375(2713), n2713.
[http://dx.doi.org/10.1136/bmj.n2713] [PMID: 34750163]
[23]
Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; Du, J.; Pedley, A.; Assaid, C.; Strizki, J.; Grobler, J.A.; Shamsuddin, H.H.; Tipping, R.; Wan, H.; Paschke, A.; Butterton, J.R.; Johnson, M.G.; De Anda, C. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N. Engl. J. Med., 2022, 386(6), 509-520.
[http://dx.doi.org/10.1056/NEJMoa2116044] [PMID: 34914868]
[24]
Stevens, L.J.; Pruijssers, A.J.; Lee, H.W.; Gordon, C.J.; Tchesnokov, E.P.; Gribble, J.; George, A.S.; Hughes, T.M.; Lu, X.; Li, J.; Perry, J.K.; Porter, D.P.; Cihlar, T.; Sheahan, T.P.; Baric, R.S.; Götte, M.; Denison, M.R. Mutations in the SARS-CoV-2 RNA-dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Sci. Transl. Med., 2022, 14(656), eabo0718.
[http://dx.doi.org/10.1126/scitranslmed.abo0718] [PMID: 35482820]
[25]
Gandhi, S.; Klein, J.; Robertson, A.J.; Peña-Hernández, M.A.; Lin, M.J.; Roychoudhury, P.; Lu, P.; Fournier, J.; Ferguson, D.; Mohamed Bakhash, S.A.K.; Catherine Muenker, M.; Srivathsan, A.; Wunder, E.A., Jr; Kerantzas, N.; Wang, W.; Lindenbach, B.; Pyle, A.; Wilen, C.B.; Ogbuagu, O.; Greninger, A.L.; Iwasaki, A.; Schulz, W.L.; Ko, A.I. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: A case report. Nat. Commun., 2022, 13(1), 1547.
[http://dx.doi.org/10.1038/s41467-022-29104-y] [PMID: 35301314]
[26]
Sakamuru, S.; Huang, R.; Xia, M. Use of Tox21 screening data to evaluate the covid-19 drug candidates for their potential toxic effects and related pathways. Front. Pharmacol., 2022, 13, 935399.
[http://dx.doi.org/10.3389/fphar.2022.935399] [PMID: 35910344]
[27]
Fishbane, S.; Hirsch, J.S.; Nair, V. Special considerations for paxlovid treatment among transplant recipients with SARS-CoV-2 infection. Am. J. Kidney Dis., 2022, 79(4), 480-482.
[http://dx.doi.org/10.1053/j.ajkd.2022.01.001] [PMID: 35032591]
[28]
Wen, W.; Chen, C.; Tang, J.; Wang, C.; Zhou, M.; Cheng, Y.; Zhou, X.; Wu, Q.; Zhang, X.; Feng, Z.; Wang, M.; Mao, Q. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19:A meta-analysis. Ann. Med., 2022, 54(1), 516-523.
[http://dx.doi.org/10.1080/07853890.2022.2034936] [PMID: 35118917]
[29]
Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 3-20.
[http://dx.doi.org/10.1038/s41580-021-00418-x] [PMID: 34611326]
[30]
Dai, L.; Gao, G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol., 2021, 21(2), 73-82.
[http://dx.doi.org/10.1038/s41577-020-00480-0] [PMID: 33340022]
[31]
Zhou, T.; Tsybovsky, Y.; Gorman, J.; Rapp, M.; Cerutti, G.; Chuang, G.Y.; Katsamba, P.S.; Sampson, J.M.; Schön, A.; Bimela, J.; Boyington, J.C.; Nazzari, A.; Olia, A.S.; Shi, W.; Sastry, M.; Stephens, T.; Stuckey, J.; Teng, I.T.; Wang, P.; Wang, S.; Zhang, B.; Friesner, R.A.; Ho, D.D.; Mascola, J.R.; Shapiro, L.; Kwong, P.D. Cryo-EM Structures of SARS-CoV-2 spike without and with ACE2 reveal a ph-dependent switch to mediate endosomal positioning of receptor-binding domains. Cell Host Microbe., 2020, 28(6), 867-879.e5.
[http://dx.doi.org/10.1016/j.chom.2020.11.004] [PMID: 33271067]
[32]
Li, T.; Yu, L.; Sun, J.; Liu, J.; He, X. Ionization of D571 Is coupled with sarS-CoV-2 spike Up/Down equilibrium revealing the pH-Dependent allosteric mechanism of receptor-binding domains. J. Phys. Chem. B, 2022, 126(26), 4828-4839.
[http://dx.doi.org/10.1021/acs.jpcb.2c02365] [PMID: 35736566]
[33]
Yi, Y.; Li, J.; Lai, X.; Zhang, M.; Kuang, Y.; Bao, Y.O.; Yu, R.; Hong, W.; Muturi, E.; Xue, H.; Wei, H.; Li, T.; Zhuang, H.; Qiao, X.; Xiang, K.; Yang, H.; Ye, M. Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. J. Adv. Res., 2022, 36, 201-210.
[http://dx.doi.org/10.1016/j.jare.2021.11.012] [PMID: 35116174]
[34]
Yang, J.; Wang, W.; Chen, Z.; Lu, S.; Yang, F.; Bi, Z.; Bao, L.; Mo, F.; Li, X.; Huang, Y.; Hong, W.; Yang, Y.; Zhao, Y.; Ye, F.; Lin, S.; Deng, W.; Chen, H.; Lei, H.; Zhang, Z.; Luo, M.; Gao, H.; Zheng, Y.; Gong, Y.; Jiang, X.; Xu, Y.; Lv, Q.; Li, D.; Wang, M.; Li, F.; Wang, S.; Wang, G.; Yu, P.; Qu, Y.; Yang, L.; Deng, H.; Tong, A.; Li, J.; Wang, Z.; Yang, J.; Shen, G.; Zhao, Z.; Li, Y.; Luo, J.; Liu, H.; Yu, W.; Yang, M.; Xu, J.; Wang, J.; Li, H.; Wang, H.; Kuang, D.; Lin, P.; Hu, Z.; Guo, W.; Cheng, W.; He, Y.; Song, X.; Chen, C.; Xue, Z.; Yao, S.; Chen, L.; Ma, X.; Chen, S.; Gou, M.; Huang, W.; Wang, Y.; Fan, C.; Tian, Z.; Shi, M.; Wang, F.S.; Dai, L.; Wu, M.; Li, G.; Wang, G.; Peng, Y.; Qian, Z.; Huang, C.; Lau, J.Y.N.; Yang, Z.; Wei, Y.; Cen, X.; Peng, X.; Qin, C.; Zhang, K.; Lu, G.; Wei, X. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature, 2020, 586(7830), 572-577.
[http://dx.doi.org/10.1038/s41586-020-2599-8] [PMID: 32726802]
[35]
Yu, F.; Xiang, R.; Deng, X.; Wang, L.; Yu, Z.; Tian, S.; Liang, R.; Li, Y.; Ying, T.; Jiang, S. Receptor-binding domain-specific human neutralizing monoclonal antibodies against SARS-CoV and SARS-CoV-2. Signal Transduct. Target. Ther., 2020, 5(1), 212.
[http://dx.doi.org/10.1038/s41392-020-00318-0] [PMID: 32963228]
[36]
Mahase, E. Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ, 2021, 372(296), n296.
[http://dx.doi.org/10.1136/bmj.n296] [PMID: 33526412]
[37]
Wu, L.; Peng, C.; Yang, Y.; Shi, Y.; Zhou, L.; Xu, Z.; Zhu, W. Exploring the immune evasion of SARS-CoV-2 variant harboring E484K by molecular dynamics simulations. Brief. Bioinform., 2022, 23(1), bbab383.
[http://dx.doi.org/10.1093/bib/bbab383] [PMID: 34553217]
[38]
Helfand, M.; Fiordalisi, C.; Wiedrick, J.; Ramsey, K.L.; Armstrong, C.; Gean, E.; Winchell, K.; Arkhipova-Jenkins, I. Risk for reinfection after SARS-CoV-2: A living, rapid review for american college of physicians practice points on the role of the antibody response in conferring immunity following SARS-CoV-2 infection. Ann. Intern. Med., 2022, 175(4), 547-555.
[http://dx.doi.org/10.7326/M21-4245] [PMID: 35073157]
[39]
Lu, M.; Uchil, P.D.; Li, W.; Zheng, D.; Terry, D.S.; Gorman, J.; Shi, W.; Zhang, B.; Zhou, T.; Ding, S.; Gasser, R.; Prévost, J.; Beaudoin-Bussières, G.; Anand, S.P.; Laumaea, A.; Grover, J.R.; Liu, L.; Ho, D.D.; Mascola, J.R.; Finzi, A.; Kwong, P.D.; Blanchard, S.C.; Mothes, W. Real-time conformational dynamics of SARS-CoV-2 spikes on virus particles. Cell Host Microbe, 2020, 28(6), 880-891.e8.
[http://dx.doi.org/10.1016/j.chom.2020.11.001] [PMID: 33242391]
[40]
Tan, Z.W.; Tee, W.V.; Samsudin, F.; Guarnera, E.; Bond, P.J.; Berezovsky, I.N. Allosteric perspective on the mutability and druggability of the SARS-CoV-2 Spike protein. Structure, 2022, 30(4), 590-607.e4.
[http://dx.doi.org/10.1016/j.str.2021.12.011] [PMID: 35063064]
[41]
Toelzer, C.; Gupta, K.; Yadav, S.K.N.; Borucu, U.; Davidson, A.D.; Kavanagh Williamson, M.; Shoemark, D.K.; Garzoni, F.; Staufer, O.; Milligan, R.; Capin, J.; Mulholland, A.J.; Spatz, J.; Fitzgerald, D.; Berger, I.; Schaffitzel, C. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science, 2020, 370(6517), 725-730.
[http://dx.doi.org/10.1126/science.abd3255] [PMID: 32958580]
[42]
Tong, L.; Wang, L.; Liao, S.; Xiao, X.; Qu, J.; Wu, C.; Zhu, Y.; Tai, W.; Huang, Y.; Wang, P.; Li, L.; Zhang, R.; Xiang, Y.; Cheng, G. A retinol derivative inhibits SARS-CoV-2 infection by interrupting spike-mediated cellular entry. MBio, 2022, 13(4), e01485-e22.
[http://dx.doi.org/10.1128/mbio.01485-22] [PMID: 35862773]
[43]
Wang, Q.; Wang, L.; Zhang, Y.; Zhang, X.; Zhang, L.; Shang, W.; Bai, F. Probing the allosteric inhibition mechanism of a spike protein using molecular dynamics simulations and active compound identifications. J. Med. Chem., 2022, 65(4), 2827-2835.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00320] [PMID: 34415156]
[44]
Wagner, J.R.; Lee, C.T.; Durrant, J.D.; Malmstrom, R.D.; Feher, V.A.; Amaro, R.E. Emerging computational methods for the rational discovery of allosteric drugs. Chem. Rev., 2016, 116(11), 6370-6390.
[http://dx.doi.org/10.1021/acs.chemrev.5b00631] [PMID: 27074285]
[45]
Di Paola, L.; Hadi-Alijanvand, H.; Song, X.; Hu, G.; Giuliani, A. The discovery of a putative allosteric site in the SARS-CoV-2 spike protein Using an integrated structural/dynamic approach. J. Proteome Res., 2020, 19(11), 4576-4586.
[http://dx.doi.org/10.1021/acs.jproteome.0c00273] [PMID: 32551648]
[46]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics., 2017, 54, 5.6.37.
[http://dx.doi.org/10.1002/cpbi.3] [PMID: 27322406]
[47]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[48]
Le Guilloux, V.; Schmidtke, P.; Tuffery, P. Fpocket: An open source platform for ligand pocket detection. BMC Bioinformatics, 2009, 10(1), 168.
[http://dx.doi.org/10.1186/1471-2105-10-168] [PMID: 19486540]
[49]
Liang, J.; Woodward, C.; Edelsbrunner, H. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci., 1998, 7(9), 1884-1897.
[http://dx.doi.org/10.1002/pro.5560070905] [PMID: 9761470]
[50]
Santos-Martins, D.; Solis-Vasquez, L.; Tillack, A.F.; Sanner, M.F.; Koch, A.; Forli, S. Accelerating A UTO D OCK 4 with GPUs and Gradient-Based Local Search. J. Chem. Theory Comput., 2021, 17(2), 1060-1073.
[http://dx.doi.org/10.1021/acs.jctc.0c01006] [PMID: 33403848]
[51]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[52]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[53]
Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem., 2007, 28(6), 1145-1152.
[http://dx.doi.org/10.1002/jcc.20634] [PMID: 17274016]
[54]
Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534.
[http://dx.doi.org/10.1093/nar/gkab294] [PMID: 33950214]
[55]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713.
[http://dx.doi.org/10.1021/acs.jctc.5b00255] [PMID: 26574453]
[56]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[57]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[58]
Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem., 1987, 91(24), 6269-6271.
[http://dx.doi.org/10.1021/j100308a038]
[59]
Sindhikara, D.J.; Kim, S.; Voter, A.F.; Roitberg, A.E. Bad seeds sprout perilous dynamics: Stochastic thermostat induced trajectory synchronization in biomolecules. J. Chem. Theory Comput., 2009, 5(6), 1624-1631.
[http://dx.doi.org/10.1021/ct800573m] [PMID: 26609854]
[60]
Petersen, H.G. Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys., 1995, 103(9), 3668-3679.
[http://dx.doi.org/10.1063/1.470043]
[61]
Pastor, R.W.; Brooks, B.R.; Szabo, A. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys., 1988, 65(6), 1409-1419.
[http://dx.doi.org/10.1080/00268978800101881]
[62]
Bouysset, C.; Fiorucci, S. ProLIF: A library to encode molecular interactions as fingerprints. J. Cheminform., 2021, 13(1), 72.
[http://dx.doi.org/10.1186/s13321-021-00548-6] [PMID: 34563256]
[63]
Roe, D.R.; Cheatham, T.E., III PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[64]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[65]
Weiser, J.; Shenkin, P.S.; Still, W.C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem., 1999, 20(2), 217-230.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A]
[66]
Tian, W.; Li, D.; Zhang, N.; Bai, G.; Yuan, K.; Xiao, H.; Gao, F.; Chen, Y.; Wong, C.C.L.; Gao, G.F. O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an “O-Follow-N” rule. Cell Res., 2021, 31(10), 1123-1125.
[http://dx.doi.org/10.1038/s41422-021-00545-2] [PMID: 34341488]
[67]
Lopez, E.; Barthélémy, M.; Baronti, C.; Masse, S.; Falchi, A.; Durbesson, F.; Vincentelli, R.; de Lamballerie, X.; Charrel, R.; Coutard, B. Endonuclease-based genotyping of the RBM as a method to track the emergence or evolution of SARS-CoV-2 variants. iScience, 2021, 24(11), 103329.
[http://dx.doi.org/10.1016/j.isci.2021.103329] [PMID: 34697603]
[68]
Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; Bye-A-Jee, H.; Coetzee, R.; Cukura, A.; Da Silva, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Castro, L.G.; Garmiri, P.; Georghiou, G.; Gonzales, L.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Jokinen, P.; Joshi, V.; Jyothi, D.; Lock, A.; Lopez, R.; Luciani, A.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Menchi, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Oliveira, C.S.; Pundir, S.; Qi, G.; Raj, S.; Rice, D.; Lopez, M.R.; Saidi, R.; Sampson, J.; Sawford, T.; Speretta, E.; Turner, E.; Tyagi, N.; Vasudev, P.; Volynkin, V.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M-C.; Bolleman, J.; Boutet, E.; Breuza, L.; Casals-Casas, C.; de Castro, E.; Echioukh, K.C.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Keller, G.; Kerhornou, A.; Lara, V.; Le Mercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.B.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Pozzato, M.; Pruess, M.; Rivoire, C.; Sigrist, C.; Sonesson, K.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L-S.; Zhang, J.; Ruch, P.; Teodoro, D. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[69]
Tsueng, G.; Mullen, J.L.; Alkuzweny, M.; Cano, M.; Rush, B.; Haag, E.; Curators, O.; Latif, A.A.; Zhou, X.; Qian, Z.; Hufbauer, E.; Zeller, M.; Andersen, K.G.; Wu, C.; Su, A.I.; Gangavarapu, K.; Hughes, L.D. Outbreak.info research library: A standardized, searchable platform to discover and explore COVID-19 resources. bioRxiv, 2022, 2022, 477133.
[http://dx.doi.org/10.1101/2022.01.20.477133]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy