Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Mini-Review Article

Neutrophil-Lymphocyte Ratio and Red Blood Cell Distribution Width in Patients with Atrial Fibrillation and Rheumatic Valve Disease

Author(s): Rose Mary Ferreira Lisboa da Silva* and Lucas Espindula Borges

Volume 21, Issue 6, 2023

Published on: 22 September, 2023

Page: [367 - 377] Pages: 11

DOI: 10.2174/1570161121666230726123444

Price: $65

conference banner
Abstract

The lifetime risk of developing atrial fibrillation (AF) is 1 in 3 adults, resulting in a prevalence of 2-4%. Rheumatic heart disease (RHD) is a frequent aetiology of valvular heart disease in lowand middle-income countries. Between 21% and 80% of patients with mitral valve disease, especially with stenosis, may have AF. Both these conditions, AF and RHD, present a state of persistent inflammation. In turn, inflammation is a frequent cause of anisocytosis, which can be evidenced through the parameter RDW (red bold cell distribution width). Factors associated with increased RDW are also known as risk factors associated with a higher incidence of AF. RDW may have an independent role in the pathogenesis of AF and the increased propensity of both thromboembolic and bleeding events. Another marker involved in the incidence of AF is the neutrophil-lymphocyte ratio. This is also a marker of oxidative stress and inflammation and is associated with a higher rate of AF recurrence. This review will evaluate these biomarkers and their association with cardiovascular events in patients with AF and RHD. The hypotheses and current debates about the relationship of biomarkers with the severity of chronic valve dysfunction, with acute rheumatic carditis in the paediatric population, and with the presence of thrombus in the left atrium will be discussed.

Keywords: Atrial fibrillation, rheumatic heart disease, red cell distribution width, neutrophil-lymphocyte ratio, inflammation, biomarker.

Next »
Graphical Abstract
[1]
Institute for health metrics and evaluation. 2022. Available from: http://www.healthdata.org/results/gbd_summaries/2019/atrialfibrillation-and-flutter-level-3-cause
[2]
Freedman B, Hindricks G, Banerjee A, et al. World heart federation roadmap on atrial fibrillation - A 2020 update. Glob Heart 2021; 16(1): 41.
[http://dx.doi.org/10.5334/gh.1023] [PMID: 34211827]
[3]
Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2021; 42(5): 373-498.
[http://dx.doi.org/10.1093/eurheartj/ehaa612] [PMID: 32860505]
[4]
Timmis A, Vardas P, Townsend N, et al. European society of cardiology: Cardiovascular disease statistics 2021. Eur Heart J 2022; 43(8): 716-99.
[http://dx.doi.org/10.1093/eurheartj/ehab892] [PMID: 35016208]
[5]
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2022 update: A report from the american heart association. Circulation 2022; 145(8): e153-639.
[http://dx.doi.org/10.1161/CIR.0000000000001052] [PMID: 35078371]
[6]
Emdin CA, Wong CX, Hsiao AJ, et al. Atrial fibrillation as risk factor for cardiovascular disease and death in women compared with men: Systematic review and meta-analysis of cohort studies. BMJ 2016; 532: h7013.
[http://dx.doi.org/10.1136/bmj.h7013] [PMID: 26786546]
[7]
Ghamari SH, Abbasi-Kangevari M, Saeedi Moghaddam S, et al. Rheumatic heart disease is a neglected disease relative to its burden world-wide: Findings from global burden of disease 2019. J Am Heart Assoc 2022; 11(13): e025284.
[http://dx.doi.org/10.1161/JAHA.122.025284] [PMID: 35730651]
[8]
Lv M, Jiang S, Liao D, Lin Z, Chen H, Zhang J. Global burden of rheumatic heart disease and its association with socioeconomic development status, 1990–2019. Eur J Prev Cardiol 2022; 29(10): 1425-34.
[http://dx.doi.org/10.1093/eurjpc/zwac044] [PMID: 35234886]
[9]
Noubiap JJ, Agbor VN, Bigna JJ, Kaze AD, Nyaga UF, Mayosi BM. Prevalence and progression of rheumatic heart disease: A global systematic review and meta-analysis of population-based echocardiographic studies. Sci Rep 2019; 9(1): 17022.
[http://dx.doi.org/10.1038/s41598-019-53540-4] [PMID: 31745178]
[10]
Coffey S, Roberts-Thomson R, Brown A, et al. Global epidemiology of valvular heart disease. Nat Rev Cardiol 2021; 18(12): 853-64.
[http://dx.doi.org/10.1038/s41569-021-00570-z] [PMID: 34172950]
[11]
Marijon E, Mocumbi A, Narayanan K, Jouven X, Celermajer DS. Persisting burden and challenges of rheumatic heart disease. Eur Heart J 2021; 42(34): 3338-48.
[http://dx.doi.org/10.1093/eurheartj/ehab407] [PMID: 34263296]
[12]
Watkins DA, Beaton AZ, Carapetis JR, et al. Rheumatic heart disease worldwide. J Am Coll Cardiol 2018; 72(12): 1397-416.
[http://dx.doi.org/10.1016/j.jacc.2018.06.063] [PMID: 30213333]
[13]
John B, Lau CP. Atrial fibrillation in valvular heart disease. Card Electrophysiol Clin 2021; 13(1): 113-22.
[http://dx.doi.org/10.1016/j.ccep.2020.11.007] [PMID: 33516389]
[14]
Noubiap JJ, Nyaga UF, Ndoadoumgue AL, Nkeck JR, Ngouo A, Bigna JJ. Meta-analysis of the incidence, prevalence, and correlates of atrial fibrillation in rheumatic heart disease. Glob Heart 2020; 15(1): 38.
[http://dx.doi.org/10.5334/gh.807] [PMID: 32923332]
[15]
Wolf PA, Dawber TR, Thomas HE Jr, Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: The fiamingham Study. Neurology 1978; 28(10): 973-7.
[http://dx.doi.org/10.1212/WNL.28.10.973] [PMID: 570666]
[16]
Benz AP, Healey JS, Chin A, et al. Stroke risk prediction in patients with atrial fibrillation with and without rheumatic heart disease. Cardiovasc Res 2022; 118(1): 295-304.
[http://dx.doi.org/10.1093/cvr/cvaa344] [PMID: 33386845]
[17]
Goette A, Kalman JM, Aguinaga L, et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: Definition, characterization, and clinical implication. Europace 2016; 18(10): 1455-90.
[http://dx.doi.org/10.1093/europace/euw161] [PMID: 27402624]
[18]
Nattel S, Harada M. Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives. J Am Coll Cardiol 2014; 63(22): 2335-45.
[http://dx.doi.org/10.1016/j.jacc.2014.02.555] [PMID: 24613319]
[19]
Qiu D, Peng L, Ghista DN, Wong KKL. Left atrial remodeling mechanisms associated with atrial fibrillation. Cardiovasc Eng Technol 2021; 12(3): 361-72.
[http://dx.doi.org/10.1007/s13239-021-00527-w] [PMID: 33650086]
[20]
Chen YC, Voskoboinik A, Gerche AL, Marwick TH, McMullen JR. Prevention of pathological atrial remodeling and atrial fibrillation. J Am Coll Cardiol 2021; 77(22): 2846-64.
[http://dx.doi.org/10.1016/j.jacc.2021.04.012] [PMID: 34082914]
[21]
Cunha PS, Laranjo S, Heijman J, Oliveira MM. The atrium in atrial fibrillation - A clinical review on how to manage atrial fibrotic substrates. Front Cardiovasc Med 2022; 9: 879984.
[http://dx.doi.org/10.3389/fcvm.2022.879984] [PMID: 35859594]
[22]
da Silva RMFL. Influence of inflammation and atherosclerosis in atrial fibrillation. Curr Atheroscler Rep 2017; 19(1): 2.
[http://dx.doi.org/10.1007/s11883-017-0639-0] [PMID: 28102478]
[23]
Scott L Jr, Li N, Dobrev D. Role of inflammatory signaling in atrial fibrillation. Int J Cardiol 2019; 287: 195-200.
[http://dx.doi.org/10.1016/j.ijcard.2018.10.020] [PMID: 30316645]
[24]
Harada M, Nattel S. Implications of inflammation and fibrosis in atrial fibrillation pathophysiology. Card Electrophysiol Clin 2021; 13(1): 25-35.
[http://dx.doi.org/10.1016/j.ccep.2020.11.002] [PMID: 33516403]
[25]
Sharma S, Sharma G, Hote M, et al. Light and electron microscopic features of surgically excised left atrial appendage in rheumatic heart disease patients with atrial fibrillation and sinus rhythm. Cardiovasc Pathol 2014; 23(6): 319-26.
[http://dx.doi.org/10.1016/j.carpath.2014.07.008] [PMID: 25216788]
[26]
Xue XD, Huang JH, Wang HS. Angiotensin II activates signal transducers and activators of transcription 3 via Rac1 in the atrial tissue in permanent atrial fibrillation patients with rheumatic heart disease. Cell Biochem Biophys 2015; 71(1): 205-13.
[http://dx.doi.org/10.1007/s12013-014-0186-z] [PMID: 25151145]
[27]
Zhang L, Zhang N, Tang X, Liu F, Luo S, Xiao H. Increased α-actinin-2 expression in the atrial myocardium of patients with atrial fibrillation related to rheumatic heart disease. Cardiology 2016; 135(3): 151-9.
[http://dx.doi.org/10.1159/000446362] [PMID: 27344599]
[28]
Chen JQ, Guo YS, Chen Q, et al. TGFβ1 and HGF regulate CTGF expression in human atrial fibroblasts and are involved in atrial remodelling in patients with rheumatic heart disease. J Cell Mol Med 2019; 23(4): 3032-9.
[http://dx.doi.org/10.1111/jcmm.14165] [PMID: 30697920]
[29]
Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol 2017; 3(5): 425-35.
[http://dx.doi.org/10.1016/j.jacep.2017.03.002] [PMID: 29759598]
[30]
Ma J, Chen Q, Ma S. Left atrial fibrosis in atrial fibrillation: Mechanisms, clinical evaluation and management. J Cell Mol Med 2021; 25(6): 2764-75.
[http://dx.doi.org/10.1111/jcmm.16350] [PMID: 33576189]
[31]
Mei B, Liu H, Yang S, et al. Long non-coding RNA expression profile in permanent atrial fibrillation patients with rheumatic heart disease. Eur Rev Med Pharmacol Sci 2018; 22(20): 6940-7.
[http://dx.doi.org/10.26355/eurrev_201810_16165] [PMID: 30402860]
[32]
Hu M, Wei X, Li M, et al. CircRNAs expression profile of persistant atrial fibrillation in patient with rheumatic heart disease. Anatol J Cardiol 2018; 21(1): 2-10.
[http://dx.doi.org/10.14744/AnatolJCardiol.2018.35902] [PMID: 30587718]
[33]
Nader J, Metzinger L, Maitrias P, Caus T, Metzinger-Le Meuth V. Aortic valve calcification in the era of non-coding RNAs: The revolution to come in aortic stenosis management? Noncoding RNA Res 2020; 5(2): 41-7.
[http://dx.doi.org/10.1016/j.ncrna.2020.02.005] [PMID: 32195449]
[34]
Selcuk MT, Selcuk H, Maden O, et al. Relationship between inflammation and atrial fibrillation in patients with isolated rheumatic mitral stenosis. J Heart Valve Dis 2007; 16(5): 468-74.
[PMID: 17944117]
[35]
Liu Q, Qiao WH, Li FF, Deng P, Hu ZW. The role of interleukin-13 in patients with rheumatic valvular fibrosis: A clinical and histological study. J Heart Valve Dis 2015; 24(4): 496-501.
[PMID: 26897823]
[36]
Sharma G, Shetkar S, Bhasin A, et al. High sensitive Creactive protein and interleukin 6 in atrial fibrillation with rheumatic mitral stenosis from Indian cohort. Indian Heart J 2017; 69(4): 505-11.
[http://dx.doi.org/10.1016/j.ihj.2016.12.006] [PMID: 28822519]
[37]
Shiba M, Sugano Y, Ikeda Y, et al. Presence of increased inflammatory infiltrates accompanied by activated dendritic cells in the left atrium in rheumatic heart disease. PLoS One 2018; 13(9): e0203756.
[http://dx.doi.org/10.1371/journal.pone.0203756] [PMID: 30261069]
[38]
Sharma G, Ghati N, Sharique M, et al. Role of inflammation in initiation and maintenance of atrial fibrillation in rheumatic mitral stenosis - An analytical cross‐sectional study. J Arrhythm 2020; 36(6): 1007-15.
[http://dx.doi.org/10.1002/joa3.12428] [PMID: 33335617]
[39]
Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Med J 2021; 122(7): 474-88.
[http://dx.doi.org/10.4149/BLL_2021_078] [PMID: 34161115]
[40]
Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on neutrophil function in severe inflammation. Front Immunol 2018; 9: 2171.
[http://dx.doi.org/10.3389/fimmu.2018.02171] [PMID: 30356867]
[41]
Girardot T, Rimmelé T, Venet F, Monneret G. Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis 2017; 22(2): 295-305.
[http://dx.doi.org/10.1007/s10495-016-1325-3] [PMID: 27812767]
[42]
Velardi E, Tsai JJ, van den Brink MRM. T cell regeneration after immunological injury. Nat Rev Immunol 2021; 21(5): 277-91.
[http://dx.doi.org/10.1038/s41577-020-00457-z] [PMID: 33097917]
[43]
Angkananard T, Anothaisintawee T, McEvoy M, Attia J, Thakkinstian A. Neutrophil lymphocyte ratio and cardiovascular disease risk: A systematic review and meta-analysis. BioMed Res Int 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/2703518] [PMID: 30534554]
[44]
Afari ME, Bhat T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: An update. Expert Rev Cardiovasc Ther 2016; 14(5): 573-7.
[http://dx.doi.org/10.1586/14779072.2016.1154788] [PMID: 26878164]
[45]
Fest J, Ruiter TR, Groot Koerkamp B, et al. The neutrophil-to-lymphocyte ratio is associated with mortality in the general population: The rotterdam study. Eur J Epidemiol 2019; 34(5): 463-70.
[http://dx.doi.org/10.1007/s10654-018-0472-y] [PMID: 30569368]
[46]
Adamstein NH, MacFadyen JG, Rose LM, et al. The neutrophil–lymphocyte ratio and incident atherosclerotic events: Analyses from five contemporary randomized trials. Eur Heart J 2021; 42(9): 896-903.
[http://dx.doi.org/10.1093/eurheartj/ehaa1034] [PMID: 33417682]
[47]
Shao Q, Chen K, Rha SW, Lim HE, Li G, Liu T. Usefulness of neutrophil/lymphocyte ratio as a predictor of atrial fibrillation: A meta-analysis. Arch Med Res 2015; 46(3): 199-206.
[http://dx.doi.org/10.1016/j.arcmed.2015.03.011] [PMID: 25980945]
[48]
Wu S, Yang Y, Zhu J, et al. Impact of baseline neutrophil-to-lymphocyte ratio on long-term prognosis in patients with atrial fibrillation. Angiology 2021; 72(9): 819-28.
[http://dx.doi.org/10.1177/00033197211000495] [PMID: 33719617]
[49]
Berkovitch A, Younis A, Grossman Y, et al. Relation of neutrophil to lymphocyte ratio to risk of incident atrial fibrillation. Am J Cardiol 2019; 123(3): 396-401.
[http://dx.doi.org/10.1016/j.amjcard.2018.10.036] [PMID: 30502048]
[50]
Kawasaki M, Meulendijks ER, van den Berg NWE, et al. Neutrophil degranulation interconnects over-represented biological processes in atrial fibrillation. Sci Rep 2021; 11(1): 2972.
[http://dx.doi.org/10.1038/s41598-021-82533-5] [PMID: 33536523]
[51]
Bright PD, Mayosi BM, Martin WJ. An immunological perspective on rheumatic heart disease pathogenesis: More questions than answers. Heart 2016; 102(19): 1527-32.
[http://dx.doi.org/10.1136/heartjnl-2015-309188] [PMID: 27260192]
[52]
Dooley LM, Ahmad TB, Pandey M, Good MF, Kotiw M. Rheumatic heart disease: A review of the current status of global research activity. Autoimmun Rev 2021; 20(2): 102740.
[http://dx.doi.org/10.1016/j.autrev.2020.102740] [PMID: 33333234]
[53]
Cunningham MW. Molecular mimicry, autoimmunity, and infection: The cross-reactive antigens of group a streptococci and their sequelae. Microbiol Spectr 2019; 7(4): 10.
[http://dx.doi.org/10.1128/microbiolspec.GPP3-0045-2018]
[54]
Sharma N, Toor D. Interleukin-10: Role in increasing susceptibility and pathogenesis of rheumatic fever/rheumatic heart disease. Cytokine 2017; 90: 169-76.
[http://dx.doi.org/10.1016/j.cyto.2016.11.010] [PMID: 27918954]
[55]
Middleton FM, McGregor R, Webb RH, Wilson NJ, Moreland NJ. Cytokine imbalance in acute rheumatic fever and rheumatic heart disease: Mechanisms and therapeutic implications. Autoimmun Rev 2022; 21(12): 103209.
[http://dx.doi.org/10.1016/j.autrev.2022.103209] [PMID: 36228998]
[56]
Kaya MG, Akpek M, Elcik D, et al. Relation of left atrial spontaneous echocardiographic contrast in patients with mitral stenosis to inflammatory markers. Am J Cardiol 2012; 109(6): 851-5.
[http://dx.doi.org/10.1016/j.amjcard.2011.11.010] [PMID: 22189011]
[57]
Polat N, Yildiz A, Yuksel M, et al. Association of neutrophillymphocyte ratio with the presence and severity of rheumatic mitral valve stenosis. Clin Appl Thromb Hemost 2014; 20(8): 793-8.
[http://dx.doi.org/10.1177/1076029613514131] [PMID: 24335245]
[58]
Öztürk D, Erturk M, Celık O, et al. The role of the neutrophil/lymphocyte ratio in patients with rheumatic mitral stenosis as an indicator of spontaneous echocardiographic contrast. Kardiol Pol 2014; 72(10): 969-76.
[http://dx.doi.org/10.5603/KP.a2014.0093] [PMID: 24846361]
[59]
Akboğa MK, Abacı A, Canpolat U, et al. [Association of red blood cell distribution width with presence and severity of rheumatic mitral valve stenosis]. Turk Kardiyol Dern Ars 2015; 43(3): 227-33.
[http://dx.doi.org/10.5543/tkda.2015.60533]
[60]
Akboğa MK, Akyel A, Şahinarslan A, et al. Neutrophil-to-lymphocyte ratio is increased in patients with rheumatic mitral valve stenosis? Anatol J Cardiol 2015; 15(5): 380-4.
[http://dx.doi.org/10.5152/akd.2014.5399] [PMID: 25430404]
[61]
Baysal E, Burak C, Cay S, et al. The neutrophil to lymphocyte ratio is associated with severity of rheumatic mitral valve stenosis. J Blood Med 2015; 6: 151-6.
[http://dx.doi.org/10.2147/JBM.S82423] [PMID: 25999773]
[62]
Ozal E, Belen E, Ozgun Cakmak E, Durmus G, Pusuroglu H. The presence of left atrial thrombus is associated with the neutrophil-tolymphocyte ratio in patients with rheumatic mitral valve stenosis. J Heart Valve Dis 2016; 25(2): 198-202.
[PMID: 27989067]
[63]
Separham A, Pourafkari L, Bodagh H, Ghaffari S, Aslanabadi N, Nader ND. Predicting outcome after percutaneous balloon mitral commissurotomy: Role of neutrophil-lymphocyte ratio. Herz 2017; 42(5): 509-14.
[http://dx.doi.org/10.1007/s00059-016-4488-3]
[64]
Çelik SF, Çelik E. The neutrophil-to-lymphocyte ratio and mean platelet volume can be associated with severity of valvular involvement in patients with acute rheumatic carditis. Cardiovasc J Afr 2018; 29(5): 296-300.
[http://dx.doi.org/10.5830/CVJA-2018-031] [PMID: 30198547]
[65]
Giray D, Hallioglu O. Are there any novel markers in acute rheumatic fever: Neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and monocyte-to-lymphocyte ratio. Cardiol Young 2020; 30(5): 717-21.
[http://dx.doi.org/10.1017/S104795112000089X] [PMID: 32364093]
[66]
Aryani IGAD, Yantie NPVK, Gunawijaya E, Gustawan IW. Correlation between neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and mean platelet volume with severity of carditis in children with rheumatic fever. Cardiol Young 2021; 1-5: 1-5.
[http://dx.doi.org/10.1017/S1047951121004194] [PMID: 34645530]
[67]
Wang Z, Korantzopoulos P, Roever L, Liu T. Red blood cell distribution width and atrial fibrillation. Biomarkers Med 2020; 14(13): 1289-98.
[http://dx.doi.org/10.2217/bmm-2020-0041] [PMID: 33021384]
[68]
Lippi G, Cervellin G, Sanchis-Gomar F. Red blood cell distribution width: A marker of anisocytosis potentially associated with atrial fibrillation. World J Cardiol 2019; 11(12): 292-304.
[http://dx.doi.org/10.4330/wjc.v11.i12.292]
[69]
Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci 2015; 52(2): 86-105.
[http://dx.doi.org/10.3109/10408363.2014.992064] [PMID: 25535770]
[70]
Alcaíno H, Pozo J, Pavez M, Toledo H. Red cell distribution width as a risk marker in patients with cardiovascular diseases. Rev Med Chil 2016; 144(5): 634-42.
[http://dx.doi.org/10.4067/S0034-98872016000500012]
[71]
Shao Q, Korantzopoulos P, Letsas KP, et al. Red blood cell distribution width as a predictor of atrial fibrillation. J Clin Lab Anal 2018; 32(5): e22378.
[http://dx.doi.org/10.1002/jcla.22378] [PMID: 29315856]
[72]
Felker GM, Allen LA, Pocock SJ, et al. Red cell distribution width as a novel prognostic marker in heart failure: Data from the CHARM Program and the Duke Databank. J Am Coll Cardiol 2007; 50(1): 40-7.
[http://dx.doi.org/10.1016/j.jacc.2007.02.067] [PMID: 17601544]
[73]
Fukuta H, Ohte N, Mukai S, et al. Elevated plasma levels of B-type natriuretic Peptide but not Creactive protein are associated with higher red cell distribution width in patients with coronary artery disease. Int Heart J 2009; 50(3): 301-12.
[http://dx.doi.org/10.1536/ihj.50.301] [PMID: 19506334]
[74]
Lippi G, Filippozzi L, Montagnana M, et al. Clinical usefulness of measuring red blood cell distribution width on admission in patients with acute coronary syndromes. Clin Chem Lab Med 2009; 47(3): 353-7.
[http://dx.doi.org/10.1515/CCLM.2009.066] [PMID: 19676148]
[75]
Nabais S, Losa N, Gaspar A, et al. Association between red blood cell distribution width and outcomes at six months in patients with acute coronary syndromes. Rev Port Cardiol 2009; 28(9): 905-24.
[PMID: 19998803]
[76]
Fatemi O, Torguson R, Chen F, et al. Red cell distribution width as a bleeding predictor after percutaneous coronary intervention. Am Heart J 2013; 166(1): 104-9.
[http://dx.doi.org/10.1016/j.ahj.2013.04.006] [PMID: 23816028]
[77]
He W, Jia J, Chen J, et al. Comparison of prognostic value of red cell distribution width and NT-proBNP for short-term clinical outcomes in acute heart failure patients. Int Heart J 2014; 55(1): 58-64.
[http://dx.doi.org/10.1536/ihj.13-172] [PMID: 24463920]
[78]
Jenei ZM, Förhécz Z, Gombos T, Pozsonyi Z, Jánoskuti L, Prohászka Z. Red cell distribution width as predictive marker in CHF: Testing of model performance by reclassification methods. Int J Cardiol 2014; 174(3): 783-5.
[http://dx.doi.org/10.1016/j.ijcard.2014.04.107] [PMID: 24768398]
[79]
Dai Y, Konishi H, Takagi A, Miyauchi K, Daida H. Red cell distribution width predicts short- and long-term outcomes of acute congestive heart failure more effectively than hemoglobin. Exp Ther Med 2014; 8(2): 600-6.
[http://dx.doi.org/10.3892/etm.2014.1755] [PMID: 25009627]
[80]
Ye Z, Smith C, Kullo IJ. Usefulness of red cell distribution width to predict mortality in patients with peripheral artery disease. Am J Cardiol 2011; 107(8): 1241-5.
[http://dx.doi.org/10.1016/j.amjcard.2010.12.023] [PMID: 21296321]
[81]
Valenti AC, Vitolo M, Imberti JF, Malavasi VL, Boriani G. Red cell distribution width: A routinely available biomarker with important clinical implications in patients with atrial fibrillation. Curr Pharm Des 2021; 27(37): 3901-12.
[http://dx.doi.org/10.2174/1381612827666210211125847] [PMID: 33573547]
[82]
Kurt M, Tanboga IH, Buyukkaya E, Karakas MF, Akçay AB, Sen N. Relation of red cell distribution width with CHA2DS2-VASc score in patients with nonvalvular atrial fibrillation. Clin Appl Thromb Hemost 2014; 20(7): 687-92.
[http://dx.doi.org/10.1177/1076029613478157] [PMID: 23430929]
[83]
Lee KH, Park HW, Cho JG, et al. Red cell distribution width as a novel predictor for clinical outcomes in patients with paroxysmal atrial fibrillation. Europace 2015; 17 (Suppl. 2): ii83-8.
[http://dx.doi.org/10.1093/europace/euv210] [PMID: 26842121]
[84]
Cha MJ, Lee HS, Kim HM, Jung JH, Choi EK, Oh S. Association between red cell distribution width and thromboembolic events in patients with atrial fibrillation. Eur J Intern Med 2017; 46: 41-6.
[http://dx.doi.org/10.1016/j.ejim.2017.07.028] [PMID: 28781193]
[85]
Saliba W, Barnett-Griness O, Elias M, Rennert G. The association between red cell distribution width and stroke in patients with atrial fibrillation. Am J Med 2015; 128(2): 192.e11-8.
[http://dx.doi.org/10.1016/j.amjmed.2014.09.020] [PMID: 25447618]
[86]
Li H, Gu Y, Liu M, et al. The relationship between red blood cell distribution width and atrial fibrillation in Asian population: A crosssectional study. Pacing Clin Electrophysiol 2019; 42(9): 1197-203.
[http://dx.doi.org/10.1111/pace.13776] [PMID: 31397913]
[87]
Ozsin KK, Sanri US, Toktas F, Yavuz S. Relationship between red cell distribution width and mean platelet volume with new onset atrial fibrillation afteroff-pump coronary artery bypass grafting. Bratisl Med J 2018; 119(6): 335-40.
[http://dx.doi.org/10.4149/BLL_2018_063] [PMID: 29947232]
[88]
Karataş MB, Çanga Y, İpek G, et al. Association of admission serum laboratory parameters with new-onset atrial fibrillation after a primary percutaneous coronary intervention. Coron Artery Dis 2016; 27(2): 128-34.
[http://dx.doi.org/10.1097/MCA.0000000000000333] [PMID: 26693808]
[89]
Güngör B, Özcan KS, Erdinler İ, et al. Elevated levels of RDW is associated with non-valvular atrial fibrillation. J Thromb Thrombolysis 2014; 37(4): 404-10.
[http://dx.doi.org/10.1007/s11239-013-0957-1] [PMID: 23821044]
[90]
Patel KV, Mohanty JG, Kanapuru B, Hesdorffer C, Ershler WB, Rifkind JM. Association of the red cell distribution width with red blood cell deformability. Adv Exp Med Biol 2013; 765: 211-6.
[http://dx.doi.org/10.1007/978-1-4614-4989-8_29] [PMID: 22879035]
[91]
Mesquita TRR, Zhang R, de Couto G, et al. Mechanisms of atrial fibrillation in aged rats with heart failure with preserved ejection fraction. Heart Rhythm 2020; 17(6): 1025-33.
[http://dx.doi.org/10.1016/j.hrthm.2020.02.007] [PMID: 32068183]
[92]
Kendzerska T, Gershon AS, Atzema C, et al. Sleep apnea increases the risk of new hospitalized atrial fibrillation. Chest 2018; 154(6): 1330-9.
[http://dx.doi.org/10.1016/j.chest.2018.08.1075] [PMID: 30243978]
[93]
Kucuk M, Ozdemir R, Karadeniz C, et al. Red blood cell distribution width: Can it be a predictive marker for long-term valvular involvement in children with acute rheumatic carditis? Int J Lab Hematol 2016; 38(5): 569-75.
[http://dx.doi.org/10.1111/ijlh.12544] [PMID: 27435353]
[94]
Karpuz D, Giray D, Ozyurt A, Bozlu G, Unal S, Hallioglu O. Can whole-blood parameters be used in follow-up of children with rheumatic valvular heart disease? Cardiol Young 2017; 27(4): 764-9.
[http://dx.doi.org/10.1017/S1047951116001281] [PMID: 28462757]
[95]
Slehria T, Hendrickson MJ, Sivaraj K, et al. Trends in percutaneous balloon mitral valvuloplasty complications for mitral stenosis in the United States (the national inpatient sample [2008 to 2018]). Am J Cardiol 2022; 182: 77-82.
[http://dx.doi.org/10.1016/j.amjcard.2022.07.020] [PMID: 36058749]
[96]
Abu Rmilah AA, Tahboub MA, Alkurashi AK, et al. Efficacy and safety of percutaneous mitral balloon valvotomy in patients with mitral stenosis: A systematic review and meta-analysis. Int J Cardiol Heart Vasc 2021; 33: 100765.
[http://dx.doi.org/10.1016/j.ijcha.2021.100765] [PMID: 33889711]
[97]
Liu B, Wang Y, Liu Y, Wu P, Li T. Effects of percutaneous balloon mitral valvuloplasty in patients with mitral stenosis and atrial fibrillation: A systematic review and meta-analysis. Acta Cardiol 2022; 77(10): 890-9.
[http://dx.doi.org/10.1080/00015385.2021.1989837] [PMID: 34866553]
[98]
Turi ZG. The 40th anniversary of percutaneous balloon valvuloplasty for mitral stenosis: Current status. Struct Heart 2022; 6(5): 100087.
[http://dx.doi.org/10.1016/j.shj.2022.100087] [PMID: 37288059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy