Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Physalin B Reduces Tau Phosphorylation and Cell Apoptosis in HEK293 Cells by Activating FoxO1

Author(s): Wei Zhang, Yating Shi, Mingti Lv, Yimin Zhang, Wei Ren, Ruling Shi, Hecheng Wang* and Linlin Shan

Volume 17, 2024

Published on: 24 August, 2023

Article ID: e210723218991 Pages: 10

DOI: 10.2174/1874467217666230721124057

open_access

conference banner
Abstract

Background: Physalin B (PB) is one of the main active compounds of Solanaceae plants, with a wide range of biological activities. PB reportedly has the potential to treat Alzheimer’s disease (AD).

Objective: In this study, we investigated the effect of PB on Tau phosphorylation and cell apoptosis using Tau-expressing HEK293 cells (HEK293/Tau) as a cellular model.

Methods: The optimum concentration of PB to treat HEK293/Tau cells was determined using the CCK-8 assay. Additionally, the expression of FoxO1, Tau-5, p-Tau (T231, S262, and S404), ERK, p-ERK, GSK-3β, and p-GSK-3β was detected using western blotting to determine the effect of PB on Tau phosphorylation. The apoptosis rate was detected using flow cytometry, and the expression of Bax and Bcl-2 was detected using western blotting and verified using real-time quantitative polymerase chain reaction (RT-qPCR). Moreover, cells were transfected with FoxO1 siRNA to downregulate FoxO1 expression, and the expression of the above-mentioned proteins was detected to verify the effect of PB on Tau phosphorylation and cell apoptosis.

Results: After 24 h of PB treatment, the phosphorylation levels of Tau at S404, S262, and T231 sites decreased significantly, and the activities of GSK-3β and ERK were inhibited. PB also reduced cell apoptosis by reducing the expression of Bax and increasing the expression of Bcl-2. In addition, PB decreased Tau phosphorylation and cell apoptosis by upregulating FoxO1.

Conclusion: The natural compound PB exhibited a protective effect in the AD cell model by increasing FoxO1 expression and reducing Tau phosphorylation and cell apoptosis.

Keywords: Physalin B, Tau phosphorylation, Apoptosis, FoxO1, Alzheimer’s disease, AD cell model.

[1]
Cai, Z.; Zhao, B.; Li, K.; Zhang, L.; Li, C.; Quazi, S.H.; Tan, Y. Mammalian target of rapamycin: A valid therapeutic target through the autophagy pathway for alzheimer’s disease? J. Neurosci. Res., 2012, 90(6), 1105-1118.
[http://dx.doi.org/10.1002/jnr.23011] [PMID: 22344941]
[2]
Brookmeyer, R.; Kawas, C.H.; Abdallah, N.; Paganini-Hill, A.; Kim, R.C.; Corrada, M.M. Impact of interventions to reduce Alzheimer’s disease pathology on the prevalence of dementia in the oldest‐old. Alzheimers Dement., 2016, 12(3), 225-232.
[http://dx.doi.org/10.1016/j.jalz.2016.01.004] [PMID: 26900132]
[3]
Breijyeh, Z.; Karaman, R. Comprehensive review on alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[4]
Vogel, J.; Anand, V.S.; Ludwig, B.; Nawoschik, S.; Dunlop, J.; Braithwaite, S.P. The JNK pathway amplifies and drives subcellular changes in tau phosphorylation. Neuropharmacology, 2009, 57(5-6), 539-550.
[http://dx.doi.org/10.1016/j.neuropharm.2009.07.021] [PMID: 19628001]
[5]
Ramanan, V.K.; Heckman, M.G.; Lesnick, T.G.; Przybelski, S.A.; Cahn, E.J.; Kosel, M.L.; Murray, M.E.; Mielke, M.M.; Botha, H.; Graff-Radford, J.; Jones, D.T.; Lowe, V.J.; Machulda, M.M.; Jack, C.R., Jr; Knopman, D.S.; Petersen, R.C.; Ross, O.A.; Vemuri, P. Tau polygenic risk scoring: A cost-effective aid for prognostic counseling in Alzheimer’s disease. Acta Neuropathol., 2022, 143(5), 571-583.
[http://dx.doi.org/10.1007/s00401-022-02419-2] [PMID: 35412102]
[6]
Weingarten, M.D.; Lockwood, A.H.; Hwo, S.Y.; Kirschner, M.W. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci., 1975, 72(5), 1858-1862.
[http://dx.doi.org/10.1073/pnas.72.5.1858] [PMID: 1057175]
[7]
Tapia-Rojas, C.; Cabezas-Opazo, F.; Deaton, C. A.; Vergara, E. H.; Johnson, G. V. W.; Quintanilla, R. A. It's all about tau. Prog. Neurobiol., 2019, 175, 54-76.
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.005]
[8]
Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P. O.; Devred, F.; Landrieu, I. Role of tau as a microtubule-associated protein: Structural and functional aspects. Front. Aging. Neurosc., 2019, 11, 204.
[http://dx.doi.org/10.3389/fnagi.2019.00204]
[9]
Potente, M.; Urbich, C.; Sasaki, K.; Hofmann, W.K.; Heeschen, C.; Aicher, A.; Kollipara, R.; DePinho, R.A.; Zeiher, A.M.; Dimmeler, S. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest., 2005, 115(9), 2382-2392.
[http://dx.doi.org/10.1172/JCI23126] [PMID: 16100571]
[10]
Rao, R.R.; Li, Q.; Bupp, M.R.G.; Shrikant, P.A. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity, 2012, 36(3), 374-387.
[http://dx.doi.org/10.1016/j.immuni.2012.01.015] [PMID: 22425248]
[11]
Liu, L.; Bai, J.; Liu, F.; Xu, Y.; Zhao, M.; Zhao, C.; Zhou, Z. Cross-talking pathways of forkhead Box O1 (FOXO1) are involved in the pathogenesis of alzheimer’s disease and huntington’s disease. Oxid. Med. Cell. Longev., 2022, 2022, 1-14.
[http://dx.doi.org/10.1155/2022/7619255] [PMID: 35154571]
[12]
Wu, Q.; Yuan, X.; Bai, J.; Han, R.; Li, Z.; Zhang, H.; Xiu, R. MicroRNA-181a protects against pericyte apoptosis via directly targeting FOXO1: Implication for ameliorated cognitive deficits in APP/PS1 mice. Aging, 2019, 11(16), 6120-6133.
[http://dx.doi.org/10.18632/aging.102171] [PMID: 31467256]
[13]
Wei, C.; Li, S.; Zhu, Y.; Chen, W.; Li, C.; Xu, R. Network pharmacology identify intersection genes of quercetin and Alzheimer’s disease as potential therapeutic targets. Front. Aging Neurosci., 2022, 14, 902092.
[http://dx.doi.org/10.3389/fnagi.2022.902092] [PMID: 36081896]
[14]
Jenwitheesuk, A.; Boontem, P.; Wongchitrat, P.; Tocharus, J.; Mukda, S.; Govitrapong, P. Melatonin regulates the aging mouse hippocampal homeostasis via the sirtuin1-FOXO1 pathway. EXCLI J., 2017, 16, 340-353.
[http://dx.doi.org/10.17179/excli2016-852] [PMID: 28507478]
[15]
Kuang, X.; Chen, Y.S.; Wang, L.F.; Li, Y.J.; Liu, K.; Zhang, M.X.; Li, L.J.; Chen, C.; He, Q.; Wang, Y.; Du, J.R. Klotho upregulation contributes to the neuroprotection of ligustilide in an Alzheimer’s disease mouse model. Neurobiol. Aging, 2014, 35(1), 169-178.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.07.019] [PMID: 23973442]
[16]
Xia, E.; Xu, F.; Hu, C.; Kumal, J.P.P.; Tang, X.; Mao, D.; Li, Y.; Wu, D.; Zhang, R.; Wu, S.; Sun, L. Young blood rescues the cognition of alzheimer’s model mice by restoring the hippocampal cholinergic circuit. Neuroscience, 2019, 417, 57-69.
[http://dx.doi.org/10.1016/j.neuroscience.2019.08.010] [PMID: 31404586]
[17]
Zhang, W.; Bai, S.; Yang, J.; Zhang, Y.; Liu, Y.; Nie, J.; Meng, D.; Shi, R.; Yao, Z.; Wang, M.; Wang, H.; Li, C. FoxO1 overexpression reduces Aβ production and tau phosphorylation in vitro. Neurosci. Lett., 2020, 738, 135322.
[http://dx.doi.org/10.1016/j.neulet.2020.135322] [PMID: 32860886]
[18]
Akram, M.; Nawaz, A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen. Res., 2017, 12(4), 660-670.
[http://dx.doi.org/10.4103/1673-5374.205108] [PMID: 28553349]
[19]
Wu, J.; Zhao, J.; Zhang, T.; Gu, Y.; Khan, I.A.; Zou, Z.; Xu, Q. Naturally occurring physalins from the genus Physalis: A review. Phytochemistry, 2021, 191, 112925.
[http://dx.doi.org/10.1016/j.phytochem.2021.112925] [PMID: 34487922]
[20]
Yang, Y.K.; Xie, S.; Xu, W.; Nian, Y.; Liu, X.L.; Peng, X.R.; Ding, Z.T.; Qiu, M.H. Six new physalins from Physalis alkekengi var. franchetii and their cytotoxicity and antibacterial activity. Fitoterapia, 2016, 112, 144-152.
[http://dx.doi.org/10.1016/j.fitote.2016.05.010] [PMID: 27215128]
[21]
Zhang, Q.; Xu, N.; Hu, X.; Zheng, Y. Anti-colitic effects of Physalin B on dextran sodium sulfate-induced BALB/c mice by suppressing multiple inflammatory signaling pathways. J. Ethnopharmacol., 2020, 259, 112956.
[http://dx.doi.org/10.1016/j.jep.2020.112956] [PMID: 32442587]
[22]
Castro, D.P.; Moraes, C.S.; Gonzalez, M.S.; Ribeiro, I.M.; Tomassini, T.C.B.; Azambuja, P.; Garcia, E.S. Physalin B inhibits Trypanosoma cruzi infection in the gut of Rhodnius prolixus by affecting the immune system and microbiota. J. Insect Physiol., 2012, 58(12), 1620-1625.
[http://dx.doi.org/10.1016/j.jinsphys.2012.10.001] [PMID: 23085484]
[23]
Sá, M.S.; de Menezes, M.N.; Krettli, A.U.; Ribeiro, I.M.; Tomassini, T.C.B.; Ribeiro dos Santos, R.; de Azevedo, W.F., Jr; Soares, M.B.P. Antimalarial activity of physalins B, D, F, and G. J. Nat. Prod., 2011, 74(10), 2269-2272.
[http://dx.doi.org/10.1021/np200260f] [PMID: 21954931]
[24]
Weiskirchen, R. Physalin B attenuates liver fibrosis via suppressing LAP2α‐HDAC1 mediated deacetylation of glioma‐associated oncogene 1 and hepatic stellate cell activation. Br. J. Pharmacol., 2021, 178(20), 4045-4047.
[http://dx.doi.org/10.1111/bph.15588] [PMID: 34409595]
[25]
Zhang, W.; Bai, S.S.; Zhang, Q.; Shi, R.L.; Wang, H.C.; Liu, Y.C.; Ni, T.J.; Wu, Y.; Yao, Z.Y.; Sun, Y.; Wang, M.Y. Physalin B reduces Aβ secretion through down-regulation of BACE1 expression by activating FoxO1 and inhibiting STAT3 phosphorylation. Chin. J. Nat. Med., 2021, 19(10), 732-740.
[http://dx.doi.org/10.1016/S1875-5364(21)60090-0] [PMID: 34688463]
[26]
Fan, J.J.; Zheng, X.L.; Xia, H.; Tong, Y.C.; Liu, X.; Sun, Y. Chemical constituents from whole herb of Physalis angulata and their cytotoxic activity. Chin. Tradit. Herbal Drugs, 2017, 48(6), 1080-1086.
[27]
He, B.; Chen, W.; Zeng, J.; Tong, W.; Zheng, P. MicroRNA‐326 decreases tau phosphorylation and neuron apoptosis through inhibition of the JNK signaling pathway by targeting VAV1 in Alzheimer’s disease. J. Cell. Physiol., 2020, 235(1), 480-493.
[http://dx.doi.org/10.1002/jcp.28988] [PMID: 31385301]
[28]
Pei, H.; Ma, L.; Cao, Y.; Wang, F.; Li, Z.; Liu, N.; Liu, M.; Wei, Y.; Li, H. Traditional chinese medicine for alzheimer’s disease and other cognitive impairment: A review. Am. J. Chin. Med., 2020, 48(3), 487-511.
[http://dx.doi.org/10.1142/S0192415X20500251] [PMID: 32329645]
[29]
Kaufman, S.K.; Del Tredici, K.; Thomas, T.L.; Braak, H.; Diamond, M.I. Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer’s disease and PART. Acta Neuropathol., 2018, 136(1), 57-67.
[http://dx.doi.org/10.1007/s00401-018-1855-6] [PMID: 29752551]
[30]
Wegmann, S.; Biernat, J.; Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimer's disease., Curr. Opin. Neurobiol., 2021, 69, 131-138.
[http://dx.doi.org/10.1016/j.conb.2021.03.003]
[31]
Turab Naqvi, A.A.; Hasan, G.M.; Hassan, M.I. Targeting tau hyperphosphorylation via Kinase Inhibition: Strategy to address alzheimer’s disease. Curr. Top. Med. Chem., 2020, 20(12), 1059-1073.
[http://dx.doi.org/10.2174/1568026620666200106125910] [PMID: 31903881]
[32]
Yan, D.; Yao, J.; Liu, Y.; Zhang, X.; Wang, Y.; Chen, X.; Liu, L.; Shi, N.; Yan, H. Tau hyperphosphorylation and P-CREB reduction are involved in acrylamide-induced spatial memory impairment: Suppression by curcumin. Brain. Behav. Immun., 2018, 71, 66-80.
[http://dx.doi.org/10.1016/j.bbi.2018.04.014]
[33]
Qi, Z.; Zhang, Y.; Yao, K.; Zhang, M.; Xu, Y.; Zhang, J.; Bai, X.; Zu, H. dhcr24 knockdown lead to hyperphosphorylation of Tau at Thr181, Thr231, Ser262, Ser396, and Ser422 sites by membrane lipid-raft dependent PP2A signaling in SH-SY5Y cells. Neurochem. Res., 2021, 46(7), 1627-1640.
[http://dx.doi.org/10.1007/s11064-021-03273-6] [PMID: 33710538]
[34]
Xiao, S.; Wu, Q.; Yao, X.; Zhang, J.; Zhong, W.; Zhao, J.; Liu, Q.; Zhang, M. Inhibitory effects of isobavachalcone on tau protein aggregation, tau phosphorylation, and oligomeric tau-induced apoptosis. ACS Chem. Neurosci., 2021, 12(1), 123-132.
[http://dx.doi.org/10.1021/acschemneuro.0c00617] [PMID: 33320518]
[35]
Zhou, C.; Jung, C.G.; Kim, M.J.; Watanabe, A.; Abdelhamid, M.; Taslima, F.; Michikawa, M. Insulin deficiency increases sirt2 level in streptozotocin-treated alzheimer’s disease-like mouse model: Increased Sirt2 induces tau phosphorylation through ERK activation. Mol. Neurobiol., 2022, 59(9), 5408-5425.
[http://dx.doi.org/10.1007/s12035-022-02918-z] [PMID: 35701718]
[36]
Nilson, A.N.; English, K.C.; Gerson, J.E.; Barton Whittle, T.; Nicolas Crain, C.; Xue, J.; Sengupta, U.; Castillo-Carranza, D.L.; Zhang, W.; Gupta, P.; Kayed, R. Tau oligomers associate with inflammation in the brain and retina of tauopathy mice and in neurodegenerative diseases. J. Alzheimers Dis., 2016, 55(3), 1083-1099.
[http://dx.doi.org/10.3233/JAD-160912] [PMID: 27716675]
[37]
Tolkovsky, A.M.; Spillantini, M.G. Tau aggregation and its relation to selected forms of neuronal cell death. Essays Biochem., 2021, 65(7), 847-857.
[http://dx.doi.org/10.1042/EBC20210030] [PMID: 34897457]
[38]
Zhang, M.; Wu, Q.; Yao, X.; Zhao, J.; Zhong, W.; Liu, Q.; Xiao, S. Xanthohumol inhibits tau protein aggregation and protects cells against tau aggregates. Food Funct., 2019, 10(12), 7865-7874.
[http://dx.doi.org/10.1039/C9FO02133G] [PMID: 31793596]
[39]
Siddiqui, W.A.; Ahad, A.; Ahsan, H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: An update. Arch. Toxicol., 2015, 89(3), 289-317.
[http://dx.doi.org/10.1007/s00204-014-1448-7] [PMID: 25618543]
[40]
Dlugosz, P.J.; Billen, L.P.; Annis, M.G.; Zhu, W.; Zhang, Z.; Lin, J.; Leber, B.; Andrews, D.W. Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J., 2006, 25(11), 2287-2296.
[http://dx.doi.org/10.1038/sj.emboj.7601126] [PMID: 16642033]
[41]
Remadevi, V.; Muraleedharan, P.; Sreeja, S. FOXO1: A pivotal pioneer factor in oral squamous cell carcinoma. Am. J. Cancer Res., 2021, 11(10), 4700-4710.
[PMID: 34765288]
[42]
Paroni, G.; Seripa, D.; Fontana, A.; D'Onofrio, G.; Gravina, C.; Urbano, M.; Cascavilla, L.; Pellegrini, F.; Greco, A.; Pilotto, A. FOXO1 locus and acetylcholinesterase inhibitors in elderly patients with Alzheimer's disease., Clin. Interv. Aging., 2014, 9, 1783-91.
[http://dx.doi.org/10.2147/CIA.S64758]
[43]
Estevez, A.O.; Morgan, K.L.; Szewczyk, N.J.; Gems, D.; Estevez, M. The neurodegenerative effects of selenium are inhibited by FOXO and PINK1/PTEN regulation of insulin/insulin-like growth factor signaling in Caenorhabditis elegans. Neurotoxicology, 2014, 41(100), 28-43.
[http://dx.doi.org/10.1016/j.neuro.2013.12.012] [PMID: 24406377]
[44]
Maiese, K. FoxO proteins in the nervous system. Anal. Cell. Pathol., 2015, 2015, 1-15.
[http://dx.doi.org/10.1155/2015/569392] [PMID: 26171319]
[45]
Santo, E.E.; Paik, J. FOXO in neural cells and diseases of the nervous system. Curr. Top. Dev. Biol., 2018, 127, 105-118.
[http://dx.doi.org/10.1016/bs.ctdb.2017.10.002] [PMID: 29433734]

© 2024 Bentham Science Publishers | Privacy Policy