Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Functional Roles of the lncRNA MALAT1 in Glioma

Author(s): Arya Moftakhar, Sajad Najafi, Omid Anbiyaee, Maryam Farzaneh* and Seyed Esmaeil Khoshnam*

Volume 20, Issue 2, 2024

Published on: 07 September, 2023

Page: [166 - 176] Pages: 11

DOI: 10.2174/1573394719666230720164009

Price: $65

Abstract

Gliomas are a group of brain cancers with various clinical and biological features, and they are mostly malignant. Progressions in therapy approaches, comprising radiotherapy, chemotherapy, and surgery, have not been so considerable in the prognosis of glioma cases. Recently, long noncoding RNAs (lncRNAs) have been found with putative regulatory roles in gene expression, epigenetic regulation, neurogenesis, cell cycle, and cellular transportation. The lncRNA Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is frequently reported to be associated with multiple disorders, such as various types of cancers. Upregulation of MALAT1 is detected in different tumours, including glioma, and functional analyses reveal it affects malignant features of cancer cells like proliferation, migration, invasion and apoptosis. MALAT1 impacts those features by modulating various epigenetic histones, hormones, growth factors, and transcription factors. Therefore, this lncRNA can be regarded as a potent therapeutic target for glioma. In this review, we summarized the functional roles of MALAT1 in glioma.

Keywords: Glioma, LncRNAs, MALAT1, cell signalling, pathogenesis, biomarker.

[1]
Malta TM, de Souza CF, Sabedot TS, et al. Glioma CpG island methylator phenotype (G-CIMP): Biological and clinical implications. Neuro Oncol 2018; 20(5): 608-20.
[http://dx.doi.org/10.1093/neuonc/nox183] [PMID: 29036500]
[2]
Alivand MR, Najafi S, Esmaeili S, Rahmanpour D, Zhaleh H, Rahmati Y. Integrative analysis of DNA methylation and gene expression profiles to identify biomarkers of glioblastoma. Cancer Genet 2021; 258-259: 135-50.
[http://dx.doi.org/10.1016/j.cancergen.2021.10.008] [PMID: 34773808]
[3]
Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for glioma: Current management and future application. Cancer Lett 2020; 476: 1-12.
[http://dx.doi.org/10.1016/j.canlet.2020.02.002] [PMID: 32044356]
[4]
Modrek AS, Bayin NS, Placantonakis DG. Brain stem cells as the cell of origin in glioma. World J Stem Cells 2014; 6(1): 43-52.
[http://dx.doi.org/10.4252/wjsc.v6.i1.43] [PMID: 24567787]
[5]
Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma subclassifications and their clinical significance. Neurotherapeutics 2017; 14(2): 284-97.
[http://dx.doi.org/10.1007/s13311-017-0519-x] [PMID: 28281173]
[6]
Gusyatiner O, Hegi ME. Glioma epigenetics: From subclassification to novel treatment options. Semin Cancer Biol 2018; 51: 50-8.
[http://dx.doi.org/10.1016/j.semcancer.2017.11.010] [PMID: 29170066]
[7]
Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: A “state of the science” review. Neuro Oncol 2014; 16(7): 896-913.
[http://dx.doi.org/10.1093/neuonc/nou087] [PMID: 24842956]
[8]
Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol 2013; 15((Suppl 2)): ii1-56.
[http://dx.doi.org/10.1093/neuonc/not151] [PMID: 24137015]
[9]
Kan LK, Drummond K, Hunn M, Williams D, O’Brien TJ, Monif M. Potential biomarkers and challenges in glioma diagnosis, therapy and prognosis. BMJ Neurol Open 2020; 2(2): e000069.
[http://dx.doi.org/10.1136/bmjno-2020-000069]
[10]
Mousavi SM, Derakhshan M, Baharloii F, et al. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24: 262-87.
[http://dx.doi.org/10.1016/j.omto.2021.12.015] [PMID: 35071748]
[11]
Najafi S, Tan SC, Raee P, et al. Gene regulation by antisense transcription: A focus on neurological and cancer diseases. Biomed Pharmacother 2022; 145: 112265.
[http://dx.doi.org/10.1016/j.biopha.2021.112265] [PMID: 34749054]
[12]
Mattick JS. Challenging the dogma: The hidden layer of nonprotein-coding RNAs in complex organisms. BioEssays 2003; 25(10): 930-9.
[http://dx.doi.org/10.1002/bies.10332] [PMID: 14505360]
[13]
Najafi S. The emerging roles and potential applications of circular RNAs in ovarian cancer: A comprehensive review. J Cancer Res Clin Oncol 2023; 149(5): 2211-34.
[http://dx.doi.org/10.1007/s00432-022-04328-z] [PMID: 36053324]
[14]
Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. In: Rao MRS, Ed. Long Non Coding RNA Biology. Singapore: Springer Singapore 2017; pp. 1-46.
[http://dx.doi.org/10.1007/978-981-10-5203-3_1]
[15]
Najafi S. Circular RNAs as emerging players in cervical cancer tumorigenesis; A review to roles and biomarker potentials. Int J Biol Macromol 2022; 206: 939-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.103] [PMID: 35318084]
[16]
Liu X, Hao L, Li D, Zhu L, Hu S. Long non-coding RNAs and their biological roles in plants. Genomics Proteomics Bioinformatics 2015; 13(3): 137-47.
[http://dx.doi.org/10.1016/j.gpb.2015.02.003] [PMID: 25936895]
[17]
Najafi S, Ghafouri-Fard S, Hussen BM, Jamal HH, Taheri M, Hallajnejad M. Oncogenic roles of small nucleolar RNA host gene 7 (SNHG7) long noncoding RNA in human cancers and potentials. Front Cell Dev Biol 2022; 9: 809345.
[http://dx.doi.org/10.3389/fcell.2021.809345] [PMID: 35111760]
[18]
Shirvani H, Ghanavi J, Aliabadi A, et al. MiR-211 plays a dual role in cancer development: From tumor suppressor to tumor enhancer. Cell Signal 2023; 101: 110504.
[http://dx.doi.org/10.1016/j.cellsig.2022.110504] [PMID: 36309329]
[19]
Najafi S, Aghaei Zarch SM, Majidpoor J, et al. Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol 2023; 225: 1038-48.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.11.166] [PMID: 36410538]
[20]
Faramin Lashkarian M, Hashemipour N, Niaraki N, et al. MicroRNA-122 in human cancers: From mechanistic to clinical perspectives. Cancer Cell Int 2023; 23(1): 29.
[http://dx.doi.org/10.1186/s12935-023-02868-z] [PMID: 36803831]
[21]
Cao J. The functional role of long non-coding RNAs and epigenetics. Biol Proced Online 2014; 16(1): 42.
[http://dx.doi.org/10.1186/1480-9222-16-11] [PMID: 25276098]
[22]
Sayad A, Najafi S, Hussen BM, et al. The emerging roles of the β-Secretase BACE1 and the long non-coding RNA BACE1-AS in human diseases: A focus on neurodegenerative diseases and cancer. Front Aging Neurosci 2022; 14: 853180.
[http://dx.doi.org/10.3389/fnagi.2022.853180] [PMID: 35386116]
[23]
Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett 2013; 339(2): 159-66.
[http://dx.doi.org/10.1016/j.canlet.2013.06.013] [PMID: 23791884]
[24]
Najafi S, Khatami SH, Khorsand M, et al. Long non-coding RNAs (lncRNAs); roles in tumorigenesis and potentials as biomarkers in cancer diagnosis. Exp Cell Res 2022; 418(2): 113294.
[http://dx.doi.org/10.1016/j.yexcr.2022.113294] [PMID: 35870535]
[25]
Wilusz JE, Freier SM, Spector DL. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 2008; 135(5): 919-32.
[http://dx.doi.org/10.1016/j.cell.2008.10.012] [PMID: 19041754]
[26]
Zhang X, Hamblin MH, Yin KJ. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol 2017; 14(12): 1705-14.
[http://dx.doi.org/10.1080/15476286.2017.1358347] [PMID: 28837398]
[27]
Zhao M, Wang S, Li Q, Ji Q, Guo P, Liu X. MALAT1: A long non coding RNA highly associated with human cancers (Review). Oncol Lett 2018; 16(1): 19-26.
[http://dx.doi.org/10.3892/ol.2018.8613] [PMID: 29928382]
[28]
Sun Y, Ma L. New insights into long non-coding RNA MALAT1 in cancer and metastasis. Cancers 2019; 11(2): 216.
[http://dx.doi.org/10.3390/cancers11020216] [PMID: 30781877]
[29]
Li ZX, Zhu QN, Zhang HB, Hu Y, Wang G, Zhu YS. MALAT1: A potential biomarker in cancer. Cancer Manag Res 2018; 10: 6757-68.
[http://dx.doi.org/10.2147/CMAR.S169406] [PMID: 30584369]
[30]
Wei Y, Niu B. Role of MALAT1 as a prognostic factor for survival in various cancers: A systematic review of the literature with meta-analysis. Dis Markers 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/164635] [PMID: 26420912]
[31]
Abdulle LE, Hao J, Pant OP, et al. MALAT1 as a diagnostic and therapeutic target in diabetes-related complications: A promising long-noncoding RNA. Int J Med Sci 2019; 16(4): 548-55.
[http://dx.doi.org/10.7150/ijms.30097] [PMID: 31171906]
[32]
Hu TJ, Huang HB, Shen HB, Chen W, Yang ZH. Role of long non coding RNA MALAT1 in chronic obstructive pulmonary disease. Exp Ther Med 2020; 20(3): 2691-7.
[http://dx.doi.org/10.3892/etm.2020.8996] [PMID: 32765763]
[33]
Yan Y, Song D, Song X, Song C. The role of lncRNA MALAT1 in cardiovascular disease. IUBMB Life 2020; 72(3): 334-42.
[http://dx.doi.org/10.1002/iub.2210] [PMID: 31856403]
[34]
Liu W, Zhang Q, Zhang J, Pan W, Zhao J, Xu Y. Long non-coding RNA MALAT1 contributes to cell apoptosis by sponging miR-124 in Parkinson disease. Cell Biosci 2017; 7(1): 19.
[http://dx.doi.org/10.1186/s13578-017-0147-5] [PMID: 28439401]
[35]
Shirvani Farsani Z, Zahirodin A, Ghaderian SMH, Shams J, Naghavi Gargari B. The role of long non-coding RNA MALAT1 in patients with bipolar disorder. Metab Brain Dis 2020; 35(7): 1077-83.
[http://dx.doi.org/10.1007/s11011-020-00580-9] [PMID: 32458337]
[36]
Fu S, Wang Y, Li H, Chen L, Liu Q. Regulatory networks of LncRNA MALAT-1 in cancer. Cancer Manag Res 2020; 12: 10181-98.
[http://dx.doi.org/10.2147/CMAR.S276022] [PMID: 33116873]
[37]
Liao H, Chen Q, Xiao J. Reflections on the role of malat1 in gynecological cancer. Cancer Manag Res 2020; 12: 13489-500.
[http://dx.doi.org/10.2147/CMAR.S286804] [PMID: 33408521]
[38]
Shi X, Sun M, Wu Y, et al. Post-transcriptional regulation of long noncoding RNAs in cancer. Tumour Biol 2015; 36(2): 503-13.
[http://dx.doi.org/10.1007/s13277-015-3106-y] [PMID: 25618601]
[39]
Qi J, Chu Y, Zhang G, Li H, Yang D, Wang Q. Down-regulated LncR-MALAT1 suppressed cell proliferation and migration by inactivating autophagy in bladder cancer. RSC Adv 2018; 8(54): 31019-27.
[http://dx.doi.org/10.1039/C8RA04876B] [PMID: 35548736]
[40]
Wang Y, Xue D, Li Y, et al. The long noncoding RNA MALAT-1 is a novel biomarker in various cancers: A meta-analysis based on the GEO database and literature. J Cancer 2016; 7(8): 991-1001.
[http://dx.doi.org/10.7150/jca.14663] [PMID: 27313790]
[41]
Li H, Yuan X, Yan D, et al. Long non-coding RNA MALAT1 decreases the sensitivity of resistant glioblastoma cell lines to temozolomide. Cell Physiol Biochem 2017; 42(3): 1192-201.
[http://dx.doi.org/10.1159/000478917] [PMID: 28668966]
[42]
Fang D, Yang H, Lin J, et al. 17β-Estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner. Biochem Biophys Res Commun 2015; 457(4): 500-6.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.114] [PMID: 25592968]
[43]
Guerrieri F. Long non-coding RNAs era in liver cancer. World J Hepatol 2015; 7(16): 1971-3.
[http://dx.doi.org/10.4254/wjh.v7.i16.1971] [PMID: 26261686]
[44]
Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB, Gupta SC. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875(2): 188502.
[http://dx.doi.org/10.1016/j.bbcan.2021.188502] [PMID: 33428963]
[45]
Ma R, Zhang BW, Zhang ZB, Deng QJ. LncRNA MALAT1 knockdown inhibits cell migration and invasion by suppressing autophagy through miR-384/GOLM1 axis in glioma. Eur Rev Med Pharmacol Sci 2020; 24(5): 2601-15.
[PMID: 32196610]
[46]
Su Y, Liang C, Yang Q. LncRNA MALAT1 promotes glioma cell growth through sponge miR-613. J BUON 2021; 26(3): 984-91.
[PMID: 34268963]
[47]
Fu Z, Luo W, Wang J, et al. Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma. Biochem Biophys Res Commun 2017; 492(3): 480-6.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.070] [PMID: 28834690]
[48]
Ma K, Wang H, Li X, et al. Long noncoding RNA MALAT1 associates with the malignant status and poor prognosis in glioma. Tumour Biol 2015; 36(5): 3355-9.
[http://dx.doi.org/10.1007/s13277-014-2969-7] [PMID: 25613066]
[49]
Ma J, Wang P, Yao Y, et al. Knockdown of long non-coding RNA MALAT1 increases the blood–tumor barrier permeability by up-regulating miR-140. Biochim Biophys Acta Gene Regul Mech 2016; 1859(2): 324-38.
[http://dx.doi.org/10.1016/j.bbagrm.2015.11.008] [PMID: 26619802]
[50]
Qiao FH, Tu M, Liu HY. Role of MALAT1 in gynecological cancers: Pathologic and therapeutic aspects (Review). Oncol Lett 2021; 21(4): 333.
[http://dx.doi.org/10.3892/ol.2021.12594] [PMID: 33692865]
[51]
Bernard D, Prasanth KV, Tripathi V, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 2010; 29(18): 3082-93.
[http://dx.doi.org/10.1038/emboj.2010.199] [PMID: 20729808]
[52]
Zhang B, Arun G, Mao YS, et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2012; 2(1): 111-23.
[http://dx.doi.org/10.1016/j.celrep.2012.06.003] [PMID: 22840402]
[53]
Chakrabarti R, Srivatsan ES, Wood TF, et al. Deletion mapping of endocrine tumors localizes a second tumor suppressor gene on chromosome band 11q13. Genes Chromosomes Cancer 1998; 22(2): 130-7.
[http://dx.doi.org/10.1002/(SICI)1098-2264(199806)22:2<130:AID-GCC7>3.0.CO;2-Y] [PMID: 9598800]
[54]
Eißmann M, Gutschner T, Hämmerle M, et al. Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 2012; 9(8): 1076-87.
[http://dx.doi.org/10.4161/rna.21089] [PMID: 22858678]
[55]
Brown JA, Valenstein ML, Yario TA, Tycowski KT, Steitz JA. Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs. Proc Natl Acad Sci 2012; 109(47): 19202-7.
[http://dx.doi.org/10.1073/pnas.1217338109] [PMID: 23129630]
[56]
Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003; 22(39): 8031-41.
[http://dx.doi.org/10.1038/sj.onc.1206928] [PMID: 12970751]
[57]
Wang C, Zhang Q, Hu Y, Zhu J, Yang J. Emerging role of long non-coding RNA MALAT1 in predicting clinical outcomes of patients with digestive system malignancies: A meta-analysis. Oncol Lett 2019; 17(2): 2159-70.
[PMID: 30719108]
[58]
Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39(6): 925-38.
[http://dx.doi.org/10.1016/j.molcel.2010.08.011] [PMID: 20797886]
[59]
Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 2007; 8(1): 39.
[http://dx.doi.org/10.1186/1471-2164-8-39] [PMID: 17270048]
[60]
Lei L, Chen J, Huang J, et al. Functions and regulatory mechanisms of metastasis‐associated lung adenocarcinoma transcript 1. J Cell Physiol 2019; 234(1): 134-51.
[http://dx.doi.org/10.1002/jcp.26759] [PMID: 30132842]
[61]
Song J, Su ZZ, Shen QM. Long non-coding RNA MALAT1 regulates proliferation, apoptosis, migration and invasion via miR-374b-5p/SRSF7 axis in non-small cell lung cancer. Eur Rev Med Pharmacol Sci 2020; 24(4): 1853-62.
[PMID: 32141554]
[62]
He L, Zhu C, Jia J, et al. ADSC-exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway. Biosci Rep 2020; 40(5): BSR20192549.
[http://dx.doi.org/10.1042/BSR20192549] [PMID: 32342982]
[63]
Zhao K, Jin S, Wei B, Cao S, Xiong Z. Association study of genetic variation of lncRNA MALAT1 with carcinogenesis of colorectal cancer. Cancer Manag Res 2018; 10: 6257-61.
[http://dx.doi.org/10.2147/CMAR.S177244] [PMID: 30538572]
[64]
Zhang XZ, Liu H, Chen SR. Mechanisms of long non-coding RNAs in cancers and their dynamic regulations. Cancers 2020; 12(5): 1245.
[http://dx.doi.org/10.3390/cancers12051245] [PMID: 32429086]
[65]
Amodio N, Raimondi L, Juli G, et al. MALAT1: A druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol 2018; 11(1): 63.
[http://dx.doi.org/10.1186/s13045-018-0606-4] [PMID: 29739426]
[66]
Chang YZ, Chai RC, Pang B, et al. METTL3 enhances the stability of MALAT1 with the assistance of HuR via m6A modification and activates NF-κB to promote the malignant progression of IDH-wildtype glioma. Cancer Lett 2021; 511: 36-46.
[http://dx.doi.org/10.1016/j.canlet.2021.04.020] [PMID: 33933553]
[67]
Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: Mechanisms and therapeutic targeting. J Hematol Oncol 2020; 13(1): 117.
[http://dx.doi.org/10.1186/s13045-020-00951-w] [PMID: 32854717]
[68]
Siang DTC, Lim YC, Kyaw AMM, et al. The RNA-binding protein HuR is a negative regulator in adipogenesis. Nat Commun 2020; 11(1): 213.
[http://dx.doi.org/10.1038/s41467-019-14001-8] [PMID: 31924774]
[69]
Grammatikakis I, Abdelmohsen K, Gorospe M. Post translational control of HuR function. Wiley Interdiscip Rev RNA 2017; 8(1)
[http://dx.doi.org/10.1002/wrna.1372] [PMID: 27307117]
[70]
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2(1): 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[71]
Liu H, Chen K, Wang L, et al. miR-613 inhibits Warburg effect in gastric cancer by targeting PFKFB2. Biochem Biophys Res Commun 2019; 515(1): 37-43.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.001] [PMID: 31122697]
[72]
Xiong Z, Wang L, Wang Q, Yuan Y. Lnc RNA MALAT 1/miR‐129 axis promotes glioma tumorigenesis by targeting SOX 2. J Cell Mol Med 2018; 22(8): 3929-40.
[http://dx.doi.org/10.1111/jcmm.13667] [PMID: 29808528]
[73]
Yin C, Tian Y, Yu Y, et al. miR-129-5p inhibits bone formation through TCF4. Front Cell Dev Biol 2020; 8: 600641.
[http://dx.doi.org/10.3389/fcell.2020.600641] [PMID: 33240893]
[74]
Li G, Xie J, Wang J. Tumor suppressor function of miR 129 5p in lung cancer. Oncol Lett 2019; 17(6): 5777-83.
[http://dx.doi.org/10.3892/ol.2019.10241] [PMID: 31186804]
[75]
Porter L, McCaughan F. SOX2 and squamous cancers. Semin Cancer Biol 2020; 67(Pt 1): 154-67.
[http://dx.doi.org/10.1016/j.semcancer.2020.05.007] [PMID: 32905832]
[76]
Chaudhary S, Islam Z, Mishra V, Rawat S, Ashraf GM, Kolatkar PR. Sox2: A regulatory factor in tumorigenesis and metastasis. Curr Protein Pept Sci 2019; 20(6): 495-504.
[http://dx.doi.org/10.2174/1389203720666190325102255] [PMID: 30907312]
[77]
Hüser L, Novak D, Umansky V, Altevogt P, Utikal J. Targeting SOX2 in anticancer therapy. Expert Opin Ther Targets 2018; 22(12): 983-91.
[http://dx.doi.org/10.1080/14728222.2018.1538359] [PMID: 30366514]
[78]
Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Semin Cancer Biol 2020; 67(Pt 1): 74-82.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.007] [PMID: 31412296]
[79]
Zhang S, Xiong X, Sun Y. Functional characterization of SOX2 as an anticancer target. Signal Transduct Target Ther 2020; 5(1): 135.
[http://dx.doi.org/10.1038/s41392-020-00242-3] [PMID: 32728033]
[80]
Miranda IC, Miller AD. SOX2 expression in canine neoplasia. Vet Pathol 2021; 58(5): 964-70.
[http://dx.doi.org/10.1177/0300985820960130] [PMID: 32975490]
[81]
Nasrolahi A, Azizidoost S, Radoszkiewicz K, et al. Signaling pathways governing glioma cancer stem cells behavior. Cell Signal 2023; 101: 110493.
[http://dx.doi.org/10.1016/j.cellsig.2022.110493] [PMID: 36228964]
[82]
Rouzbahani E, Majidpoor J, Najafi S, Mortezaee K. Cancer stem cells in immunoregulation and bypassing anti-checkpoint therapy. Biomed Pharmacother 2022; 156: 113906.
[http://dx.doi.org/10.1016/j.biopha.2022.113906] [PMID: 36306594]
[83]
Wang Y, Huang H, Li Y. Knocking down miR-384 promotes growth and metastasis of osteosarcoma MG63 cells by targeting SLBP. Artif Cells Nanomed Biotechnol 2019; 47(1): 1458-65.
[http://dx.doi.org/10.1080/21691401.2019.1601099] [PMID: 31007083]
[84]
Tan Y, Chen L, Li S, Hao H, Zhang D. MiR-384 inhibits malignant biological behavior such as proliferation and invasion of osteosarcoma by regulating IGFBP3. Technol Cancer Res Treat 2020; 19.
[http://dx.doi.org/10.1177/1533033820909125] [PMID: 32129151]
[85]
Zhou W, She G, Yang K, Zhang B, Liu J, Yu B. MiR-384 inhibits proliferation and migration of trophoblast cells via targeting PTBP3. Pregnancy Hypertens 2020; 21: 132-8.
[http://dx.doi.org/10.1016/j.preghy.2020.05.017] [PMID: 32512528]
[86]
Zhou Y, Li L, Hu L, Peng T. Golgi phosphoprotein 2 (GOLPH2/GP73/GOLM1) interacts with secretory clusterin. Mol Biol Rep 2011; 38(3): 1457-62.
[http://dx.doi.org/10.1007/s11033-010-0251-7] [PMID: 20842452]
[87]
Dang Y, Yu J, Zhao S, Jin L, Cao X, Wang Q. GOLM1 drives colorectal cancer metastasis by regulating myeloid-derived suppressor cells. J Cancer 2021; 12(23): 7158-66.
[http://dx.doi.org/10.7150/jca.61567] [PMID: 34729117]
[88]
Cheng H, Zhao H, Xiao X, et al. Long non-coding RNA MALAT1 upregulates ZEB2 expression to promote malignant progression of glioma by attenuating miR-124. Mol Neurobiol 2021; 58(3): 1006-16.
[http://dx.doi.org/10.1007/s12035-020-02165-0] [PMID: 33078370]
[89]
Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129(7): 1401-14.
[http://dx.doi.org/10.1016/j.cell.2007.04.040] [PMID: 17604727]
[90]
Angelopoulou E, Paudel YN, Piperi C. miR-124 and Parkinson’s disease: A biomarker with therapeutic potential. Pharmacol Res 2019; 150: 104515.
[http://dx.doi.org/10.1016/j.phrs.2019.104515] [PMID: 31707035]
[91]
Sanuki R, Yamamura T. Tumor suppressive effects of miR-124 and its function in neuronal development. Int J Mol Sci 2021; 22(11): 5919.
[http://dx.doi.org/10.3390/ijms22115919] [PMID: 34072894]
[92]
Ghafouri-Fard S, Shoorei H, Bahroudi Z, Abak A, Majidpoor J, Taheri M. An update on the role of miR-124 in the pathogenesis of human disorders. Biomed Pharmacother 2021; 135: 111198.
[http://dx.doi.org/10.1016/j.biopha.2020.111198] [PMID: 33412388]
[93]
Epifanova E, Babaev A, Newman AG, Tarabykin V. Role of Zeb2/Sip1 in neuronal development. Brain Res 2019; 1705: 24-31.
[http://dx.doi.org/10.1016/j.brainres.2018.09.034] [PMID: 30266271]
[94]
Huang X, Ferris ST, Kim S, et al. Differential usage of transcriptional repressor Zeb2 enhancers distinguishes adult and embryonic hema-topoiesis. Immunity 2021; 54(7): 1417-1432.e7.
[http://dx.doi.org/10.1016/j.immuni.2021.04.015] [PMID: 34004142]
[95]
Gladka MM, Kohela A, Molenaar B, et al. Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nat Commun 2021; 12(1): 84.
[http://dx.doi.org/10.1038/s41467-020-20361-3] [PMID: 33398012]
[96]
Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol Biol 2008; 445: 77-88.
[http://dx.doi.org/10.1007/978-1-59745-157-4_4] [PMID: 18425443]
[97]
Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy 2007; 3(6): 542-5.
[http://dx.doi.org/10.4161/auto.4600] [PMID: 17611390]
[98]
Runwal G, Stamatakou E, Siddiqi FH, Puri C, Zhu Y, Rubinsztein DC. LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep 2019; 9(1): 10147.
[http://dx.doi.org/10.1038/s41598-019-46657-z] [PMID: 31300716]
[99]
Streeter A, Menzies FM, Rubinsztein DC. LC3-II Tagging and western blotting for monitoring autophagic activity in mammalian cells. Methods Mol Biol 2016; 1303: 161-70.
[http://dx.doi.org/10.1007/978-1-4939-2627-5_8] [PMID: 26235065]
[100]
Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 2004; 36(12): 2503-18.
[http://dx.doi.org/10.1016/j.biocel.2004.05.009] [PMID: 15325588]
[101]
Shi Y, Tao M, Ma X, et al. Delayed treatment with an autophagy inhibitor 3-MA alleviates the progression of hyperuricemic nephropathy. Cell Death Dis 2020; 11(6): 467.
[http://dx.doi.org/10.1038/s41419-020-2673-z] [PMID: 32555189]
[102]
Dong Y, Wu Y, Zhao GL, Ye ZY, Xing CG, Yang XD. Inhibition of autophagy by 3-MA promotes hypoxia-induced apoptosis in human colorectal cancer cells. Eur Rev Med Pharmacol Sci 2019; 23(3): 1047-54.
[PMID: 30779071]
[103]
Zhang X, Zhang L, Bi Y, et al. Inhibition of autophagy by 3‐methyladenine restricts murine cytomegalovirus replication. J Med Virol 2021; 93(8): 5001-16.
[http://dx.doi.org/10.1002/jmv.26787] [PMID: 33421149]
[104]
Zhao F, Feng G, Zhu J, et al. 3-Methyladenine-enhanced susceptibility to sorafenib in hepatocellular carcinoma cells by inhibiting autophagy. Anticancer Drugs 2021; 32(4): 386-93.
[http://dx.doi.org/10.1097/CAD.0000000000001032] [PMID: 33395067]
[105]
Wang L, Li X, Chen C. 3-methyadenine attenuates chloroform-induced hepatotoxicity via autophagy activation. Biomed Res 2018; 39(2): 87-94.
[http://dx.doi.org/10.2220/biomedres.39.87] [PMID: 29669987]
[106]
Wu YT, Tan HL, Shui G, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 2010; 285(14): 10850-61.
[http://dx.doi.org/10.1074/jbc.M109.080796] [PMID: 20123989]
[107]
Meng X, Sun Y, Liu S, Mu Y. miR 101 3p sensitizes lung adenocarcinoma cells to irradiation via targeting BIRC5. Oncol Lett 2021; 21(4): 282.
[http://dx.doi.org/10.3892/ol.2021.12543] [PMID: 33732358]
[108]
Syllaios A, Sakellariou S, Garmpis N, et al. The role of miR-101 in esophageal and gastric cancer. Per Med 2021; 18(5): 491-9.
[http://dx.doi.org/10.2217/pme-2021-0024] [PMID: 34402321]
[109]
Wang CZ, Deng F, Li H, et al. MiR-101: A potential therapeutic target of cancers. Am J Transl Res 2018; 10(11): 3310-21.
[PMID: 30662588]
[110]
Chen X. MiR-101 acts as a novel bio-marker in the diagnosis of bladder carcinoma. Medicine 2019; 98(26): e16051.
[http://dx.doi.org/10.1097/MD.0000000000016051] [PMID: 31261511]
[111]
Zhao JY, Li XY, Liu TD, Liang B, Huang Y, Li W. Silencing of ATG4D suppressed proliferation and enhanced cisplatin-induced apoptosis in hepatocellular carcinoma through Akt/Caspase-3 pathway. Mol Cell Biochem 2021; 476(11): 4153-9.
[http://dx.doi.org/10.1007/s11010-021-04224-z] [PMID: 34313895]
[112]
Yuan Z, Wei W. RAB5A promotes the formation of filopodia in pancreatic cancer cells via the activation of cdc42 and β1-integrin. Biochem Biophys Res Commun 2021; 535: 54-9.
[http://dx.doi.org/10.1016/j.bbrc.2020.12.022] [PMID: 33341673]
[113]
Tan JY, Jia LQ, Shi WH, He Q, Zhu L, Yu B. Rab5a-mediated autophagy regulates the phenotype and behavior of vascular smooth muscle cells. Mol Med Rep 2016; 14(5): 4445-53.
[http://dx.doi.org/10.3892/mmr.2016.5774] [PMID: 27666726]
[114]
Cao GJ, Wang D, Zeng ZP, Wang GX, Hu CJ, Xing ZF. Direct interaction between Rab5a and Rab4a enhanced epidermal growth factor-stimulated proliferation of gastric cancer cells. World J Gastrointest Oncol 2021; 13(10): 1492-505.
[http://dx.doi.org/10.4251/wjgo.v13.i10.1492] [PMID: 34721780]
[115]
Gorji-bahri G, Moghimi HR, Hashemi A. RAB5A is associated with genes involved in exosome secretion: Integration of bioinformatics analysis and experimental validation. J Cell Biochem 2021; 122(3-4): 425-41.
[http://dx.doi.org/10.1002/jcb.29871] [PMID: 33225526]
[116]
Zheng P, Liu YX, Chen L, et al. Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. J Proteome Res 2010; 9(10): 4897-905.
[http://dx.doi.org/10.1021/pr100712t] [PMID: 20806969]
[117]
Hsieh SY, Huang SF, Yu MC, et al. Stathmin1 overexpression associated with polyploidy, tumor-cell invasion, early recurrence, and poor prognosis in human hepatoma. Mol Carcinog 2010; 49(5): 476-87.
[http://dx.doi.org/10.1002/mc.20627] [PMID: 20232364]
[118]
Zhang R, Gao X, Zuo J, et al. STMN1 upregulation mediates hepatocellular carcinoma and hepatic stellate cell crosstalk to aggravate cancer by triggering the MET pathway. Cancer Sci 2020; 111(2): 406-17.
[http://dx.doi.org/10.1111/cas.14262] [PMID: 31785057]
[119]
Li Z, Xu C, Ding B, Gao M, Wei X, Ji N. Long non-coding RNA MALAT1 promotes proliferation and suppresses apoptosis of glioma cells through derepressing Rap1B by sponging miR-101. J Neurooncol 2017; 134(1): 19-28.
[http://dx.doi.org/10.1007/s11060-017-2498-5] [PMID: 28551849]
[120]
Bos JL, de Rooij J, Reedquist KA. Rap1 signalling: Adhering to new models. Nat Rev Mol Cell Biol 2001; 2(5): 369-77.
[http://dx.doi.org/10.1038/35073073] [PMID: 11331911]
[121]
Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev 2001; 81(1): 153-208.
[http://dx.doi.org/10.1152/physrev.2001.81.1.153] [PMID: 11152757]
[122]
Knox AL, Brown NH. Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science 2002; 295(5558): 1285-8.
[http://dx.doi.org/10.1126/science.1067549] [PMID: 11847339]
[123]
Hattori M, Minato N. Rap1 GTPase: Functions, regulation, and malignancy. J Biochem 2003; 134(4): 479-84.
[http://dx.doi.org/10.1093/jb/mvg180] [PMID: 14607972]
[124]
Zhang L, Cui M, Song L, Zhang M, Zhang J. Function, significance, and regulation of rap1b in malignancy. Crit Rev Eukaryot Gene Expr 2019; 29(2): 151-60.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2019025997] [PMID: 31679270]
[125]
Cui G, Wang C, Lin Z, et al. Prognostic and immunological role of Ras-related protein Rap1b in pan-cancer. Bioengineered 2021; 12(1): 4828-40.
[http://dx.doi.org/10.1080/21655979.2021.1955559] [PMID: 34346294]
[126]
Chen WB, Pan HQ, He Y, Wang XH, Zhang WH, Pan BX. Rap1b but not Rap1a in the forebrain is required for learned fear. Cell Biosci 2020; 10(1): 107.
[http://dx.doi.org/10.1186/s13578-020-00469-1] [PMID: 32944221]
[127]
Han Y, Zhou L, Wu T, et al. Downregulation of lncRNAMALAT1 affects proliferation and the expression of stemness markers in glioma stem cell line SHG139S. Cell Mol Neurobiol 2016; 36(7): 1097-107.
[http://dx.doi.org/10.1007/s10571-015-0303-6] [PMID: 26649728]
[128]
Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol 2005; 6(5): 322-7.
[http://dx.doi.org/10.1016/S1470-2045(05)70168-6] [PMID: 15863380]
[129]
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 2020; 19(3): 1997-2007.
[PMID: 32104259]
[130]
Iroegbu JD, Ijomone OK, Femi-Akinlosotu OM, Ijomone OM. ERK/MAPK signalling in the developing brain: Perturbations and consequences. Neurosci Biobehav Rev 2021; 131: 792-805.
[http://dx.doi.org/10.1016/j.neubiorev.2021.10.009] [PMID: 34634357]
[131]
Bernal A, Arranz L. Nestin-expressing progenitor cells: Function, identity and therapeutic implications. Cell Mol Life Sci 2018; 75(12): 2177-95.
[http://dx.doi.org/10.1007/s00018-018-2794-z] [PMID: 29541793]
[132]
Wang Q, Wu H, Hu J, et al. Nestin is required for spindle assembly and cell-cycle progression in glioblastoma cells. Mol Cancer Res 2021; 19(10): 1651-65.
[http://dx.doi.org/10.1158/1541-7786.MCR-20-0994] [PMID: 34158391]
[133]
Han L, Sheng B, Zeng Q, Yao W, Jiang Q. Correlation between MMP2 expression in lung cancer tissues and clinical parameters: A retro-spective clinical analysis. BMC Pulm Med 2020; 20(1): 283.
[http://dx.doi.org/10.1186/s12890-020-01317-1] [PMID: 33115469]
[134]
Sincevičiūtė R, Vaitkienė P, Urbanavičiūtė R, Steponaitis G, Tamašauskas A, Skiriutė D. MMP2 is associated with glioma malignancy and patient outcome. Int J Clin Exp Pathol 2018; 11(6): 3010-8.
[PMID: 31938426]
[135]
Hagemann C, Anacker J, Ernestus RI, Vince GH. A complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J Clin Oncol 2012; 3(5): 67-79.
[http://dx.doi.org/10.5306/wjco.v3.i5.67] [PMID: 22582165]
[136]
Du R, Petritsch C, Lu K, et al. Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GBM. Neuro Oncol 2008; 10(3): 254-64.
[http://dx.doi.org/10.1215/15228517-2008-001] [PMID: 18359864]
[137]
Hu B, Guo P, Fang Q, et al. Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. Proc Natl Acad Sci 2003; 100(15): 8904-9.
[http://dx.doi.org/10.1073/pnas.1533394100] [PMID: 12861074]
[138]
Ramachandran RK, Sørensen MD, Aaberg-Jessen C, Hermansen SK, Kristensen BW. Expression and prognostic impact of matrix metallo-proteinase-2 (MMP-2) in astrocytomas. PLoS One 2017; 12(2): e0172234.
[http://dx.doi.org/10.1371/journal.pone.0172234] [PMID: 28234925]
[139]
Han Y, Wu Z, Wu T, et al. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis 2016; 7(3): e2123.
[http://dx.doi.org/10.1038/cddis.2015.407] [PMID: 26938295]
[140]
Sun X, Kaufman PD. Ki-67: More than a proliferation marker. Chromosoma 2018; 127(2): 175-86.
[http://dx.doi.org/10.1007/s00412-018-0659-8] [PMID: 29322240]
[141]
Dowsett M, Nielsen TO, A’Hern R, et al. Assessment of Ki67 in breast cancer: Recommendations from the international Ki67 in breast cancer working group. J Natl Cancer Inst 2011; 103(22): 1656-64.
[http://dx.doi.org/10.1093/jnci/djr393] [PMID: 21960707]
[142]
Scholzen T, Gerdes J. The Ki-67 protein: From the known and the unknown. J Cell Physiol 2000; 182(3): 311-22.
[http://dx.doi.org/10.1002/(SICI)1097-4652(200003)182:3<311:AID-JCP1>3.0.CO;2-9] [PMID: 10653597]
[143]
Sobecki M, Mrouj K, Camasses A, et al. The cell proliferation antigen Ki-67 organises heterochromatin. eLife 2016; 5: e13722.
[http://dx.doi.org/10.7554/eLife.13722] [PMID: 26949251]
[144]
Xiang J, Guo S, Jiang S, et al. Silencing of long noncoding RNA MALAT1 promotes apoptosis of glioma cells. J Korean Med Sci 2016; 31(5): 688-94.
[http://dx.doi.org/10.3346/jkms.2016.31.5.688] [PMID: 27134488]
[145]
Farrell AS, Sears RC. MYC Degradation. Cold Spring Harb Perspect Med 2014; 4(3): a014365.
[http://dx.doi.org/10.1101/cshperspect.a014365] [PMID: 24591536]
[146]
Lin CY, Lovén J, Rahl PB, et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151(1): 56-67.
[http://dx.doi.org/10.1016/j.cell.2012.08.026] [PMID: 23021215]
[147]
Chen H, Liu H, Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther 2018; 3(1): 5.
[http://dx.doi.org/10.1038/s41392-018-0008-7] [PMID: 29527331]
[148]
Devaiah BN, Mu J, Akman B, et al. MYC protein stability is negatively regulated by BRD4. Proc Natl Acad Sci 2020; 117(24): 13457-67.
[http://dx.doi.org/10.1073/pnas.1919507117] [PMID: 32482868]
[149]
Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol 2006; 16(4): 253-64.
[http://dx.doi.org/10.1016/j.semcancer.2006.07.014] [PMID: 16904903]
[150]
Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8(12): 976-90.
[http://dx.doi.org/10.1038/nrc2231] [PMID: 19029958]
[151]
Venkateswaran N, Conacci-Sorrell M. MYC leads the way. Small GTPases 2020; 11(2): 86-94.
[http://dx.doi.org/10.1080/21541248.2017.1364821] [PMID: 29173017]
[152]
Chen Y, Huang Y, Gao X, et al. CCND1 amplification contributes to immunosuppression and is associated with a poor prognosis to immune checkpoint inhibitors in solid tumors. Front Immunol 2020; 11: 1620.
[http://dx.doi.org/10.3389/fimmu.2020.01620] [PMID: 32903763]
[153]
Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 2011; 11(8): 558-72.
[http://dx.doi.org/10.1038/nrc3090] [PMID: 21734724]
[154]
Malumbres M, Barbacid M. To cycle or not to cycle: A critical decision in cancer. Nat Rev Cancer 2001; 1(3): 222-31.
[http://dx.doi.org/10.1038/35106065] [PMID: 11902577]
[155]
Sun T, Xu Y, Jiang S, et al. Suppression of the USP10/CCND1 axis induces glioblastoma cell apoptosis. Acta Pharmacol Sin 2021; 42(8): 1338-46.
[http://dx.doi.org/10.1038/s41401-020-00551-x] [PMID: 33184448]
[156]
Cao S, Wang Y, Li J, Lv M, Niu H, Tian Y. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function. Am J Cancer Res 2016; 6(11): 2561-74.
[PMID: 27904771]
[157]
Eissa M, Artlett C. The MicroRNA miR-155 is essential in fibrosis. Noncoding RNA 2019; 5(1): 23.
[http://dx.doi.org/10.3390/ncrna5010023] [PMID: 30871125]
[158]
Gracias DT, Stelekati E, Hope JL, et al. The microRNA miR-155 controls CD8+ T cell responses by regulating interferon signaling. Nat Immunol 2013; 14(6): 593-602.
[http://dx.doi.org/10.1038/ni.2576] [PMID: 23603793]
[159]
O’Connell RM, Kahn D, Gibson WSJ, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010; 33(4): 607-19.
[http://dx.doi.org/10.1016/j.immuni.2010.09.009] [PMID: 20888269]
[160]
Thai TH, Calado DP, Casola S, et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316(5824): 604-8.
[http://dx.doi.org/10.1126/science.1141229] [PMID: 17463289]
[161]
Vigorito E, Perks KL, Abreu-Goodger C, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007; 27(6): 847-59.
[http://dx.doi.org/10.1016/j.immuni.2007.10.009] [PMID: 18055230]
[162]
Bayraktar R, Van Roosbroeck K. miR-155 in cancer drug resistance and as target for miRNA-based therapeutics. Cancer Metastasis Rev 2018; 37(1): 33-44.
[http://dx.doi.org/10.1007/s10555-017-9724-7] [PMID: 29282605]
[163]
Michaille JJ, Awad H, Fortman EC, Efanov AA, Tili E. miR-155 expression in antitumor immunity: The higher the better? Genes Chromosomes Cancer 2019; 58(4): 208-18.
[http://dx.doi.org/10.1002/gcc.22698] [PMID: 30382602]
[164]
Cao M, Shikama Y, Kimura H, et al. Mechanisms of impaired neutrophil migration by micrornas in myelodysplastic syndromes. J Immunol 2017; 198(5): 1887-99.
[http://dx.doi.org/10.4049/jimmunol.1600622] [PMID: 28130497]
[165]
Akhoondi S, Sun D, von der Lehr N, et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res 2007; 67(19): 9006-12.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1320] [PMID: 17909001]
[166]
Sailo BL, Banik K, Girisa S, et al. FBXW7 in cancer: What has been unraveled thus far? Cancers 2019; 11(2): 246.
[http://dx.doi.org/10.3390/cancers11020246] [PMID: 30791487]
[167]
Lan H, Sun Y. Tumor suppressor FBXW7 and its regulation of DNA damage response and repair. Front Cell Dev Biol 2021; 9: 751574.
[http://dx.doi.org/10.3389/fcell.2021.751574] [PMID: 34760892]
[168]
Yeh CH, Bellon M, Nicot C. FBXW7: A critical tumor suppressor of human cancers. Mol Cancer 2018; 17(1): 115.
[http://dx.doi.org/10.1186/s12943-018-0857-2] [PMID: 30086763]
[169]
Ho T-T, Zhou N, Huang J, et al. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res 2014; 43(3): e17.
[http://dx.doi.org/10.1093/nar/gku1198] [PMID: 25414344]
[170]
Han J, Zhang J, Chen L, et al. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol 2014; 11(7): 829-35.
[http://dx.doi.org/10.4161/rna.29624] [PMID: 25137067]
[171]
Chandra Gupta S, Nandan Tripathi Y. Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int J Cancer 2017; 140(9): 1955-67.
[http://dx.doi.org/10.1002/ijc.30546] [PMID: 27925173]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy