Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Mini-Review Article

A Review on Bioremediation Using Nanobiotechnology and Microbial Heavy Metal Resistance Mechanisms

Author(s): Vanya Garg, Ashish Arora and Anupam Prakash*

Volume 17, Issue 4, 2024

Published on: 31 July, 2023

Page: [289 - 303] Pages: 15

DOI: 10.2174/2666145417666230714124542

Price: $65

Abstract

Various human actions have raised the level of heavy metal (HM) pollution in the environment. From contaminated water and soil, the HMs infiltrate into the agricultural crops that are consumed by animals as well humans. Deposition of heavy metals leads to DNA damage and several digestive, reproductive, and respiratory system-related health problems. Various microorganisms have evolved mechanisms of HM resistance, tolerance, detoxification, and metabolization. Physicochemical methods of HM treatment are expensive and non-ecofriendly. Therefore, remediation of contaminated soil and water using microorganisms or bioremediation has become a topic of interest for scientists. Bioremediation is a cheaper, eco-friendly and more efficient method. The present review attempts to describe various mechanisms (biosorption, bioaccumulation, biotransformation and active export) by which microbes resist and remediate heavy metal pollution. In addition, the role of different types of consortia/co-culture in bioremediation has been discussed. Microbes, such as fungi, bacteria, and protozoa can remove metals both singly and in amalgamation. Furthermore, an advanced nanotechnology approach for metal ion treatment from wastewater has been briefly discussed. To fully utilize the microbial potential for heavy metal removal and create better strategies to alleviate environmental pollution, a deeper knowledge of the molecular, biochemical, and genetic mechanisms used by these species is required.

Keywords: Bioremediation, heavy metal, biosorption, biotransformation, microbial consortium, nanoparticles, nanobioremediation.

Graphical Abstract
[1]
Syed T, Batool U, Aslam M, et al. Bioremediation and decontamination potential of flagellate Poteriospumella sp. Bioremediat J 2019; 23(3): 142-53.
[http://dx.doi.org/10.1080/10889868.2019.1639611]
[2]
Somasundaram S, Abraham JS, Maurya S, Toteja R, Gupta R, Makhija S. Molecular characterization and transcriptional modulation of stress-responsive genes under heavy metal stress in freshwater ciliate, Euplotes aediculatus. Ecotoxicology 2022; 31(2): 271-88.
[http://dx.doi.org/10.1007/s10646-021-02518-y] [PMID: 34982303]
[3]
Bakshi S, Banik C, He Z. The impact of heavy metal contamination on soil health. In: Managing Soil Health For Sustainable Agriculture Sawston: Burleigh Dodds Science 2018; pp. 63-95.
[http://dx.doi.org/10.19103/AS.2017.0033.20]
[4]
Verma S, Bhatt P, Verma A, Mudila H, Prasher P, Rene ER. Microbial technologies for heavy metal remediation: Effect of process conditions and current practices. Clean Technol Environ Policy 2021; 1-23.
[http://dx.doi.org/10.1007/s10098-021-02029-8]
[5]
Hansda A, Kumar V. Anshumali. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J Microbiol Biotechnol 2016; 32(10): 170.
[http://dx.doi.org/10.1007/s11274-016-2117-1] [PMID: 27565780]
[6]
Akudo S, Obuah A, Emodi G. A study of heavy metal tolerant bacteria and their potential for bioremediation. Int J Biochem Biotechnol 2018; 7(2): 791-9.
[7]
Kim JJ, Kim YS, Kumar V. Heavy metal toxicity: An update of chelating therapeutic strategies. J Trace Elem Med Biol 2019; 54: 226-31.
[http://dx.doi.org/10.1016/j.jtemb.2019.05.003] [PMID: 31109617]
[8]
Jan A, Azam M, Siddiqui K, Ali A, Choi I, Haq Q. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 2015; 16(12): 29592-630.
[http://dx.doi.org/10.3390/ijms161226183] [PMID: 26690422]
[9]
Rehman A, Shakoori FR, Shakoori AR. Heavy metal induced total proteins profile of ciliates isolated from industrial wastewater. Pak J Zool 2009; 41(4)
[10]
Rehman A, Shakoori FR, Shakoori AR. Multiple heavy metal tolerant ciliates, Oxytricha fallax and Paramecium caudatum, isolated from industrial effluents and their potential use in wastewater treatment. Pak J Zool 2010; 42(3)
[11]
Rehman A, Shakoori FR, Shakoori AR. Multiple metal resistance and uptake by a ciliate, Stylonychia mytilus, isolated from industrial effluents and its possible use in wastewater treatment. Bull Environ Contam Toxicol 2007; 79(4): 410-4.
[http://dx.doi.org/10.1007/s00128-007-9270-z] [PMID: 17874022]
[12]
Nie J, Sun Y, Zhou Y, et al. Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Sci Total Environ 2020; 707: 136080.
[http://dx.doi.org/10.1016/j.scitotenv.2019.136080] [PMID: 31869621]
[13]
Muneer B. JIqbal M, Shakoori FR, Shakoori AR. Tolerance and biosorption of mercury by microbial consortia: Potential use in bioremediation of wastewater. Pak J Zool 2013; 45(1)
[14]
Raheela C, Abdul RS. Characterization of copper resistant ciliates: Potential candidates for consortia of organisms used in bioremediation of wastewater. Afr J Biotechnol 2011; 10(45): 9101-13.
[http://dx.doi.org/10.5897/AJB10.2405]
[15]
Somasundaram S, Abraham JS, Maurya S, Toteja R, Gupta R, Makhija S. Expression and molecular characterization of stress-responsive genes (hsp70 and Mn-sod) and evaluation of antioxidant enzymes (CAT and GPx) in heavy metal exposed freshwater ciliate, Tetmemena sp. Mol Biol Rep 2019; 46(5): 4921-31.
[http://dx.doi.org/10.1007/s11033-019-04942-0] [PMID: 31273612]
[16]
Kaur R, Sidhu N, Mavi GK. Estimation and removal of heavy metal from industrial sludge by bacterial strain. J Entomol Zool Stud 2021; 9(1): 1045-50.
[17]
Hemmat-Jou MH, Safari-Sinegani AA, Mirzaie-Asl A, Tahmourespour A. Analysis of microbial communities in heavy metals-contaminated soils using the metagenomic approach. Ecotoxicology 2018; 27(9): 1281-91.
[http://dx.doi.org/10.1007/s10646-018-1981-x] [PMID: 30242595]
[18]
Diep P, Mahadevan R, Yakunin AF. Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 2018; 6: 157.
[http://dx.doi.org/10.3389/fbioe.2018.00157] [PMID: 30420950]
[19]
Gupta AK, Yunus M, Pandey P. Bioremediation: Ecotechnology for the present century. Inter Soc Environ Botanists Environnews 2003; 9(2)
[20]
Harrison JJ, Rabiei M, Turner RJ, Badry EA, Sproule KM, Ceri H. Metal resistance in Candida biofilms. FEMS Microbiol Ecol 2006; 55(3): 479-91.
[http://dx.doi.org/10.1111/j.1574-6941.2005.00045.x] [PMID: 16466387]
[21]
Pokethitiyook P, Poolpak T. Biosorption of heavy metal from aqueous solutions. Phytoremediation. Manag Environ Contam 2016; 3: 113-41.
[22]
Ayangbenro A, Babalola O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int J Environ Res Public Health 2017; 14(1): 94.
[http://dx.doi.org/10.3390/ijerph14010094] [PMID: 28106848]
[23]
Mythili K, Karthikeyan B. Bioremediation of chromium [Cr (VI)] in tannery effluent using Bacillus spp. and Staphylococcus spp. Int J Pharm Biol Arch 2011; 2(5): 1460-3.
[24]
Redha AA. Removal of heavy metals from aqueous media by biosorption Arab J Basic Appl Sci 2020; 27(1): 183-93.
[http://dx.doi.org/10.1080/25765299.2020.1756177]
[25]
Ordóñez JI, Cortés S, Maluenda P, Soto I. Biosorption of Heavy Metals with Algae: Critical Review of Its Application in Real Effluents. Sustainability 2023; 15(6): 5521.
[http://dx.doi.org/10.3390/su15065521]
[26]
Javanbakht V, Alavi SA, Zilouei H. Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 2014; 69(9): 1775-87.
[http://dx.doi.org/10.2166/wst.2013.718] [PMID: 24804650]
[27]
Gadd GM. Heavy metal accumulation by bacteria and other microorganisms. Experientia 1990; 46(8): 834-40.
[http://dx.doi.org/10.1007/BF01935534]
[28]
Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH. Biosorption of heavy metals: A review. J Chem Sci Technol 2014; 3(4): 74-102.
[29]
Gourdon R, Bhende S, Rus E, Sofer SS. Comparison of cadmium biosorption by Gram-positive and Gram-negative bacteria from activated sludge. Biotechnol Lett 1990; 12(11): 839-42.
[http://dx.doi.org/10.1007/BF01022606]
[30]
Tiwari S, Lata C. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Front Plant Sci 2018; 9: 452.
[http://dx.doi.org/10.3389/fpls.2018.00452] [PMID: 29681916]
[31]
Yin K, Wang Q, Lv M, Chen L. Microorganism remediation strategies towards heavy metals. Chem Eng J 2019; 360: 1553-63.
[http://dx.doi.org/10.1016/j.cej.2018.10.226]
[32]
Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 2003; 37(18): 4311-30.
[http://dx.doi.org/10.1016/S0043-1354(03)00293-8] [PMID: 14511701]
[33]
Kamika I, Momba MNB. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiol 2013; 13(1): 28.
[http://dx.doi.org/10.1186/1471-2180-13-28] [PMID: 23387904]
[34]
Zahid MT, Shakoori FR, Zulfiqar S, Al-Ghanim KA, Shakoori AR. Growth characteristics, metal uptake and expression analysis of copper metallothionein in a newly reported ciliate, Tetrahymena farahensis. Pak J Zool 2018; 50(3): 1171-81.
[http://dx.doi.org/10.17582/journal.pjz/2018.50.3.1171.1181]
[35]
Gutiérrez JC, Amaro F, Díaz S, de Francisco P, Cubas LL, Martín-González A. Ciliate metallothioneins: Unique microbial eukaryotic heavy-metal-binder molecules. J Biol Inorg Chem 2011; 16(7): 1025-34.
[http://dx.doi.org/10.1007/s00775-011-0820-9] [PMID: 21785894]
[36]
Zhou H, Xu J, Wang W. Functional analysis of metallothionein MTT5 from Tetrahymena thermophila. J Cell Biochem 2018; 119(4): 3257-66.
[http://dx.doi.org/10.1002/jcb.26482] [PMID: 29091311]
[37]
Rigby KE, Chan J, Mackie J, Stillman MJ. Molecular dynamics study on the folding and metallation of the individual domains of metallothionein. Proteins 2006; 62(1): 159-72.
[http://dx.doi.org/10.1002/prot.20663] [PMID: 16288454]
[38]
Wu SM, Jong KJ, Lee YJ. Relationships among metallothionein, cadmium accumulation, and cadmium tolerance in three species of fish. Bull Environ Contam Toxicol 2006; 76(4): 595-600.
[http://dx.doi.org/10.1007/s00128-006-0961-7] [PMID: 16688540]
[39]
Díaz S, Martín-González A, Carlos Gutiérrez J. Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environ Int 2006; 32(6): 711-7.
[http://dx.doi.org/10.1016/j.envint.2006.03.004] [PMID: 16650895]
[40]
Thirumoorthy N, Shyam Sunder A, Manisenthil Kumar KT. Senthil kumar M, Ganesh GNK, Chatterjee M. A review of metallothionein isoforms and their role in pathophysiology. World J Surg Oncol 2011; 9(1): 54.
[http://dx.doi.org/10.1186/1477-7819-9-54] [PMID: 21599891]
[41]
Shakoori AR, Rehman A. Riaz-ul-Haq. Multiple metal resistance in the ciliate protozoan, Vorticella microstoma, isolated from industrial effluents and its potential in bioremediation of toxic wastes. Bull Environ Contam Toxicol 2004; 72(5): 1046-51.
[http://dx.doi.org/10.1007/s00128-004-0349-5] [PMID: 15266704]
[42]
Gutiérrez JC, Martin-Gonzalez A, Diaz S, et al. Ciliates as cellular tools to study the eukaryotic cell-heavy metal interactions. In: Brown SE, Welton WC, Eds. Heavy metal pollution. Nova Science 2008.
[43]
Valenzuela C, Campos VL, Yañez J, Zaror CA, Mondaca MA. Isolation of arsenite-oxidizing bacteria from arsenicenriched sediments from Camarones river, Northern Chile. Bull Environ Contam Toxicol 2009; 82(5): 593-6.
[http://dx.doi.org/10.1007/s00128-009-9659-y] [PMID: 19190837]
[44]
Abdul R. S AB, Shahida H. Isolation and characterization of arsenite oxidizing Pseudomonas lubricans and its potential use in bioremediation of wastewater. Afr J Biotechnol 2010; 9(10): 1493-8.
[http://dx.doi.org/10.5897/AJB09.1663]
[45]
Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M. Isolation and characterization of arsenic resistant bacteria from wastewater. Braz J Microbiol 2014; 45(4): 1309-15.
[http://dx.doi.org/10.1590/S1517-83822014000400022] [PMID: 25763035]
[46]
Tsai SL, Singh S, Chen W. Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 2009; 20(6): 659-67.
[http://dx.doi.org/10.1016/j.copbio.2009.09.013] [PMID: 19880307]
[47]
Ye J, Rensing C, Rosen BP, Zhu YG. Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci 2012; 17(3): 155-62.
[http://dx.doi.org/10.1016/j.tplants.2011.12.003] [PMID: 22257759]
[48]
Prévéral S, Gayet L, Moldes C, et al. A common highly conserved cadmium detoxification mechanism from bacteria to humans: Heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides. J Biol Chem 2009; 284(8): 4936-43.
[http://dx.doi.org/10.1074/jbc.M808130200] [PMID: 19054771]
[49]
Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 2007; 146(1-2): 270-7.
[http://dx.doi.org/10.1016/j.jhazmat.2006.12.017] [PMID: 17218056]
[50]
Massot F, Bernard N, Alvarez LMM, Martorell MM, Mac Cormack WP, Ruberto LAM. Microbial associations for bioremediation. What does “microbial consortia” mean? Appl Microbiol Biotechnol 2022; 106(7): 2283-97.
[http://dx.doi.org/10.1007/s00253-022-11864-8] [PMID: 35294589]
[51]
Bernstein HC, Carlson RP. Microbial consortia engineering for cellular factories: In vitro to in silico systems. Comput Struct Biotechnol J 2012; 3(4): e201210017.
[http://dx.doi.org/10.5936/csbj.201210017] [PMID: 24688677]
[52]
Brune KD, Bayer TS. Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 2012; 3: 203.
[http://dx.doi.org/10.3389/fmicb.2012.00203] [PMID: 22679443]
[53]
Li X, Wu S, Dong Y, Fan H, Bai Z, Zhuang X. Engineering microbial consortia towards bioremediation. Water 2021; 13(20): 2928.
[http://dx.doi.org/10.3390/w13202928]
[54]
Hynes WF, Chacón J, Segrè D, Marx CJ, Cady NC, Harcombe WR. Bioprinting microbial communities to examine interspecies interactions in time and space. Biomed Phys Eng Express 2018; 4(5): 055010.
[http://dx.doi.org/10.1088/2057-1976/aad544]
[55]
Lawson CE, Harcombe WR, Hatzenpichler R, et al. Common principles and best practices for engineering microbiomes. Nat Rev Microbiol 2019; 17(12): 725-41.
[http://dx.doi.org/10.1038/s41579-019-0255-9] [PMID: 31548653]
[56]
Gude S, Taga ME. Multi-faceted approaches to discovering and predicting microbial nutritional interactions. Curr Opin Biotechnol 2020; 62: 58-64.
[http://dx.doi.org/10.1016/j.copbio.2019.08.005] [PMID: 31597114]
[57]
Faust K, Raes J. Microbial interactions: From networks to models. Nat Rev Microbiol 2012; 10(8): 538-50.
[http://dx.doi.org/10.1038/nrmicro2832] [PMID: 22796884]
[58]
Kumar A, Singh JS. Cyanoremediation: A green-clean tool for decontamination of synthetic pesticides from agro-and aquatic ecosystems Agro-environmental sustainability. Managing Environmental Pollution. 2017; 2: pp. 59-83.
[59]
Mahmood R, Shariff R, Ali S, Hayyat MU. Bioremediation of textile effluents by indigenous bacterial consortia and its effects on zea mays L. CVC 1415. J Anim Plant Sci 2013; 23(4): 1193-9.
[60]
Sharma U, Sharma JG. Nanotechnology for the bioremediation of heavy metals and metalloids. J Appl Biol Biotechnol 2022; 10(5): 34-44.
[http://dx.doi.org/10.7324/JABB.2022.100504]
[61]
Yang J, Hou B, Wang J, et al. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 2019; 9(3): 424.
[http://dx.doi.org/10.3390/nano9030424] [PMID: 30871096]
[62]
Chen K, He J, Li Y, et al. Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. J Colloid Interface Sci 2017; 494: 307-16.
[http://dx.doi.org/10.1016/j.jcis.2017.01.082] [PMID: 28161502]
[63]
Saravanan A, Kumar PS, Karishma S, et al. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 2021; 264(Pt 2): 128580.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128580] [PMID: 33059285]
[64]
Javed R, Zia M, Naz S, Aisida SO, Ain N, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects. J Nanobiotechnol 2020; 18(1): 172.
[http://dx.doi.org/10.1186/s12951-020-00704-4] [PMID: 33225973]
[65]
Mandeep ShuklaP. Microbial nanotechnology for bioremediation of industrial wastewater. Front Microbiol 2020; 11: 590631.
[http://dx.doi.org/10.3389/fmicb.2020.590631] [PMID: 33224126]
[66]
Wu Y, Pang H, Liu Y, et al. Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environ Pollut 2019; 246: 608-20.
[http://dx.doi.org/10.1016/j.envpol.2018.12.076] [PMID: 30605816]
[67]
Latif A, Sheng D, Sun K, et al. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications. Environ Pollut 2020; 264: 114728.
[http://dx.doi.org/10.1016/j.envpol.2020.114728] [PMID: 32408081]
[68]
Nitti F. Synthesis of gold nanoparticles and their application for detection and removal of water contaminants. Media Sains 2014; 13(2): 221-32.
[69]
Kamarudin KS, Mohamad MF. Synthesis of gold (Au) nanoparticles for mercury adsorption. Am J Appl Sci 2010; 7(6): 835-9.
[http://dx.doi.org/10.3844/ajassp.2010.835.839]
[70]
Rodríguez-Pérez J, López-Antón MA, Díaz-Somoano M, García R, Martínez-Tarazona MR. Development of gold nanoparticle-doped activated carbon sorbent for elemental mercury. Energy Fuels 2011; 25(5): 2022-7.
[http://dx.doi.org/10.1021/ef2001053]
[71]
Lo SI, Chen PC, Huang CC, Chang HT. Gold nanoparticlealuminum oxide adsorbent for efficient removal of mercury species from natural waters. Environ Sci Technol 2012; 46(5): 2724-30.
[http://dx.doi.org/10.1021/es203678v] [PMID: 22309110]
[72]
Lin YW, Huang CC, Chang HT. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 2011; 136(5): 863-71.
[http://dx.doi.org/10.1039/C0AN00652A] [PMID: 21157604]
[73]
Sumesh E, Bootharaju MS. Anshup, Pradeep T. A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J Hazard Mater 2011; 189(1-2): 450-7.
[http://dx.doi.org/10.1016/j.jhazmat.2011.02.061] [PMID: 21398028]
[74]
Al-Qahtani KM. Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. Egypt J Aquat Res 2017; 43(4): 269-74.
[http://dx.doi.org/10.1016/j.ejar.2017.10.003]
[75]
Ganzagh MAA, Yousefpour M, Taherian Z. The removal of mercury (II) from water by Ag supported on nanomesoporous silica. J Chem Biol 2016; 9(4): 127-42.
[http://dx.doi.org/10.1007/s12154-016-0157-5] [PMID: 27698950]
[76]
Ali A, Mannan A, Hussain I, Hussain I, Zia M. Effective removal of metal ions from aquous solution by silver and zinc nanoparticles functionalized cellulose: Isotherm, kinetics and statistical supposition of process. Environ Nanotechnol Monit Manag 2018; 9: 1-11.
[http://dx.doi.org/10.1016/j.enmm.2017.11.003]
[77]
Samrot AV, Angalene JLA, Roshini SM, et al. Bioactivity and heavy metal removal using plant gum mediated green synthesized silver nanoparticles. J Cluster Sci 2019; 30(6): 1599-610.
[http://dx.doi.org/10.1007/s10876-019-01602-y]
[78]
Malini S, Vignesh Kumar S, Hariharan R, Pon Bharathi A, Renuka Devi P, Hemananthan E. Antibacterial, photocatalytic and biosorption activity of chitosan nanocapsules embedded with Prosopis juliflora leaf extract synthesized silver nanoparticles. Mater Today Proc 2020; 21: 828-32.
[http://dx.doi.org/10.1016/j.matpr.2019.07.587]
[79]
Díaz S, Amaro F, Rico D, et al. Tetrahymena metallothioneins fall into two discrete subfamilies. PLoS One 2007; 2(3): e291.
[http://dx.doi.org/10.1371/journal.pone.0000291] [PMID: 17356700]
[80]
Ye J, Chang Y, Yan Y, et al. Identification and characterization of the arsenite methyltransferase from a protozoan, Tetrahymena pyriformis. Aquat Toxicol 2014; 149: 50-7.
[http://dx.doi.org/10.1016/j.aquatox.2014.01.028] [PMID: 24561426]
[81]
Kim H, Yim B, Kim J, Kim H, Lee YM. Molecular characterization of ABC transporters in marine ciliate, Euplotes crassus: Identification and response to cadmium and benzo[a]pyrene. Mar Pollut Bull 2017; 124(2): 725-35.
[http://dx.doi.org/10.1016/j.marpolbul.2017.01.046] [PMID: 28139231]
[82]
Sher S, Sultan S, Rehman A. Characterization of multiple metal resistant Bacillus licheniformis and its potential use in arsenic contaminated industrial wastewater. Appl Water Sci 2021; 11(4): 69.
[http://dx.doi.org/10.1007/s13201-021-01407-3]
[83]
Naureen A, Rehman A. Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: Their potential use in wastewater treatment. World J Microbiol Biotechnol 2016; 32(8): 133.
[http://dx.doi.org/10.1007/s11274-016-2079-3] [PMID: 27339314]
[84]
Zahoor A, Rehman A. Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 2009; 21(6): 814-20.
[http://dx.doi.org/10.1016/S1001-0742(08)62346-3] [PMID: 19803088]
[85]
Shakoori FR, Tabassum S, Rehman A, Shakoori AR. Isolation and characterization of Cr6+ reducing bacteria and their potential use in bioremediation of chromium containing wastewater. Pak J Zool 2010; 42(6)
[86]
Naeem A, Batool R, Jamil N. Cr(VI) reduction by Cellulosimicrobium sp. isolated from tannery effluent. Turk J Biol 2013; 37(3): 315-22.
[http://dx.doi.org/10.3906/biy-1209-18]
[87]
Yin X, Wang L, Duan G, Sun G. Characterization of arsenate transformation and identification of arsenate reductase in a green alga Chlamydomonas reinhardtii. J Environ Sci 2011; 23(7): 1186-93.
[http://dx.doi.org/10.1016/S1001-0742(10)60492-5] [PMID: 22125913]
[88]
Su SM, Zeng XB, Li LF, et al. Arsenate reduction and methylation in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 investigated with X-ray absorption near edge structure. J Hazard Mater 2012; 243: 364-7.
[http://dx.doi.org/10.1016/j.jhazmat.2012.09.061] [PMID: 23122191]
[89]
Abbas BA, Badr SQ. Bioremediation of some types of heavy metals by Candida spp. Int J Eng Tech Res 2015; 3: 2454-4698.
[90]
Kang CH, Kwon YJ, So JS. Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 2016; 89: 64-9.
[http://dx.doi.org/10.1016/j.ecoleng.2016.01.023]
[91]
Talukdar D, Jasrotia T, Sharma R, et al. Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites. Enviro Technol Innovation 2020; 20: 101050.
[http://dx.doi.org/10.1016/j.eti.2020.101050]
[92]
Chandrashekharaiah PS, Gupte Y, Sarkar P, et al. Algaebacterial aquaculture can enhance heavy metals (Pb2+ and Cd2+) remediation and water re-use efficiency of synthetic streams. Resour Conserv Recycling 2022; 180: 106211.
[http://dx.doi.org/10.1016/j.resconrec.2022.106211]
[93]
Jeyasundar PGSA, Ali A, Azeem M, et al. Green remediation of toxic metals contaminated mining soil using bacterial consortium and Brassica juncea. Environ Pollut 2021; 277: 116789.
[http://dx.doi.org/10.1016/j.envpol.2021.116789] [PMID: 33640810]
[94]
Abou-Aly HE, Youssef AM, Tewfike TA, El-Alkshar EA, El-Meihy RM. Reduction of heavy metals bioaccumulation in sorghum and its rhizosphere by heavy metals-tolerant bacterial consortium. Biocatal Agric Biotechnol 2021; 31: 101911.
[http://dx.doi.org/10.1016/j.bcab.2021.101911]
[95]
Sharma R, Jasrotia T, Kumar R, et al. An insight into the mechanism of ‘symbiotic-bioremoval’ of heavy metal ions from synthetic and industrial samples using bacterial consortium. Environ Technol Inno 2021; 21: 101302.
[http://dx.doi.org/10.1016/j.eti.2020.101302]
[96]
Sen SK, Raut S, Dora TK, Mohapatra PKD. Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model. J Hazard Mater 2014; 265: 47-60.
[http://dx.doi.org/10.1016/j.jhazmat.2013.11.036] [PMID: 24333714]
[97]
Ge Y, Cheng H, Zhou W, Zhou H, Wang Y. Enhancing Zn and Cd removal from heavy metal-contaminated paddy soil using an artificial microbial consortium. J Soils Sediments 2022; 22(1): 218-28.
[http://dx.doi.org/10.1007/s11368-021-03066-y]
[98]
Mejias Carpio IE, Franco DC, Zanoli Sato MI, et al. Biostimulation of metal-resistant microbial consortium to remove zinc from contaminated environments. Sci Total Environ 2016; 550: 670-5.
[http://dx.doi.org/10.1016/j.scitotenv.2016.01.149] [PMID: 26849331]
[99]
Ma L, Xu J, Chen N, Li M, Feng C. Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium. Ecotoxicol Environ Saf 2019; 170: 763-70.
[http://dx.doi.org/10.1016/j.ecoenv.2018.12.041] [PMID: 30583287]
[100]
Ma X, Li T, Fam H, et al. The influence of heavy metals on the bioremediation of polycyclic aromatic hydrocarbons in aquatic system by a bacterial–fungal consortium. Environ Technol 2018; 39(16): 2128-37.
[http://dx.doi.org/10.1080/09593330.2017.1351492] [PMID: 28678633]
[101]
Furgal KM, Meyer RL, Bester K. Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels. Chemosphere 2015; 136: 321-6.
[http://dx.doi.org/10.1016/j.chemosphere.2014.11.059] [PMID: 25532770]
[102]
Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2012; 2(12): 953-9.
[http://dx.doi.org/10.1016/S2221-1691(13)60006-4] [PMID: 23593575]
[103]
He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 2007; 61(18): 3984-7.
[http://dx.doi.org/10.1016/j.matlet.2007.01.018]
[104]
Wang X, Zhang D, Pan X, et al. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 2017; 170: 266-73.
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.020] [PMID: 28011305]
[105]
Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R. Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 2015; 27(5): 1861-9.
[http://dx.doi.org/10.1007/s10811-014-0492-2]
[106]
Dahoumane SA, Yéprémian C, Djédiat C, et al. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J Nanopart Res 2016; 18(3): 79.
[http://dx.doi.org/10.1007/s11051-016-3378-1]
[107]
Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 2015; 5(4): 499-504.
[http://dx.doi.org/10.1007/s13204-014-0341-2]
[108]
Narayanan KB, Park HH, Sakthivel N. Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectrosc 2013; 116: 485-90.
[http://dx.doi.org/10.1016/j.saa.2013.07.066] [PMID: 23973598]
[109]
Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 2013; 12(1): 7-11.
[http://dx.doi.org/10.4314/tjpr.v12i1.2]
[110]
Anil Kumar S, Abyaneh MK, Gosavi SW, et al. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 2007; 29(3): 439-45.
[http://dx.doi.org/10.1007/s10529-006-9256-7] [PMID: 17237973]
[111]
Dorcheh SK, Vahabi K. Biosynthesis of nanoparticles by fungi: Large-scale production. In: Mérillon JM, Ramawat K, Eds. Fungal Metabolites. Cham: Springer 2016.
[http://dx.doi.org/10.1007/978-3-319-19456-1_8-1]
[112]
Honary S, Gharaei-Fathabad E, Barabadi H, Naghibi F. Fungus-mediated synthesis of gold nanoparticles: A novel biological approach to nanoparticle synthesis. J Nanosci Nanotechnol 2013; 13(2): 1427-30.
[http://dx.doi.org/10.1166/jnn.2013.5989] [PMID: 23646653]
[113]
Sen K, Sinha P, Lahiri S. Time dependent formation of gold nanoparticles in yeast cells: A comparative study. Biochem Eng J 2011; 55(1): 1-6.
[http://dx.doi.org/10.1016/j.bej.2011.02.014]
[114]
Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 2009; 63(15): 1231-4.
[http://dx.doi.org/10.1016/j.matlet.2009.02.042]
[115]
Seshadri S, Saranya K, Kowshik M. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 2011; 27(5): 1464-9.
[http://dx.doi.org/10.1002/btpr.651] [PMID: 21710608]
[116]
Faramarzi S, Anzabi Y, Jafarizadeh-Malmiri H. Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae—fabrication and characterization. Arch Microbiol 2020; 202(5): 1203-9.
[http://dx.doi.org/10.1007/s00203-020-01831-0] [PMID: 32077990]
[117]
Peiris MM, Gunasekara TD, Jayaweera PM, Fernando SS. TiO2 nanoparticles from Baker’s yeast: A potent antimicrobial. J Microbiol Biotechnol 2018; 28(10): 1664-70.
[http://dx.doi.org/10.4014/jmb.1807.07005] [PMID: 30178650]
[118]
Singh J, Kumar V, Kim KH, Rawat M. Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ Res 2019; 177: 108569.
[http://dx.doi.org/10.1016/j.envres.2019.108569] [PMID: 31352301]
[119]
Fazlzadeh M, Rahmani K, Zarei A, Abdoallahzadeh H, Nasiri F, Khosravi R. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv Powder Technol 2017; 28(1): 122-30.
[http://dx.doi.org/10.1016/j.apt.2016.09.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy