Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Editor's Perspective

Ferroptosis, Iron Metabolism, and Forkhead Transcription Factors (FoxOs)

Author(s): Kenneth Maiese

Volume 20, Issue 3, 2023

Published on: 06 July, 2023

Page: [291 - 295] Pages: 5

DOI: 10.2174/1567202620666230706160056

conference banner
Next »
[1]
Du X, Xu H, Jiang H, Xie J. Akt/Nrf2 activated upregulation of heme oxygenase-1 involves in the role of Rg1 against ferrous iron-induced neurotoxicity in SK-N-SH cells. Neurotox Res 2013; 24(1): 71-9.
[2]
Kawamoto EM, Gleichmann M, Yshii LM, Lima Lde S, Mattson MP, Scavone C. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults. Braz J Med Biol Res 2012; 45(1): 58-67.
[3]
Liu J, Wu X, Wang X, Zhang Y, Bu P, Zhang Q, et al. Global gene expression profiling reveals functional importance of sirt2 in endothelial cells under oxidative stress. Int J Mol Sci 2013; 14(3): 5633-49.
[4]
Zakharova ET, Sokolov AV, Pavlichenko NN, Kostevich VA, Abdurasulova IN, Chechushkov AV, et al. Erythropoietin and Nrf2: key factors in the neuroprotection provided by apo-lactoferrin. Biometals 2018; 31: 425-43.
[5]
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer’s disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123: 110721.
[6]
Amini J, Sanchooli N, Milajerdi MH, Baeeri M, Haddadi M, Sanadgol N. The interplay between tauopathy and aging through interruption of UPR/Nrf2/Autophagy crosstalk in the Alzheimer’s disease transgenic experimental models. Int J Neurosci 2023; 1-27.
[7]
Ciesielska K, Gajewska M. Fatty acids as potent modulators of autophagy activity in white adipose tissue. Biomolecules 2023; 13(2): 255.
[8]
du Toit WL, Kruger R, Gafane-Matemane LF, Schutte AE, Louw R, Mels CMC. Markers of arterial stiffness and urinary metabolomics in young adults with early cardiovascular risk: the African-PREDICT study. Metabolomics 2023; 19(4): 28.
[9]
Fernandes J, Uppal K, Liu KH, Hu X, Orr M, Tran V, et al. Antagonistic interactions in mitochondria ros signaling responses to manganese. Antioxidants 2023; 12(4): 804.
[10]
Maiese K. Cellular Metabolism: A fundamental component of degeneration in the nervous system. Biomolecules 2023; 13(5): 816.
[11]
Ponzetti M, Rucci N, Falone S. RNA methylation and cellular response to oxidative stress-promoting anticancer agents. Cell Cycle 2023; 22(8): 870-905.
[12]
Raghuvanshi DS, Chakole S, Kumar M. Relationship between vitamins and diabetes. Cureus 2023; 15(3): e36815.
[13]
Raut SK, Khullar M. Oxidative stress in metabolic diseases: current scenario and therapeutic relevance. Mol Cell Biochem 2023; 478(1): 185-96.
[14]
Tramutola A, Lanzillotta S, Aceto G, Pagnotta S, Ruffolo G, Cifelli P, et al. Intranasal administration of kyccsrk peptide rescues brain insulin signaling activation and reduces alzheimer’s disease-like neuropathology in a mouse model for down syndrome. Antioxidants 2023; 12(1): 111.
[15]
Maiese K. Triple play: Promoting neurovascular longevity with nicotinamide, WNT, and erythropoietin in diabetes mellitus. Biomed Pharmacother 2008; 62(4): 218-32.
[16]
Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural regeneration research 2015; 10(4): 518-28.
[17]
Maiese K. Moving to the rhythm with clock (circadian) genes, autophagy, mtor, and sirt1 in degenerative disease and cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[18]
Maiese K, Chong ZZ, Hou J, Shang YC. Oxidative stress: Biomarkers and novel therapeutic pathways. Exp Gerontol 2010; 45(3): 217-34.
[19]
Fan H, Ai R, Mu S, Niu X, Guo Z, Liu L. MiR-19a suppresses ferroptosis of colorectal cancer cells by targeting IREB2. Bioengineered 2022; 13(5): 12021-9.
[20]
He Z, Zhao Y, Zhu Y, Wang W, Liu X, Lu F. Interfering TUG1 attenuates cerebrovascular endothelial apoptosis and inflammatory injury after cerebral ischemia/reperfusion via TUG1/miR-410/FOXO3 ceRNA axis. Neurotox Res 2021; 40(1): 1-3.
[21]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[22]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[23]
Maiese K. The Implications of Telomere Length: Advanced Aging, Cell Senescence, MRI Phenotypes, Stem Cells and Alzheimer's Disease. Curr Neurovasc Res 2023.
[24]
Czubowicz K, Jesko H, Wencel P, Lukiw WJ, Strosznajder RP. The role of ceramide and sphingosine-1-phosphate in alzheimer’s disease and other neurodegenerative disorders. Mol Neurobiol 2019; 56(8): 5436-55.
[25]
Kell DB, Pretorius E. No effects without causes: the iron dysregulation and dormant microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93(3): 1518-57.
[26]
Khan H, Tundis R, Ullah H, Aschner M, Belwal T, Mirzaei H, et al. Flavonoids targeting NRF2 in neurodegenerative disorders. Food Chem Toxicol 2020; 146: 111817.
[27]
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer’s disease. Biol Rev Camb Philos Soc 2023; 98(4): 1424-58.
[28]
Maiese K. The dynamics of cellular injury: transformation into neuronal and vascular protection. Histol Histopathol 2001; 16(2): 633-44.
[29]
Maiese K, Chong ZZ, Shang YC. Raves and risks for erythropoietin. Cytokine Growth Factor Rev 2008; 19(2): 145-55.
[30]
Su M, Naderi K, Samson N, Youssef I, Fulop L, Bozso Z, et al. Mechanisms associated with type 2 diabetes as a risk factor for alzheimer-related pathology. Mol Neurobiol 2019; 56(8): 5815-34.
[31]
Sun J, Martin JM, Vanderpoel V, Sumbria RK. The promises and challenges of erythropoietin for treatment of alzheimer’s disease. Neuromolecular Med 2019; 21(1): 12-24.
[32]
Wahl D, Solon-Biet SM, Cogger VC, Fontana L, Simpson SJ, Le Couteur DG, et al. Aging, lifestyle and dementia. Neurobiol Dis 2019; 130: 104481.
[33]
Wang H, Yang F, Zhang S, Xin R, Sun Y. Genetic and environmental factors in Alzheimer’s and Parkinson’s diseases and promising therapeutic intervention via fecal microbiota transplantation. NPJ Parkinsons Dis 2021; 7(1): 70.
[34]
Yamashima T, Ota T, Mizukoshi E, Nakamura H, Yamamoto Y, Kikuchi M, et al. Intake of ω-6 polyunsaturated fatty acid-rich vegetable oils and risk of lifestyle diseases. Adv Nutr 2020; 11(6): 1489-509.
[35]
Chong ZZ, Shang YC, Wang S, Maiese K. SIRT1: New avenues of discovery for disorders of oxidative stress. Expert opinion on therapeutic targets 2012; 16(2): 167-78.
[36]
Hu G, Wang T, Ma C. EPO activates PI3K-IKKα-CDK1 signaling pathway to promote the proliferation of Glial Cells under hypoxia environment. Genet Mol Biol 2022; 45(1): e20210249.
[37]
Unni S, Deshmukh P, Krishnappa G, Bharath MMS, Padmanabhan B. Chlorhexidine as a Keap1-Nrf2 inhibitor: a new target for an old drug for Parkinson's disease therapy. J Biomol Struct Dyn 2022; 1-15: 5367-81.
[38]
Wang Q, Zheng J, Pettersson S, Reynolds R, Tan EK. The link between neuroinflammation and the neurovascular unit in synucleinopathies. Sci Adv 2023; 9(7): eabq1141.
[39]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[40]
Maiese K. Biomarkers for parkinson’s disease and neurodegenerative disorders: a role for non-coding rnas. Curr Neurovasc Res 2022; 19(2): 127-30.
[41]
Momkute L, Vilkeviciute A, Gedvilaite G, Dubinskaite G, Kriauciuniene L, Liutkeviciene R. Association of APOE serum levels and apoe ε2, ε3, and ε4 alleles with optic neuritis. Genes 2022; 13(7): 1188.
[42]
Movahedpour A, Vakili O, Khalifeh M, Mousavi P, Mahmoodzadeh A, Taheri-Anganeh M, et al. Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: A novel insight into targeted therapy. Cell Biochem Funct 2022; 40(3): 232-47.
[43]
Oyefeso FA, Muotri AR, Wilson CG, Pecaut MJ. Brain organoids: a promising model to assess oxidative stress-induced Central Nervous System damage. Dev Neurobiol 2021; 81(5): 653-70.
[44]
Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 2005; 75(3): 207-46.
[45]
Maiese K. Picking a bone with WISP1 (CCN4): new strategies against degenerative joint disease. J Transl Sci 2016; 1(3): 83-5.
[46]
Maiese K. Charting a course for erythropoietin in traumatic brain injury. J Transl Sci 2016; 2(2): 140-4.
[47]
Maiese K, Chong ZZ, Wang S, Shang YC. Oxidant stress and signal transduction in the nervous system with the pi 3-k, akt, and mtor cascade. Int J Mol Sci 2013; 13(11): 13830-66.
[48]
Duarte-Silva E, Meuth SG, Peixoto CA. The role of iron metabolism in the pathogenesis and treatment of multiple sclerosis. Front Immunol 2023; 14: 1137635.
[49]
Gökdoğan Edgünlü T, Ünal Y, Karakaş Çelik S, Genç Ö, Emre U, Kutlu G. The effect of FOXO gene family variants and global DNA metylation on RRMS disease. Gene 2020; 726: 144172.
[50]
Qin D, Li D, Wang C, Guo S. Ferroptosis and central nervous system demyelinating diseases. J Neurochem 2023.
[51]
Maiese K. The many facets of cell injury: angiogenesis to autophagy. Curr Neurovasc Res 2012; 9(2): 1-2.
[52]
Maiese K. Novel Insights for multiple sclerosis and demyelinating disorders with apoptosis, autophagy, FoxO, and mTOR. Curr Neurovasc Res 2021; 18(2): 1-4.
[53]
Ali ES, Mitra K, Akter S, Ramproshad S, Mondal B, Khan IN, et al. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int 2022; 22(1): 284.
[54]
Chen G, Li Z, Chen C, Liu J, Zhu W, She L, et al. The molecular landscape and biological alterations induced by pras40-knockout in head and neck squamous cell carcinoma. Front Oncol 2020; 10: 565669.
[55]
Chen YL, Hsieh CC, Chu PM, Chen JY, Huang YC, Chen CY. Roles of protein tyrosine phosphatases in hepatocellular carcinoma progression (Review). Oncology reports 2023; 49(3)
[56]
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102(3): 1449-94.
[57]
Liu W, Mahdessian H, Helgadottir H, Zhou X, Thutkawkorapin J, Jiao X, et al. Colorectal cancer risk susceptibility loci in a Swedish population. Mol Carcinog 2021; 61(3): 288-300.
[58]
Liu W, Varier KM, Sample KM, Zacksenhaus E, Gajendran B, Ben-David Y. Erythropoietin signaling in the microenvironment of tumors and healthy tissues. Adv Exp Med Biol 2020; 1223: 17-30.
[59]
Lu M, Chen C, Lan Y, Xiao J, Li R, Huang J, et al. Capsaicin-the major bioactive ingredient of chili peppers: bio-efficacy and delivery systems. Food Funct 2020; 11(4): 2848-60.
[60]
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: Aging gracefully as a protectionist? Pharmacol Ther 2008; 118(1): 58-81.
[61]
Yalçin M, Mundorf A, Thiel F, Amatriain-Fernández S, Kalthoff IS, Beucke JC, et al. It’s about time: the circadian network as time-keeper for cognitive functioning, locomotor activity and mental health. Front Physiol 2022; 13: 873237.
[62]
Zhou Q, Tang S, Zhang X, Chen L. Targeting PRAS40: a novel therapeutic strategy for human diseases. J Drug Target 2021; 29(7): 703-15.
[63]
Maiese K. Novel stem cell strategies with mtor molecules to medicine with mtor: translating critical pathways into novel therapeutic strategies. Hoboken, New Jersey: Academic Press, Elsevier 2016; pp. 3-22.
[64]
Maiese K. Forkhead transcription factors: formulating a foxo target for cognitive loss. Curr Neurovasc Res 2017; 14(4): 415-20.
[65]
Maiese K. Sirtuins in Metabolic Disease: Innovative Therapeutic Strategies with SIRT1, AMPK, mTOR, and Nicotinamide. In: Sirtuin Biology in Cancer and Metabolic Disease: Cellular Pathways for Clinical Discovery, ed K Maiese. Hoboken, New Jersey: Academic Press, Elsevier. ISBN 9780128141182.
[66]
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14(9): 3446-85.
[67]
Maiese K, Chong ZZ, Shang YC, Hou J. A “FOXO” in sight: targeting Foxo proteins from conception to cancer. Med Res Rev 2009; 29(3): 395-418.
[68]
Salih DA, Rashid AJ, Colas D, de la Torre-Ubieta L, Zhu RP, Morgan AA, et al. FoxO6 regulates memory consolidation and synaptic function. Genes Dev 2012; 26(24): 2780-801.
[69]
Jalgaonkar MP, Parmar UM, Kulkarni YA, Oza MJ. SIRT1-FOXOs activity regulates diabetic complications. Pharmacol Res 2022; 175: 106014.
[70]
Ji JS, Liu L, Zeng Y, Yan LL. Effect of FOXO3 and air pollution on cognitive function: a longitudinal cohort study of older adults in China from 2000 to 2014. J Gerontol A Biol Sci Med Sci 2022; 77(8): 1534-41.
[71]
Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 2008; 14(5): 219-27.
[72]
Salcher S, Spoden G, Hagenbuchner J, Fuhrer S, Kaserer T, Tollinger M, et al. A drug library screen identifies Carbenoxolone as novel FOXO inhibitor that overcomes FOXO3-mediated chemoprotection in high-stage neuroblastoma. Oncogene 2019; 39(5): 1080-97.
[73]
Cheema PS, Nandi D, Nag A. Exploring the therapeutic potential of forkhead box O for outfoxing COVID-19. Open Biol 2021; 11(6): 210069.
[74]
Maiese K. Forkhead transcription factors: new considerations for alzheimer’s disease and dementia. J Transl Sci 2016; 2(4): 241-7.
[75]
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Front Biosci 2021; 26(9): 614-27.
[76]
Liu XL, Gao CC, Qi M, Han YL, Zhou ML, Zheng LR. Expression of FOXO transcription factors in the brain following traumatic brain injury. Neurosci Lett 2021; 753: 135882.
[77]
Maiese K. Cognitive impairment and dementia: gaining insight through circadian clock gene pathways. Biomolecules 2021; 11(7): 1-18.
[78]
Kostić M, Korićanac G, Tepavčević S, Stanišić J, Romić S, Ćulafić T, et al. Low-intensity exercise affects cardiac fatty acid oxidation by increasing the nuclear content of pparα, foxo1, and lipin1 in fructose-fed rats. Metab Syndr Relat Disord 2023; 21(2): 122-31.
[79]
Sierra-Pagan JE, Dsouza N, Das S, Larson TA, Sorensen JR, Ma X, et al. FOXK1 regulates Wnt signaling to promote cardiogenesis. Cardiovasc Res 2013; 119(8): 1728-39.
[80]
Zhao T, Miao H, Song Z, Li Y, Xia N, Zhang Z, et al. Metformin alleviates the cognitive impairment induced by benzo[a]pyrene via glucolipid metabolism regulated by FTO/FoxO6 pathway in mice. Environ Sci Pollut Res 2023; 30(26): 69192-204.
[81]
Jain S. A Computational Model for Detection of Lung Diseases Due to Forkhead Transcription Factors Emergent Converging Technologies and Biomedical Systems Lecture Noted in Computer Science. Berlin: Springer 2022; pp. 71-81.
[82]
Li K, Xu J, Xue K, Yu R, Li C, Fei W, et al. Deficiency of two-pore segment channel 2 contributes to systemic lupus erythematosus via regulation of apoptosis and cell cycle. Chin Med J (Engl) 2022; 135(4): 447-55.
[83]
O’Donnell BT, Monjure TA, Al-Ghadban S, Ives CJ, L’Ecuyer MP, Rhee C, et al. Aberrant expression of cox-2 and foxg1 in infrapatellar fat pad-derived ascs from pre-diabetic donors. Cells 2022; 11(15): 2367.
[84]
Maiese K. Forkhead Transcription Factors: Vital Elements in Biology and Medicine Advances in Experimental Medicine and Biology. Berlin: Springer Science and Business Medi 2010; p. 665.
[85]
Maiese K. FoxO proteins in the nervous system. Anal Cell Pathol (Amst) 2015; 2015: 569392.
[86]
Maiese K. Healing the Heart with Sirtuins and Mammalian Forkhead Transcription Factors. Curr Neurovasc Res 2020; 17(1): 1-2.
[87]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regen Res 2021; 16(3): 448-55.
[88]
Ali T, Rahman SU, Hao Q, Li W, Liu Z, Ali Shah F, et al. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 2020; 69(2): e12667.
[89]
Beretta GL, Corno C, Zaffaroni N, Perego P. Role of FoxO proteins in cellular response to antitumor agents. Cancers 2019; 11(1): 90.
[90]
BinMowyna MN. AlFaris NA. Kaempferol suppresses acetaminophen-induced liver damage by upregulation/activation of SIRT1. Pharm Biol 2021; 59(1): 146-56.
[91]
Liu W, Li Y, Luo B. Current perspective on the regulation of FOXO4 and its role in disease progression. Cell Mol Life Sci 2020; 77(4): 651-63.
[92]
Liu Y, Xu Y, Yu M. MicroRNA-4722-5p and microRNA-615-3p serve as potential biomarkers for Alzheimer’s disease. Exp Ther Med 2022; 23(3): 241.
[93]
Liu Z, Huang H, Yu Y, Jia Y, Li L, Shi X, et al. Exploring the potential mechanism of action of ursolic acid against gastric cancer and COVID-19 using network pharmacology and bioinformatics analysis. Curr Pharm Des 2023; 29(16): 1274-92.
[94]
Maiese K. FoxO transcription factors and regenerative pathways in diabetes mellitus. Curr Neurovasc Res 2015; 12(4): 404-13.
[95]
Razzaghi A, Choobineh S, Gaeini A, Soori R. Interaction of exercise training with taurine attenuates infarct size and cardiac dysfunction via Akt-Foxo3a-Caspase-8 signaling pathway. Amino Acids 2023; 55: 869-80.
[96]
Sanphui P, Das AK, Biswas SC. FoxO3a requires BAF57, a subunit of chromatin remodeler SWI/SNF complex for induction of PUMA in a model of Parkinson’s disease. J Neurochem 2020; 154(5): e14969.
[97]
Yaman D, Takmaz T, Yüksel N, Dinçer SA, Şahin F. Evaluation of silent information regulator T (SIRT) 1 and Forkhead Box O (FOXO) transcription factor 1 and 3a genes in glaucoma. Mol Biol Rep 2020; 47: 9337-44.
[98]
Yang N, Zhang Q, Bi XJ. MiRNA-96 accelerates the malignant progression of ovarian cancer via targeting FOXO3a. Eur Rev Med Pharmacol Sci 2020; 24(1): 65-73.
[99]
Zhao HY, Li HY, Jin J, Jin JZ, Zhang LY, Xuan MY, et al. L-carnitine treatment attenuates renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. Korean J Intern Med 2020; 36 (Suppl. 1): S180.
[100]
Casciano F, Zauli E, Rimondi E, Mura M, Previati M, Busin M, et al. The role of the mTOR pathway in diabetic retinopathy. Front Med 2022; 9: 973856.
[101]
Gao J, Yao M, Chang D, Liu J. mTOR (Mammalian Target of Rapamycin): Hitting the Bull’s Eye for Enhancing Neurogenesis After Cerebral Ischemia? Stroke 2022; 54(1): 279-85.
[102]
Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 2013; 19(1): 51-60.
[103]
Rapaka D, Bitra VR, Challa SR, Adiukwu PC. mTOR signaling as a molecular target for the alleviation of Alzheimer’s disease pathogenesis. Neurochem Int 2022; 155: 105311.
[104]
Li JB, Hu XY, Chen MW, Xiong CH, Zhao N, Ge YH, et al. p85S6K sustains synaptic GluA1 to ameliorate cognitive deficits in Alzheimer’s disease. Transl Neurodegener 2023; 12(1): 1.
[105]
Thomas SD, Jha NK, Ojha S, Sadek B. mTOR signaling disruption and its association with the development of autism spectrum disorder. Molecules 2023; 28(4): 1889.
[106]
Zhao W, Xie C, Zhang X, Liu J, Liu J, Xia Z. Advances in the mTOR signaling pathway and its inhibitor rapamycin in epilepsy. Brain Behav 2023; 13(6): e2995.
[107]
Hua K, Li T, He Y, Guan A, Chen L, Gao Y, et al. Resistin secreted by porcine alveolar macrophages leads to endothelial cell dysfunction during Haemophilus parasuis infection. Virulence 2023; 14(1): 2171636.
[108]
Alves HR, Lomba GSB, Gonçalves-de-Albuquerque CF, Burth P. Irisin, Exercise, and COVID-19. Front Endocrinol 2022; 13: 879066.
[109]
Ding MR, Qu YJ, Hu B, An HM. Signal pathways in the treatment of Alzheimer’s disease with traditional Chinese medicine. Biomed Pharmacother 2022; 152: 113208.
[110]
Gao J, Xu H, Rong Z, Chen L. Wnt family member 1 (Wnt1) overexpression-induced M2 polarization of microglia alleviates inflammation-sensitized neonatal brain injuries. Bioengineered 2022; 13(5): 12409-20.
[111]
Guimera AM, Clark P, Wordsworth J, Anugula S, Rasmussen LJ, Shanley DP. Systems modelling predicts chronic inflammation and genomic instability prevent effective mitochondrial regulation during biological ageing. Exp Gerontol 2022; 166: 111889.
[112]
Sadria M, Seo D, Layton AT. The mixed blessing of AMPK signaling in Cancer treatments. BMC Cancer 2022; 22(1): 105.
[113]
Maiese K. Harnessing the power of sirt1 and non-coding rnas in vascular disease. Curr Neurovasc Res 2017; 14(1): 82-8.
[114]
Maiese K. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Front Biosci 2020; 25: 1925-73.
[115]
Zhong S, Chen W, Wang B, Gao C, Liu X, Song Y, et al. Energy stress modulation of AMPK/FoxO3 signaling inhibits mitochondria-associated ferroptosis. Redox Biol 2023; 63: 102760.
[116]
Atef MM, El-Sayed NM, Ahmed AAM, Mostafa YM. Donepezil improves neuropathy through activation of AMPK signalling pathway in streptozotocin-induced diabetic mice. Biochem Pharmacol 2019; 159: 1-10.
[117]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[118]
Maiese K. Nicotinamide as a foundation for treating neurodegenerative disease and metabolic disorders. Curr Neurovasc Res 2021; 18(1): 134-49.
[119]
Pal PB, Sonowal H, Shukla K, Srivastava SK, Ramana KV. Aldose reductase regulates hyperglycemia-induced HUVEC death via SIRT1/AMPK-alpha1/mTOR pathway. J Mol Endocrinol 2019; 63(1): 11-25.
[120]
Yang J, Suo H, Song J. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome. Crit Rev Food Sci Nutr 2020; 20: 1-19.
[121]
Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 2019; 136: 27-41.
[122]
Shokri Afra H, Zangooei M, Meshkani R, Ghahremani MH, Ilbeigi D, Khedri A, et al. Hesperetin is a potent bioactivator that activates SIRT1-AMPK signaling pathway in HepG2 cells. J Physiol Biochem 2019; 75(2): 125-33.
[123]
Zhao D, Sun X, Lv S, Sun M, Guo H, Zhai Y, et al. Salidroside attenuates oxidized lowdensity lipoproteininduced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. Int J Mol Med 2019; 43(6): 2279-90.
[124]
Shang YC, Chong ZZ, Wang S, Maiese K. Tuberous sclerosis protein 2 (TSC2) modulates CCN4 cytoprotection during apoptotic amyloid toxicity in microglia. Curr Neurovasc Res 2013; 10(1): 29-38.
[125]
Tsai CF, Kuo YH, Yeh WL, Wu CY, Lin HY, Lai SW, et al. Regulatory effects of caffeic acid phenethyl ester on neuroinflammation in microglial cells. Int J Mol Sci 2015; 16(3): 5572-89.
[126]
Maiese K. Erythropoietin and mTOR: A “One-Two Punch” for Aging-Related Disorders Accompanied by Enhanced Life Expectancy. Curr Neurovasc Res 2016; 13(4): 329-40.
[127]
Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin. Jama 2005; 293(1): 90-5.
[128]
Zhao C, Sun G, Li Y, Kong K, Li X, Kan T, et al. Forkhead box O3 attenuates osteoarthritis by suppressing ferroptosis through inactivation of NF-κB/MAPK signaling. J Orthop Translat 2023; 39: 147-62.
[129]
He L, Yang Y, Chen J, Zou P, Li J. Transcriptional activation of ENPP2 by FoxO4 protects cardiomyocytes from doxorubicin-induced toxicity. Mol Med Rep 2021; 24(3): 668.

© 2024 Bentham Science Publishers | Privacy Policy