Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

A Comprehensive Review on Inorganic Nanoparticles as Effective Modulators of Amyloidogenesis

Author(s): Debashmita Chakraborty, Aniket Mukherjee and Nandini Sarkar*

Volume 30, Issue 8, 2023

Published on: 20 July, 2023

Page: [640 - 652] Pages: 13

DOI: 10.2174/0929866530666230705153229

Price: $65

conference banner
Abstract

Many degenerative disorders have started to develop as a result of the deposition of insoluble protein fibrillar clumps known as amyloid. This deposition mostly limits normal cellular function and signaling. This build-up of amyloid in vivo results in a variety of illnesses in the body, including type 2 diabetes, several neurodegenerative diseases (such as Alzheimer's disease and spongiform encephalopathy), and Alzheimer's disease. Growing interest has been demonstrated in nanoparticles as a potential treatments for amyloidosis throughout the past few decades. Inorganic nanoparticles are one of them and have also been in substantial research as a potential anti-amyloid drug. Inorganic nanoparticles have emerged as a good study candidates because of their nano size, distinctive physical characteristics, and capacity to traverse the blood-brain barrier. In the current review, we have focused on the effects of different types of inorganic nanoparticles on amyloidogenesis and attempted to understand their underlying mechanism of action.

Keywords: Inorganic nanoparticle, amyloid, amyloidogenesis, quantum dots, thioflavin T, fibrillation.

Graphical Abstract
[1]
Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.I.; Merlini, G.; Saraiva, M.J.M.; Westermark, P. Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid, 2010, 17(3-4), 101-104.
[http://dx.doi.org/10.3109/13506129.2010.526812] [PMID: 21039326]
[2]
Fink, A.L. Protein aggregation: Folding aggregates, inclusion bodies and amyloid. Fold. Des., 1998, 3(1), R9-R23.
[http://dx.doi.org/10.1016/S1359-0278(98)00002-9] [PMID: 9502314]
[3]
Fowler, D.M.; Koulov, A.V.; Balch, W.E.; Kelly, J.W. Functional amyloid – from bacteria to humans. Trends Biochem. Sci., 2007, 32(5), 217-224.
[http://dx.doi.org/10.1016/j.tibs.2007.03.003] [PMID: 17412596]
[4]
Eisenberg, D.; Jucker, M. The amyloid state of proteins in human diseases. Cell, 2012, 148(6), 1188-1203.
[http://dx.doi.org/10.1016/j.cell.2012.02.022] [PMID: 22424229]
[5]
Kelly, J.W. Mechanisms of amyloidogenesis. Nat. Struct. Biol., 2000, 7(10), 824-826.
[http://dx.doi.org/10.1038/82815] [PMID: 11017183]
[6]
Parijat, P.; Mandeep, D. A brief review on inorganic nanoparticles. J. Crit. Rev., 2016, 3(3), 18-26.
[7]
Fakruddin, M.; Hossain, Z.; Afroz, H. Prospects and applications of nanobiotechnology: A medical perspective. J. Nanobiotechnology, 2012, 10(1), 31.
[http://dx.doi.org/10.1186/1477-3155-10-31] [PMID: 22817658]
[8]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[9]
Teleanu, D.; Chircov, C.; Grumezescu, A.; Volceanov, A.; Teleanu, R. Blood-brain delivery methods using nanotechnology. Pharmaceutics, 2018, 10(4), 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269] [PMID: 30544966]
[10]
Ceña, V.; Játiva, P. Nanoparticle crossing of blood–brain barrier: A road to new therapeutic approaches to central nervous system diseases. Nanomedicine (Lond.), 2018, 13(13), 1513-1516.
[http://dx.doi.org/10.2217/nnm-2018-0139] [PMID: 29998779]
[11]
Zhou, Y.; Peng, Z.; Seven, E.S.; Leblanc, R.M. Crossing the blood-brain barrier with nanoparticles. J. Control. Release, 2018, 270, 290-303.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.015] [PMID: 29269142]
[12]
Gallardo-Toledo, E.; Velasco-Aguirre, C.; Kogan, M.J. Inorganic nanoparticles and their strategies to enhance Brain Drug Delivery. Neuromethods, 2020, 149-172.
[13]
Lynch, I.; Dawson, K.A. Protein-nanoparticle interactions. Nano Today, 2008, 3(1-2), 40-47.
[http://dx.doi.org/10.1016/S1748-0132(08)70014-8]
[14]
Turci, F.; Ghibaudi, E.; Colonna, M.; Boscolo, B.; Fenoglio, I.; Fubini, B. An integrated approach to the study of the interaction between proteins and nanoparticles. Langmuir, 2010, 26(11), 8336-8346.
[http://dx.doi.org/10.1021/la904758j] [PMID: 20205402]
[15]
Yarjanli, Z.; Ghaedi, K.; Esmaeili, A.; Rahgozar, S.; Zarrabi, A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci., 2017, 18(1), 51.
[http://dx.doi.org/10.1186/s12868-017-0369-9] [PMID: 28651647]
[16]
Capocefalo, A.; Deckert-Gaudig, T.; Brasili, F.; Postorino, P.; Deckert, V. Unveiling the interaction of protein fibrils with gold nanoparticles by plasmon enhanced nano-spectroscopy. Nanoscale, 2021, 13(34), 14469-14479.
[http://dx.doi.org/10.1039/D1NR03190B] [PMID: 34473176]
[17]
Pansieri, J.; Gerstenmayer, M.; Lux, F.; Mériaux, S.; Tillement, O.; Forge, V.; Larrat, B.; Marquette, C. Magnetic nanoparticles applications for amyloidosis study and detection: A Review. Nanomaterials, 2018, 8(9), 740.
[http://dx.doi.org/10.3390/nano8090740] [PMID: 30231587]
[18]
Antosova, A.; Bednarikova, Z.; Koneracka, M.; Antal, I.; Marek, J.; Kubovcikova, M.; Zavisova, V.; Jurikova, A.; Gazova, Z. Amino acid functionalized superparamagnetic nanoparticles inhibit lysozyme amyloid fibrillization. Chemistry, 2019, 25(31), 7501-7514.
[http://dx.doi.org/10.1002/chem.201806262] [PMID: 30958585]
[19]
Skaat, H.; Belfort, G.; Margel, S. Synthesis and characterization of fluorinated magnetic core–shell nanoparticles for inhibition of insulin amyloid fibril formation. Nanotechnology, 2009, 20(22), 225106.
[http://dx.doi.org/10.1088/0957-4484/20/22/225106] [PMID: 19433878]
[20]
Yan, C.; Zhang, N.; Guan, P.; Chen, P.; Ding, S.; Hou, T.; Hu, X.; Wang, J.; Wang, C. Drug-based magnetic imprinted nanoparticles: Enhanced lysozyme amyloid fibrils cleansing and anti-amyloid fibrils toxicity. Int. J. Biol. Macromol., 2020, 153, 723-735.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.061] [PMID: 32169448]
[21]
Giannousi, K.; Antonoglou, O.; Dendrinou-Samara, C. Interplay between amyloid fibrillation delay and degradation by magnetic zinc-doped ferrite nanoparticles. ACS Chem. Neurosci., 2019, 10(8), 3796-3804.
[http://dx.doi.org/10.1021/acschemneuro.9b00292] [PMID: 31298846]
[22]
Singla, R.; Abidi, S.M.S.; Dar, A.I.; Acharya, A. Inhibition of glycation-induced aggregation of human serum albumin by organic–inorganic hybrid nanocomposites of iron oxide-functionalized nanocellulose. ACS Omega, 2019, 4(12), 14805-14819.
[http://dx.doi.org/10.1021/acsomega.9b01392] [PMID: 31552320]
[23]
Wang, M.; Kakinen, A.; Pilkington, E.H.; Davis, T.P.; Ke, P.C. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomater. Sci., 2017, 5(3), 485-493.
[http://dx.doi.org/10.1039/C6BM00764C] [PMID: 28078343]
[24]
Andrikopoulos, N.; Song, Z.; Wan, X.; Douek, A.M.; Javed, I.; Fu, C.; Xing, Y.; Xin, F.; Li, Y.; Kakinen, A.; Koppel, K.; Qiao, R.; Whittaker, A.K.; Kaslin, J.; Davis, T.P.; Song, Y.; Ding, F.; Ke, P.C. Inhibition of amyloid aggregation and toxicity with janus iron oxide nanoparticles. Chem. Mater., 2021, 33(16), 6484-6500.
[http://dx.doi.org/10.1021/acs.chemmater.1c01947] [PMID: 34887621]
[25]
Antosova, A.; Gancar, M.; Bednarikova, Z.; Marek, J.; Zahn, D.; Dutz, S.; Gazova, Z. Surface-modified magnetite nanoparticles affect lysozyme amyloid fibrillization. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(9), 129941.
[http://dx.doi.org/10.1016/j.bbagen.2021.129941] [PMID: 34090976]
[26]
Pradhan, N.; Jana, N.R.; Jana, N.R. Inhibition of protein aggregation by iron oxide nanoparticles conjugated with glutamine- and proline-based osmolytes. ACS Appl. Nano Mater., 2018, 1(3), 1094-1103.
[http://dx.doi.org/10.1021/acsanm.7b00245]
[27]
Mahmoudi, M.; Quinlan-Pluck, F.; Monopoli, M.P.; Sheibani, S.; Vali, H.; Dawson, K.A.; Lynch, I. Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution. ACS Chem. Neurosci., 2013, 4(3), 475-485.
[http://dx.doi.org/10.1021/cn300196n] [PMID: 23509983]
[28]
Mirsadeghi, S.; Shanehsazzadeh, S.; Atyabi, F.; Dinarvand, R. Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Mater. Sci. Eng. C, 2016, 59, 390-397.
[http://dx.doi.org/10.1016/j.msec.2015.10.026] [PMID: 26652388]
[29]
Song, M.; Sun, Y.; Luo, Y.; Zhu, Y.; Liu, Y.; Li, H. Exploring the mechanism of inhibition of au nanoparticles on the aggregation of amyloid-β(16-22) peptides at the atom level by all-atom molecular dynamics. Int. J. Mol. Sci., 2018, 19(6), 1815.
[http://dx.doi.org/10.3390/ijms19061815] [PMID: 29925792]
[30]
Meesaragandla, B.; Karanth, S.; Janke, U.; Delcea, M. Biopolymer-coated gold nanoparticles inhibit human insulin amyloid fibrillation. Sci. Rep., 2020, 10(1), 7862.
[http://dx.doi.org/10.1038/s41598-020-64010-7] [PMID: 32398693]
[31]
Kumar Ban, D.; Paul, S. Functionalized gold and silver nanoparticles modulate amyloid fibrillation, defibrillation and cytotoxicity of lysozyme via altering protein surface character. Appl. Surf. Sci., 2019, 473, 373-385.
[http://dx.doi.org/10.1016/j.apsusc.2018.12.157]
[32]
Zhao, L.; Xin, Y.; Li, Y.; Yang, X.; Luo, L.; Meng, F. Ultraeffective inhibition of amyloid fibril assembly by nanobody–gold nanoparticle conjugates. Bioconjug. Chem., 2019, 30(1), 29-33.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00797] [PMID: 30585717]
[33]
Gao, N.; Sun, H.; Dong, K.; Ren, J.; Qu, X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry, 2015, 21(2), 829-835.
[http://dx.doi.org/10.1002/chem.201404562] [PMID: 25376633]
[34]
Javed, I.; Peng, G.; Xing, Y.; Yu, T.; Zhao, M.; Kakinen, A.; Faridi, A.; Parish, C.L.; Ding, F.; Davis, T.P.; Ke, P.C.; Lin, S. Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat. Commun., 2019, 10(1), 3780.
[http://dx.doi.org/10.1038/s41467-019-11762-0] [PMID: 31439844]
[35]
Hou, K.; Zhao, J.; Wang, H.; Li, B.; Li, K.; Shi, X.; Wan, K.; Ai, J.; Lv, J.; Wang, D.; Huang, Q.; Wang, H.; Cao, Q.; Liu, S.; Tang, Z. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat. Commun., 2020, 11(1), 4790.
[http://dx.doi.org/10.1038/s41467-020-18525-2] [PMID: 32963242]
[36]
Peretz, Y.; Malishev, R.; Kolusheva, S.; Jelinek, R. Nanoparticles modulate membrane interactions of human Islet amyloid polypeptide (hIAPP). Biochim. Biophys. Acta Biomembr., 2018, 1860(9), 1810-1817.
[http://dx.doi.org/10.1016/j.bbamem.2018.03.029] [PMID: 29641979]
[37]
Gao, G.; Zhang, M.; Gong, D.; Chen, R.; Hu, X.; Sun, T. The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-β fibrillation. Nanoscale, 2017, 9(12), 4107-4113.
[http://dx.doi.org/10.1039/C7NR00699C] [PMID: 28276561]
[38]
Sharma, V.; Sharma, S.; Rana, S.; Ghosh, K.S. Inhibition of amyloid fibrillation of human γD-crystallin by gold nanoparticles: Studies at molecular level. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 233, 118199.
[http://dx.doi.org/10.1016/j.saa.2020.118199] [PMID: 32151988]
[39]
Alam, M.T.; Rauf, M.A.; Siddiqui, G.A.; Owais, M.; Naeem, A. Green synthesis of silver nanoparticles, its characterization, and chaperone-like activity in the aggregation inhibition of α-chymotrypsinogen A. Int. J. Biol. Macromol., 2018, 120(Pt B), 2381-2389.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.006] [PMID: 30195613]
[40]
Rauf, M.A.; Alam, M.T.; Ishtikhar, M.; Ali, N.; Alghamdi, A.; AlAsmari, A.F. Investigating chaperone like activity of green silver nanoparticles: Possible implications in drug development. Molecules, 2022, 27(3), 944.
[http://dx.doi.org/10.3390/molecules27030944] [PMID: 35164209]
[41]
Vus, K.; Tarabara, U.; Danylenko, I.; Pirko, Y.; Krupodorova, T.; Yemets, A.; Blume, Y.; Turchenko, V.; Klymchuk, D.; Smertenko, P.; Zhytniakivska, O.; Trusova, V.; Petrushenko, S.; Bogatyrenko, S.; Gorbenko, G. Silver nanoparticles as inhibitors of insulin amyloid formation: A fluorescence study. J. Mol. Liq., 2021, 342, 117508.
[http://dx.doi.org/10.1016/j.molliq.2021.117508]
[42]
Sudhakar, S.; Mani, E. Rapid dissolution of amyloid β fibrils by silver nanoplates. Langmuir, 2019, 35(21), 6962-6970.
[http://dx.doi.org/10.1021/acs.langmuir.9b00080] [PMID: 31030521]
[43]
Huma, Z.; Javed, I.; Zhang, Z.; Bilal, H.; Sun, Y.; Hussain, S.Z.; Davis, T.P.; Otzen, D.E.; Landersdorfer, C.B.; Ding, F.; Hussain, I.; Ke, P.C. Nanosilver mitigates biofilm formation via FAPC amyloidosis inhibition. Small, 2020, 16(21), 1906674.
[http://dx.doi.org/10.1002/smll.201906674] [PMID: 31984626]
[44]
Ramshini, H; Moghaddasi, A.S. Ability of silver nanoparticles to inhibit amyloid aggregation and their potential role in prevention of alzheimer's disease. J. School Public Health Inst. Public Health Res., 2018, 16 (2).
[45]
Ban, D.K.; Paul, S. Nano Zinc oxide inhibits fibrillar growth and suppresses cellular toxicity of lysozyme amyloid. ACS Applied Materials &amp. ACS Appl. Mater. Interfaces, 2016, 8(46), 31587-31601.
[http://dx.doi.org/10.1021/acsami.6b11549] [PMID: 27801574]
[46]
Asthana, S.; Bhattacharyya, D.; Kumari, S.; Nayak, P.S.; Saleem, M.; Bhunia, A.; Jha, S. Interaction with zinc oxide nanoparticle kinetically traps α-synuclein fibrillation into off-pathway non-toxic intermediates. Int. J. Biol. Macromol., 2020, 150, 68-79.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.269] [PMID: 32004598]
[47]
Girigoswami, A.; Ramalakshmi, M.; Akhtar, N.; Metkar, S.K.; Girigoswami, K. ZnO Nanoflower petals mediated amyloid degradation - An in vitro electrokinetic potential approach. Mater. Sci. Eng. C, 2019, 101, 169-178.
[http://dx.doi.org/10.1016/j.msec.2019.03.086] [PMID: 31029310]
[48]
Khurana, A.; Tekula, S.; Saifi, M.A.; Venkatesh, P.; Godugu, C. Therapeutic applications of selenium nanoparticles. Biomed. Pharmacother., 2019, 111, 802-812.
[http://dx.doi.org/10.1016/j.biopha.2018.12.146] [PMID: 30616079]
[49]
Rai, M; Yadav, A. Nanobiotechnology in Neurodegenerative Diseases; Springer, 2019.
[http://dx.doi.org/10.1007/978-3-030-30930-5]
[50]
Vicente-Zurdo, D.; Rodríguez-Blázquez, S.; Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Neuroprotective activity of selenium nanoparticles against the effect of amino acid enantiomers in Alzheimer’s disease. Anal. Bioanal. Chem., 2022, 414(26), 7573-7584.
[http://dx.doi.org/10.1007/s00216-022-04285-z] [PMID: 35982253]
[51]
Yin, T.; Yang, L.; Liu, Y.; Zhou, X.; Sun, J.; Liu, J. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater., 2015, 25, 172-183.
[http://dx.doi.org/10.1016/j.actbio.2015.06.035] [PMID: 26143603]
[52]
Ramshini, H.; Rostami, S. Dual function of Selenium nanoparticles: Inhibition or induction of lysozyme amyloid aggregation and evaluation of their cell based cytotoxicity. Arch. Ital. Biol., 2021, 159(2), 82-94.
[http://dx.doi.org/10.12871/00039829202123] [PMID: 34184240]
[53]
Han, Q.; Cai, S.; Yang, L.; Wang, X.; Qi, C.; Yang, R.; Wang, C. Molybdenum disulfide nanoparticles as multifunctional inhibitors against alzheimer’s disease. ACS Applied Materials &amp. ACS Appl. Mater. Interfaces, 2017, 9(25), 21116-21123.
[http://dx.doi.org/10.1021/acsami.7b03816] [PMID: 28613069]
[54]
Ma, Y.; Huang, R.; Qi, W.; Su, R.; He, Z. Fluorescent silicon nanoparticles inhibit the amyloid fibrillation of insulin. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(9), 1397-1403.
[http://dx.doi.org/10.1039/C8TB02964D] [PMID: 32255010]
[55]
Zhou, S.; Zhu, Y.; Yao, X.; Liu, H. Carbon nanoparticles inhibit the aggregation of prion protein as revealed by experiments and atomistic simulations. J. Chem. Inf. Model., 2019, 59(5), 1909-1918.
[http://dx.doi.org/10.1021/acs.jcim.8b00725] [PMID: 30575391]
[56]
Jaragh-Alhadad, L.A.; Falahati, M. Copper oxide nanoparticles promote amyloid-β-triggered neurotoxicity through formation of oligomeric species as a prelude to Alzheimer’s diseases. Int. J. Biol. Macromol., 2022, 207, 121-129.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.006] [PMID: 35259430]
[57]
Lyu, J.; Long, X.; Xie, T.; Jiang, G.; Jiang, J.; Ye, L.; Li, Q. Copper oxide nanoparticles promote α-synuclein oligomerization and underlying neurotoxicity as a model of Parkinson’s disease. J. Mol. Liq., 2021, 323, 115051.
[http://dx.doi.org/10.1016/j.molliq.2020.115051]
[58]
Mou, X.; Pilozzi, A.; Tailor, B.; Yi, J.; Cahill, C.; Rogers, J.; Huang, X. Exposure to cuo nanoparticles mediates NFKB activation and enhances amyloid precursor protein expression. Biomedicines, 2020, 8(3), 45.
[http://dx.doi.org/10.3390/biomedicines8030045] [PMID: 32120908]
[59]
Migliorini, C.; Sinicropi, A.; Kozlowski, H.; Luczkowski, M.; Valensin, D. Copper-induced structural propensities of the amyloidogenic region of human prion protein. J. Biol. Inorg. Chem., 2014, 19(4-5), 635-645.
[http://dx.doi.org/10.1007/s00775-014-1132-7] [PMID: 24737041]
[60]
Atwood, C.S.; Moir, R.D.; Huang, X.; Scarpa, R.C.; Bacarra, N.M.E.; Romano, D.M.; Hartshorn, M.A.; Tanzi, R.E.; Bush, A.I. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem., 1998, 273(21), 12817-12826.
[http://dx.doi.org/10.1074/jbc.273.21.12817] [PMID: 9582309]
[61]
Cendrowska-Pinkosz, M.; Krauze, M.; Juśkiewicz, J.; Ognik, K. The effect of the use of copper carbonate and copper nanoparticles in the diet of rats on the level of β-amyloid and acetylcholinesterase in selected organs. J. Trace Elem. Med. Biol., 2021, 67, 126777.
[http://dx.doi.org/10.1016/j.jtemb.2021.126777] [PMID: 33984546]
[62]
Tahaei, G.S.S.; Yahya, R.D.; Ahmed, M.T.; Aziz, F.M.; Shahpasand, K.; Akhtari, K.; Salihi, A.; Abou-Zied, O.K.; Falahati, M. α-synuclein interaction with zero-valent iron nanoparticles accelerates structural rearrangement into amyloid-susceptible structure with increased cytotoxic tendency. Int. J. Nanomedicine, 2019, 14, 4637-4648.
[http://dx.doi.org/10.2147/IJN.S212387] [PMID: 31417259]
[63]
Wu, W.; Sun, X.; Yu, Y.; Hu, J.; Zhao, L.; Liu, Q.; Zhao, Y.; Li, Y. TiO2 nanoparticles promote β-amyloid fibrillation in vitro. Biochem. Biophys. Res. Commun., 2008, 373(2), 315-318.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.035] [PMID: 18571499]
[64]
Slekiene, N.; Snitka, V.; Bruzaite, I.; Ramanavicius, A. Influence of tio2 and zno nanoparticles on α-synuclein and β-amyloid aggregation and formation of protein fibrils. Materials (Basel), 2022, 15(21), 7664.
[http://dx.doi.org/10.3390/ma15217664] [PMID: 36363256]
[65]
Mohammadi, S.; Nikkhah, M. TiO2 nanoparticles as potential promoting agents of fibrillation of α-synuclein, a parkinson’s disease-related protein. Iran. J. Biotechnol., 2017, 15(2), 87-94.
[http://dx.doi.org/10.15171/ijb.1519] [PMID: 29845055]
[66]
Wu, J.; Xie, H. Effects of titanium dioxide nanoparticles on α-synuclein aggregation and the ubiquitin-proteasome system in dopaminergic neurons. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 690-694.
[http://dx.doi.org/10.3109/21691401.2014.980507] [PMID: 25386730]
[67]
Bush, A.; Pettingell, W.; Multhaup, G.; d Paradis, M.; Vonsattel, J.; Gusella, J.; Beyreuther, K.; Masters, C.; Tanzi, R. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science, 1994, 265(5177), 1464-1467.
[http://dx.doi.org/10.1126/science.8073293] [PMID: 8073293]
[68]
Asthana, S.; Hazarika, Z.; Nayak, P.S.; Roy, J.; Jha, A.N.; Mallick, B.; Jha, S. Insulin adsorption onto zinc oxide nanoparticle mediates conformational rearrangement into amyloid-prone structure with enhanced cytotoxic propensity. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(1), 153-166.
[http://dx.doi.org/10.1016/j.bbagen.2018.10.004] [PMID: 30315849]
[69]
Yadav, K.K.; Ojha, M.; Pariary, R.; Arakha, M.; Bhunia, A.; Jha, S. Zinc oxide nanoparticle interface moderation with tyrosine and tryptophan reverses the pro-amyloidogenic property of the particle. Biochimie, 2022, 193, 64-77.
[http://dx.doi.org/10.1016/j.biochi.2021.10.011] [PMID: 34699915]
[70]
Talmard, C.; Leuma Yona, R.; Faller, P. Mechanism of zinc(II)-promoted amyloid formation: zinc(II) binding facilitates the transition from the partially α-helical conformer to aggregates of amyloid β protein(1–28). J. Biol. Inorg. Chem., 2009, 14(3), 449-455.
[http://dx.doi.org/10.1007/s00775-008-0461-9] [PMID: 19083027]
[71]
Brender, J.R.; Hartman, K.; Nanga, R.P.R.; Popovych, N.; de la Salud Bea, R.; Vivekanandan, S.; Marsh, E.N.G.; Ramamoorthy, A. Role of zinc in human islet amyloid polypeptide aggregation. J. Am. Chem. Soc., 2010, 132(26), 8973-8983.
[http://dx.doi.org/10.1021/ja1007867] [PMID: 20536124]
[72]
Sukhanova, A.; Poly, S.; Shemetov, A.; Nabiev, I.R. Quantum dots induce charge-specific amyloid-like fibrillation of insulin at physiological conditions. SPIE Proceedings, 2012, 8548, p. 85485.
[http://dx.doi.org/10.1117/12.946606]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy