Generic placeholder image

Current Functional Foods

Editor-in-Chief

ISSN (Print): 2666-8629
ISSN (Online): 2666-8637

Review Article

Natural Medicinal Compounds Used in Neurodegenerative Diseases

Author(s): Sagarika Majhi* and Lubhan Singh

Volume 2, Issue 1, 2024

Published on: 20 September, 2023

Article ID: e270623218322 Pages: 12

DOI: 10.2174/2666862901666230627124045

Price: $65

conference banner
Abstract

The medicinal plants discussed at this moment and their active isolated components seem promising for the treatment of neurodegenerative diseases viz. Disease (HD) in Huntington, Alzheimer's disease (AD), and Parkinson's disease (PD). These compounds can lay the groundwork for a new pharmacological approach to treatment, as patients tolerate herbal compounds more easily because they are relatively more protective than synthetic drugs. Meanwhile, there are anti-inflammatory, antioxidant, altered tau phosphorylation, anti-amyloidogenic, decreased aggregation of neurofibrillary tangles, and anticholinesterase processes in natural compound structures, including flavonoids, polyphenols, triterpenes, tannins, alkaloids and so on. We have summarized the pathogenesis and mechanism of different natural/bioactive components for treating HD, AD, and PD. An herbal source with well-established antioxidant and neuroprotective activity showed favourable impacts in both in vivo and in vitro studies against the symptoms of neurodegenerative diseases. The future outlook of herbal medicine can allow us to research their synergistic interactions, the action of multiple targets, and the elucidation of complex mechanisms of neuroprotective properties. However, in future scientific research on bioactive compounds, the efficacy of their active ingredients should be investigated to discover their neuroprotective therapeutic potential. Also, the mechanisms of action of herbal extracts and active ingredients remain to be clarified appropriately.

Keywords: Alzheimer's disease, huntington’s disease, parkinson’s disease, neurodegenerative disorders, neuroprotective agents, antioxidants.

Graphical Abstract
[1]
Gao HM, Hong JS. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends Immunol 2008; 29(8): 357-65.
[http://dx.doi.org/10.1016/j.it.2008.05.002] [PMID: 18599350]
[2]
Ansari JA, Siraj A, Inamdar NN. Pharmacotherapeutic approaches of Parkinson’s disease. Int J Pharmacol 2010; 6(5): 584-90.
[http://dx.doi.org/10.3923/ijp.2010.584.590]
[3]
Kumar S, Madaan R, Bansal G, Jamwal A, Sharma A. Plants and plant products with potential anticonvulsant activity–A review. Pharmacogn Commun 2012; 2(1): 3-99.
[http://dx.doi.org/10.5530/pc.2012.suppl1.2]
[4]
Berger M. Can oxidative damage be treated nutritionally? Clin Nutr 2005; 24(2): 172-83.
[http://dx.doi.org/10.1016/j.clnu.2004.10.003] [PMID: 15784476]
[5]
Krobitsch S, Kazantsev AG. Huntington’s disease: From molecular basis to therapeutic advances. Int J Biochem Cell Biol 2011; 43(1): 20-4.
[http://dx.doi.org/10.1016/j.biocel.2010.10.014] [PMID: 21056115]
[6]
Kumar P, Kalonia H, Kumar A. Huntington’s disease: Pathogenesis to animal models. Pharmacol Rep 2010; 62(1): 1-14.
[http://dx.doi.org/10.1016/S1734-1140(10)70238-3] [PMID: 20360611]
[7]
Sawa A, Tomoda T, Bae BI. Mechanisms of neuronal cell death in Huntington’s disease. Cytogenet Genome Res 2003; 100(1-4): 287-95.
[http://dx.doi.org/10.1159/000072864] [PMID: 14526190]
[8]
Zádori D, Geisz A, Vámos E, Vécsei L, Klivényi P. Valproate ameliorates the survival and the motor performance in a transgenic mouse model of Huntington’s disease. Pharmacol Biochem Behav 2009; 94(1): 148-53.
[http://dx.doi.org/10.1016/j.pbb.2009.08.001] [PMID: 19698736]
[9]
Ellerby LM. Hunting for Excitement. Neuron 2002; 33(6): 841-2.
[http://dx.doi.org/10.1016/S0896-6273(02)00631-1] [PMID: 11906690]
[10]
Rubinsztein DC, Carmichael J. Huntington’s disease: Molecular basis of neurodegeneration. Expert Rev Mol Med 2003; 5(20): 1-21.
[http://dx.doi.org/10.1017/S1462399403006549] [PMID: 14585171]
[11]
Tripathi YB, Chaurasia S, Tripathi E, Upadhyay A, Dubey GP. Bacopa monniera Linn. as an antioxidant: Mechanism of action. Indian J Exp Biol 1996; 34(6): 523-6.
[PMID: 8792640]
[12]
Russo A, Izzo AA, Borrelli F, Renis M, Vanella A. Free radical scavenging capacity and protective effect ofBacopa monniera L. on DNA damage. Phytother Res 2003; 17(8): 870-5.
[http://dx.doi.org/10.1002/ptr.1061] [PMID: 13680815]
[13]
Mahdy HM, Tadros MG, Mohamed MR, Karim AM, Khalifa AE. The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats. Neurochem Int 2011; 59(6): 770-8.
[http://dx.doi.org/10.1016/j.neuint.2011.07.012] [PMID: 21827809]
[14]
Kumar P, Kumar A. Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington’s disease. J Med Food 2009; 12(3): 591-600.
[http://dx.doi.org/10.1089/jmf.2008.0028] [PMID: 19627208]
[15]
Kumar P, Kumar A. Effects of root extract of Withania somnifera in 3-Nitropropionic acid-induced cognitive dysfunction and oxidative damage in rats. Int J Health Res 2008; 1: 139-49.
[16]
Sreejayan, Rao MNA. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 2011; 49(1): 105-7.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06761.x] [PMID: 9120760]
[17]
Daniel S, Limson JL, Dairam A, Watkins GM, Daya S. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J Inorg Biochem 2004; 98(2): 266-75.
[http://dx.doi.org/10.1016/j.jinorgbio.2003.10.014] [PMID: 14729307]
[18]
Ghoneim A, Abdel-Naim AB, Khalifa A, El-Denshary ES. Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol Res 2002; 46(3): 273-9.
[http://dx.doi.org/10.1016/S1043-6618(02)00123-8] [PMID: 12220971]
[19]
Radad K, Gille G, Liu L, Rausch WD. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci 2006; 100(3): 175-86.
[http://dx.doi.org/10.1254/jphs.CRJ05010X] [PMID: 16518078]
[20]
Soumyanath A, Zhong YP, Yu X, et al. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro. J Pharm Pharmacol 2010; 57(9): 1221-9.
[http://dx.doi.org/10.1211/jpp.57.9.0018] [PMID: 16105244]
[21]
Shinomol GK. Muralidhara. Prophylactic neuroprotective property of Centella asiatica against 3-nitropropionic acid induced oxidative stress and mitochondrial dysfunctions in brain regions of prepubertal mice. Neurotoxicology 2008; 29(6): 948-57.
[http://dx.doi.org/10.1016/j.neuro.2008.09.009] [PMID: 18930762]
[22]
Cleren C, Calingasan NY, Chen J, Beal MF. Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J Neurochem 2005; 94(4): 995-1004.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03253.x] [PMID: 16092942]
[23]
Zhang YQ, Sarge KD. Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J Mol Med 2007; 85(12): 1421-8.
[http://dx.doi.org/10.1007/s00109-007-0251-9] [PMID: 17943263]
[24]
Hsu DZ, Chen KT, Li YH, Chuang YC, Liu MY. Sesamol delays mortality and attenuates hepatic injury after cecal ligation and puncture in rats: Role of oxidative stress. Shock 2006; 25(5): 528-32.
[http://dx.doi.org/10.1097/01.shk.0000209552.95839.43] [PMID: 16680019]
[25]
Hsu DZ, Wan CH, Hsu HF, Lin YM, Liu MY. The prophylactic protective effect of sesamol against ferric–nitrilotriacetate-induced acute renal injury in mice. Food Chem Toxicol 2008; 46(8): 2736-41.
[http://dx.doi.org/10.1016/j.fct.2008.04.029] [PMID: 18539378]
[26]
Tanaka M, Machida Y, Niu S, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 2004; 10(2): 148-54.
[http://dx.doi.org/10.1038/nm985] [PMID: 14730359]
[27]
Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 2007; 282(8): 5641-52.
[http://dx.doi.org/10.1074/jbc.M609532200] [PMID: 17182613]
[28]
Atessahin A, Yilmaz S, Karahan I, Ceribasi AO, Karaoglu A. Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology 2005; 212(2-3): 116-23.
[http://dx.doi.org/10.1016/j.tox.2005.04.016] [PMID: 15946783]
[29]
Kumar P, Kalonia H, Kumar A. Lycopene modulates nitric oxide pathways against 3-nitropropionic acid-induced neurotoxicity. Life Sci 2009; 85(19-20): 711-8.
[http://dx.doi.org/10.1016/j.lfs.2009.10.001] [PMID: 19822156]
[30]
Pedraza-Chaverrí J, Reyes-Fermín LM, Nolasco-Amaya EG, et al. ROS scavenging capacity and neuroprotective effect of α-mangostin against 3-nitropropionic acid in cerebellar granule neurons. Exp Toxicol Pathol 2009; 61(5): 491-501.
[http://dx.doi.org/10.1016/j.etp.2008.11.002] [PMID: 19108999]
[31]
Zhang H, Pan N, Xiong S, et al. Inhibition of polyglutamine-mediated proteotoxicity by Astragalus membranaceus polysaccharide through the DAF-16/FOXO transcription factor in Caenorhabditis elegans. Biochem J 2012; 441(1): 417-24.
[http://dx.doi.org/10.1042/BJ20110621] [PMID: 21892924]
[32]
Sagredo O, Ramos JA, Decio A, Mechoulam R, Fernández-Ruiz J. Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors. Eur J Neurosci 2007; 26(4): 843-51.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05717.x] [PMID: 17672854]
[33]
Ehrnhoefer DE, Duennwald M, Markovic P, et al. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 2006; 15(18): 2743-51.
[http://dx.doi.org/10.1093/hmg/ddl210] [PMID: 16893904]
[34]
Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL. ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington’s disease. Hum Mol Genet 2011; 20(2): 261-70.
[http://dx.doi.org/10.1093/hmg/ddq460] [PMID: 20952447]
[35]
Park JE, Lee ST, Im WS, Chu K, Kim M. Galantamine reduces striatal degeneration in 3-nitropropionic acid model of Huntington’s disease. Neurosci Lett 2008; 448(1): 143-7.
[http://dx.doi.org/10.1016/j.neulet.2008.10.020] [PMID: 18938211]
[36]
Menze ET, Tadros MG, Abdel-Tawab AM, Khalifa AE. Potential neuroprotective effects of hesperidin on 3-nitropropionic acid-induced neurotoxicity in rats. Neurotoxicology 2012; 33(5): 1265-75.
[http://dx.doi.org/10.1016/j.neuro.2012.07.007] [PMID: 22850463]
[37]
Nones J, Spohr TCLS, Gomes FCA. Hesperidin, a flavone glycoside, as mediator of neuronal survival. Neurochem Res 2011; 36(10): 1776-84.
[http://dx.doi.org/10.1007/s11064-011-0493-3] [PMID: 21553255]
[38]
Lee YC, Yang YC, Huang CL, et al. When cytokinin, a plant hormone, meets the adenosine A2A receptor: A novel neuroprotectant and lead for treating neurodegenerative disorders? PLoS One 2012; 7(6): e38865.
[http://dx.doi.org/10.1371/journal.pone.0038865] [PMID: 22719969]
[39]
Zeng KW, Zhang T, Fu H, Liu GX, Wang XM. Schisandrin B exerts anti-neuroinflammatory activity by inhibiting the Toll-like receptor 4-dependent MyD88/IKK/NF-κB signaling pathway in lipopolysaccharide-induced microglia. Eur J Pharmacol 2012; 692(1-3): 29-37.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.030] [PMID: 22698579]
[40]
La Cruz VP-D, González-Cortés C, Pedraza-Chaverrí J, Maldonado PD, Andrés-Martínez L, Santamaría A. Protective effect of S-allylcysteine on 3-nitropropionic acid-induced lipid peroxidation and mitochondrial dysfunction in rat brain synaptosomes. Brain Res Bull 2006; 68(5): 379-83.
[http://dx.doi.org/10.1016/j.brainresbull.2005.09.013] [PMID: 16377446]
[41]
Pallos J, Bodai L, Lukacsovich T, et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Hum Mol Genet 2008; 17(23): 3767-75.
[http://dx.doi.org/10.1093/hmg/ddn273] [PMID: 18762557]
[42]
Sandhir R, Mehrotra A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: Implications in Huntington’s disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832(3): 421-30.
[http://dx.doi.org/10.1016/j.bbadis.2012.11.018] [PMID: 23220257]
[43]
Wu AG, Wong V, Xu SW, et al. Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells. Int J Mol Sci 2013; 14(11): 22618-41.
[http://dx.doi.org/10.3390/ijms141122618] [PMID: 24248062]
[44]
Kumar P, Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: Possible role of nitric oxide. Behav Brain Res 2010; 206(1): 38-46.
[http://dx.doi.org/10.1016/j.bbr.2009.08.028] [PMID: 19716383]
[45]
Tariq M, Khan HA, Elfaki I, Deeb SA, Moutaery KA. Neuroprotective effect of nicotine against 3-nitropropionic acid (3-NP)-induced experimental Huntington’s disease in rats. Brain Res Bull 2005; 67(1-2): 161-8.
[http://dx.doi.org/10.1016/j.brainresbull.2005.06.024] [PMID: 16140176]
[46]
Reitz C, Mayeux R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88(4): 640-51.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[47]
Kumar A, Singh A. Ekavali. A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol Rep 2015; 67(2): 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[48]
Solomon A, Mangialasche F, Richard E, et al. Advances in the prevention of Alzheimer’s disease and dementia. J Intern Med 2014; 275(3): 229-50.
[http://dx.doi.org/10.1111/joim.12178] [PMID: 24605807]
[49]
Zhang L, Yu H, Zhao X, et al. Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells. Neurochem Int 2010; 57(5): 547-55.
[http://dx.doi.org/10.1016/j.neuint.2010.06.021] [PMID: 20615444]
[50]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[51]
Chun W, Johnson GV. The role of tau phosphorylation and cleavage in neuronal cell death. Front Biosci 2007; 12(1): 733-56.
[http://dx.doi.org/10.2741/2097] [PMID: 17127334]
[52]
Marchbanks RM. Biochemistry of Alzheimer’s dementia. J Neurochem 1982; 39(1): 9-15.
[http://dx.doi.org/10.1111/j.1471-4159.1982.tb04695.x] [PMID: 6806445]
[53]
Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol 2010; 127(1): 26-31.
[http://dx.doi.org/10.1016/j.jep.2009.09.056] [PMID: 19808086]
[54]
Limpeanchob N, Jaipan S, Rattanakaruna S, Phrompittayarat W, Ingkaninan K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J Ethnopharmacol 2008; 120(1): 112-7.
[http://dx.doi.org/10.1016/j.jep.2008.07.039] [PMID: 18755259]
[55]
Zhou LJ, Zhu XZ. Reactive oxygen species-induced apoptosis in PC12 cells and protective effect of bilobalide. J Pharmacol Exp Ther 2000; 293(3): 982-8.
[PMID: 10869401]
[56]
Tchantchou F, Lacor PN, Cao Z, et al. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis 2009; 18(4): 787-98.
[http://dx.doi.org/10.3233/JAD-2009-1189] [PMID: 19661619]
[57]
Veerendra Kumar MH, Gupta YK. Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin Exp Pharmacol Physiol 2003; 30(5-6): 336-42.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03842.x] [PMID: 12859423]
[58]
Dhanasekaran M, Holcomb LA, Hitt AR, et al. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model. Phytother Res 2009; 23(1): 14-9.
[http://dx.doi.org/10.1002/ptr.2405] [PMID: 19048607]
[59]
Veldman ER, Jia Z, Halldin C, Svedberg MM. Amyloid binding properties of curcumin analogues in Alzheimer’s disease postmortem brain tissue. Neurosci Lett 2016; 630: 183-8.
[http://dx.doi.org/10.1016/j.neulet.2016.07.045] [PMID: 27461789]
[60]
DiSilvestro RA, Joseph E, Zhao S, Bomser J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J 2012; 11(1): 79.
[http://dx.doi.org/10.1186/1475-2891-11-79] [PMID: 23013352]
[61]
Sethiya NK, Nahata A, Mishra SH, Dixit VK. An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine. J Chin Integr Med 2009; 7(11): 1001-22.
[http://dx.doi.org/10.3736/jcim20091101] [PMID: 19912732]
[62]
Bihaqi S, Singh A, Tiwari M. Supplementation of Convolvulus pluricaulis attenuates scopolamine-induced increased tau and Amyloid precursor protein (AβPP) expression in rat brain. Indian J Pharmacol 2012; 44(5): 593-8.
[http://dx.doi.org/10.4103/0253-7613.100383] [PMID: 23112420]
[63]
Oboh G, Ademiluyi AO, Akinyemi AJ. Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp Toxicol Pathol 2012; 64(4): 315-9.
[http://dx.doi.org/10.1016/j.etp.2010.09.004] [PMID: 20952170]
[64]
Borek C. Garlic reduces dementia and heart-disease risk. J Nutr 2006; 136(3) (Suppl.): 810S-2S.
[http://dx.doi.org/10.1093/jn/136.3.810S] [PMID: 16484570]
[65]
Qu Z, Mossine VV, Cui J, Sun GY, Gu Z. Protective effects of AGE and its components on neuroinflammation and neurodegeneration. Neuromolecular Med 2016; 18(3): 474-82.
[http://dx.doi.org/10.1007/s12017-016-8410-1] [PMID: 27263111]
[66]
Jiménez-Aliaga K, Bermejo-Bescós P, Benedí J, Martín-Aragón S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci 2011; 89(25-26): 939-45.
[http://dx.doi.org/10.1016/j.lfs.2011.09.023] [PMID: 22008478]
[67]
Moreno LCGI, Puerta E, Suárez-Santiago JE, Santos-Magalhães NS, Ramirez MJ, Irache JM. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. Int J Pharm 2017; 517(1-2): 50-7.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.061] [PMID: 27915007]
[68]
Lee YJ, Choi DY, Yun YP, Han SB, Oh KW, Hong JT. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J Nutr Biochem 2013; 24(1): 298-310.
[http://dx.doi.org/10.1016/j.jnutbio.2012.06.011] [PMID: 22959056]
[69]
Chang X, Rong C, Chen Y, et al. (−)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer ׳s disease model mice by upregulating neprilysin expression. Exp Cell Res 2015; 334(1): 136-45.
[http://dx.doi.org/10.1016/j.yexcr.2015.04.004] [PMID: 25882496]
[70]
Huang M, Jiang X, Liang Y, Liu Q, Chen S, Guo Y. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease. Exp Gerontol 2017; 91: 25-33.
[http://dx.doi.org/10.1016/j.exger.2017.02.004] [PMID: 28223223]
[71]
de Oliveira JS, Abdalla FH, Dornelles GL, et al. Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer’s-like dementia: Involvement of acetylcholinesterase and cell death. Neurotoxicology 2016; 57: 241-50.
[http://dx.doi.org/10.1016/j.neuro.2016.10.008] [PMID: 27746125]
[72]
Li F, Gong Q, Dong H, Shi J. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des 2012; 18(1): 27-33.
[http://dx.doi.org/10.2174/138161212798919075] [PMID: 22211686]
[73]
Karthick C, Periyasamy S, Jayachandran KS, Anusuyadevi M. Intrahippocampal administration of ibotenic acid induced cholinergic dysfunction via NR2A/NR2B expression: Implications of resveratrol against Alzheimer disease pathophysiology. Front Mol Neurosci 2016; 9: 28.
[http://dx.doi.org/10.3389/fnmol.2016.00028] [PMID: 27199654]
[74]
Wang CY, Zheng W, Wang T, et al. Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model. Neuropsychopharmacology 2011; 36(5): 1073-89.
[http://dx.doi.org/10.1038/npp.2010.245] [PMID: 21289607]
[75]
Zhou F, Chen S, Xiong J, Li Y, Qu L. Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells. Biol Trace Elem Res 2012; 149(2): 273-9.
[http://dx.doi.org/10.1007/s12011-012-9411-z] [PMID: 22528780]
[76]
Liu R, Meng F, Zhang L, et al. Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Molecules 2011; 16(3): 2084-96.
[http://dx.doi.org/10.3390/molecules16032084] [PMID: 21368720]
[77]
Iuvone T, De Filippis D, Esposito G, D’Amico A, Izzo AA. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-β peptide-induced neurotoxicity. J Pharmacol Exp Ther 2006; 317(3): 1143-9.
[http://dx.doi.org/10.1124/jpet.105.099317] [PMID: 16495207]
[78]
Srivareerat M, Tran TT, Salim S, Aleisa AM, Alkadhi KA. Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer’s disease. Neurobiol Aging 2011; 32(5): 834-44.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.015] [PMID: 19464074]
[79]
Lu JH, Ardah MT, Durairajan SSK, et al. Baicalein inhibits formation of α-synuclein oligomers within living cells and prevents Aβ peptide fibrillation and oligomerisation. ChemBioChem 2011; 12(4): 615-24.
[http://dx.doi.org/10.1002/cbic.201000604] [PMID: 21271629]
[80]
Zhang SQ, Obregon D, Ehrhart J, et al. Baicalein reduces β‐amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J Neurosci Res 2013; 91(9): 1239-46.
[http://dx.doi.org/10.1002/jnr.23244] [PMID: 23686791]
[81]
Kim S, Choi KJ, Cho SJ, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep 2016; 6(1): 24933.
[http://dx.doi.org/10.1038/srep24933] [PMID: 27112200]
[82]
Pantano D, Luccarini I, Nardiello P, Servili M, Stefani M, Casamenti F. Oleuropein aglycone and polyphenols from olive mill waste water ameliorate cognitive deficits and neuropathology. Br J Clin Pharmacol 2017; 83(1): 54-62.
[http://dx.doi.org/10.1111/bcp.12993] [PMID: 27131215]
[83]
Ghahghaei A, Bathaie SZ, Bahraminejad E. Mechanisms of the effects of crocin on aggregation and deposition of Aβ1–40 fibrils in Alzheimer’s Disease. Int J Pept Res Ther 2012; 18(4): 347-51.
[http://dx.doi.org/10.1007/s10989-012-9308-x]
[84]
Ghahghaei A, Bathaie S, Kheirkhah H, Bahraminejad E. The protective effect of crocin on the amyloid fibril formation of aβ42 peptide in vitro. Cell Mol Biol Lett 2013; 18(3): 328-39.
[http://dx.doi.org/10.2478/s11658-013-0092-1] [PMID: 23737042]
[85]
Durairajan SSK, Yuan Q, Xie L, et al. Salvianolic acid B inhibits Aβ fibril formation and disaggregates preformed fibrils and protects against Aβ-induced cytotoxicty. Neurochem Int 2008; 52(4-5): 741-50.
[http://dx.doi.org/10.1016/j.neuint.2007.09.006] [PMID: 17964692]
[86]
Mei ZR, Tan XP, Liu SZ, Huang HH. [Puerarin alleviates cognitive impairment and tau hyperphosphorylation in APP/PS1 transgenic mice]. Zhongguo Zhongyao Zazhi 2016; 41(17): 3285-9.
[PMID: 28920384]
[87]
Rivière C, Papastamoulis Y, Fortin PY, et al. New stilbene dimers against amyloid fibril formation. Bioorg Med Chem Lett 2010; 20(11): 3441-3.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.074] [PMID: 20452207]
[88]
Jiao Y, Kong L, Yao Y, et al. Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer’s disease. Neuropharmacology 2016; 108: 332-44.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.046] [PMID: 27143098]
[89]
Yao Y, Wang Y, Kong L, Chen Y, Yang J. RETRACTED: Osthole decreases tau protein phosphorylation via PI3K/AKT/GSK-3β signaling pathway in Alzheimer’s disease. Life Sci 2019; 217: 16-24.
[http://dx.doi.org/10.1016/j.lfs.2018.11.038] [PMID: 30471283]
[90]
Md S, Gan SY, Haw YH, Ho CL, Wong S, Choudhury H. In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation. Int J Biol Macromol 2018; 118(Pt A): 1211-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.190] [PMID: 30001606]
[91]
Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79(4): 368-76.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[92]
Alexander GE. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 2004; 6(3): 259-80.
[http://dx.doi.org/10.31887/DCNS.2004.6.3/galexander] [PMID: 22033559]
[93]
Berardelli A, Rothwell JC, Thompson PD, Hallett M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain 2001; 124(11): 2131-46.
[http://dx.doi.org/10.1093/brain/124.11.2131] [PMID: 11673316]
[94]
Dauer W, Przedborski S. Parkinson’s Disease. Neuron 2003; 39(6): 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[95]
Kim WS, Kågedal K, Halliday GM. Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther 2014; 6(5-8): 73.
[http://dx.doi.org/10.1186/s13195-014-0073-2] [PMID: 25580161]
[96]
Cardinale A, Chiesa R, Sierks M. Protein misfolding and neurodegenerative diseases. Int J Cell Biol 2014; 2014: 1-2.
[http://dx.doi.org/10.1155/2014/217371] [PMID: 24799906]
[97]
Shobana C, Ramesh Kumar R, Sumathi T. Alcoholic extract of Bacopa monniera Linn. protects against 6-hydroxydopamine-induced changes in behavioral and biochemical aspects: A pilot study. Cell Mol Neurobiol 2012; 32(7): 1099-112.
[http://dx.doi.org/10.1007/s10571-012-9833-3] [PMID: 22527857]
[98]
Ahmad M, Saleem S, Ahmad AS, et al. Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: Neurobehavioural, neurochemical and immunohistochemical evidences. J Neurochem 2005; 93(1): 94-104.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03000.x] [PMID: 15773909]
[99]
Kwon IH, Choi HS, Shin KS, et al. Effects of berberine on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and a rat model of Parkinson’s disease. Neurosci Lett 2010; 486(1): 29-33.
[http://dx.doi.org/10.1016/j.neulet.2010.09.038] [PMID: 20851167]
[100]
Khuwaja G, Khan MM, Ishrat T, et al. Neuroprotective effects of curcumin on 6-hydroxydopamine-induced Parkinsonism in rats: Behavioral, neurochemical and immunohistochemical studies. Brain Res 2011; 1368: 254-63.
[http://dx.doi.org/10.1016/j.brainres.2010.10.023] [PMID: 20951685]
[101]
Sedaghat R, Roghani M, Khalili M. Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model. Iran J Pharm Res 2014; 13(1): 227-34.
[PMID: 24734075]
[102]
Baluchnejadmojarad T, Jamali-Raeufy N, Zabihnejad S, Rabiee N, Roghani M. Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of Parkinson’s disease: Possible involvement of PI3K/ERβ signaling. Eur J Pharmacol 2017; 801: 72-8.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.002] [PMID: 28284752]
[103]
Van Kampen JM, Baranowski DB, Shaw CA, Kay DG. Panax ginseng is neuroprotective in a novel progressive model of Parkinson’s disease. Exp Gerontol 2014; 50: 95-105.
[http://dx.doi.org/10.1016/j.exger.2013.11.012] [PMID: 24316034]
[104]
Haleagrahara N, Siew CJ, Ponnusamy K. Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats. J Toxicol Sci 2013; 38(1): 25-33.
[http://dx.doi.org/10.2131/jts.38.25] [PMID: 23358137]
[105]
Chaturvedi RK, Shukla S, Seth K, et al. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiol Dis 2006; 22(2): 421-34.
[http://dx.doi.org/10.1016/j.nbd.2005.12.008] [PMID: 16480889]
[106]
Wu CR, Tsai CW, Chang SW, Lin CY, Huang LC, Tsai CW. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: Involvement of antioxidative enzymes induction. Chem Biol Interact 2015; 225: 40-6.
[http://dx.doi.org/10.1016/j.cbi.2014.11.011] [PMID: 25446857]
[107]
Chan WS, Durairajan SSK, Lu JH, et al. Neuroprotective effects of Astragaloside IV in 6-hydroxydopamine-treated primary nigral cell culture. Neurochem Int 2009; 55(6): 414-22.
[http://dx.doi.org/10.1016/j.neuint.2009.04.012] [PMID: 19409437]
[108]
Mu X, He G, Cheng Y, Li X, Xu B, Du G. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol Biochem Behav 2009; 92(4): 642-8.
[http://dx.doi.org/10.1016/j.pbb.2009.03.008] [PMID: 19327378]
[109]
Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem 2013; 138(2-3): 1028-33.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.022] [PMID: 23411210]
[110]
Hong Z, Wang G, Gu J, et al. Tripchlorolide protects against MPTP-induced neurotoxicity in C57BL/6 mice. Eur J Neurosci 2007; 26(6): 1500-8.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05766.x] [PMID: 17714494]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy