Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Pharmacological Profile of Novel Anti-cancer Drugs Approved by USFDA in 2022: A Review

Author(s): Kavita Sangwan, Vipasha Sharma and Parveen Kumar Goyal*

Volume 24, Issue 6, 2024

Published on: 25 July, 2023

Page: [734 - 750] Pages: 17

DOI: 10.2174/1566524023666230622151034

Price: $65

Open Access Journals Promotions 2
Abstract

Background: For any drug molecule, it is mandatory to pass the drug approval process of the concerned regulatory authority, before being marketed. The Food and Drug Administration (FDA), throughout the year, approves several new drugs for safety and efficacy. In addition to new drug approvals, FDA also works on improving access to generic drugs, aimed to lower the cost of drugs for patients and improve access to treatments. In the year 2022 twelve new drug therapies were approved for managing varying cancers.

Methods: This manuscript is focused to describe the pharmacological aspects including therapeutic uses, mechanisms of actions, pharmacokinetics, adverse effects, doses, indication for special cases, contraindications, etc., of novel FDA-approved anticancer drug therapies in the year 2022.

Result: FDA has approved about 29% (11 out of 37) novel drug therapies for varying types of cancers such as lung cancer, breast cancer, prostate cancer, melanoma, leukemia, etc. The Center for Drug Evaluation and Research CDER has reported that 90% of these anticancer drugs (e.g. Adagrasib, Futibatinib, Mirvetuximabsoravtansinegynx, Mosunetuzumab-axb, Nivolumab and relatlimab-rmbw, Olutasidenib, Pacritinib, Tebentafusp-tebn, Teclistamab-cqyv, and Tremelimumab-actl) as orphan drugs and recommended to treat rare or uncommon cancers such as non-small cell lung cancer, metastatic intrahepatic cholangio-carcinoma, epithelial ovarian cancer, follicular lymphoma, metastatic melanoma, metastatic uveal melanoma, etc. CDER has identified six anticancer drugs (e.g. Lutetium (177Lu)vipivotidetetraxetan, Mirvetuximabsoravtansine- gynx, Mosunetuzumab-axb, Nivolumab and relatlimab-rmbw, Tebentafusp-tebn, Teclistamab-cqyv) as first-in-class drugs i.e. drugs having different mechanisms of action from the already existing ones. The newly approved anticancer drugs shall provide more efficient treatment options for cancer patients. Three FDA-approved anticancer drugs in the year 2023 are also briefly described in the manuscript.

Conclusion: This manuscript, describing the pharmacological aspects of eleven anticancer novel drug therapies approved by the FDA, shall serve as a helpful document for cancer patients, concerned academicians, researchers, and clinicians, especially oncologists.

Keywords: USFDA, Novel anticancer drugs, Krazati, Kimmtrak, Imjudo, Lunsumio, Rezlidhia.

[1]
Goyal PK, Shekhar S, Rishi K. Hatch waxman act and generic drugs: A review. J Pharm Biomed Sci 2011; 8(22): 1-6.
[2]
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162(6): 1239-49.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[3]
Sengar G, Tripathy P. Pharmaceutical regulatory agencies and organizations around the world: Scope and challenge in drug development. Pharma Tutor 2012. Available from: https://www.pharmatutor.org/articles/pharmaceutical-regulatory-agencies-and-organizations-around-world-scope-challenges-in-drug-development (Accessed 16.02.2022).
[4]
Vaughan G. The Australian drug regulatory system. Aust Prescr 1995; 18(3): 69-71.
[http://dx.doi.org/10.18773/austprescr.1995.068]
[5]
Huynh-Ba K, Beumer SA. ANVISA: An introduction to a new regulatory agency with many challenges. AAPS Open 2018; 4(1): 9.
[http://dx.doi.org/10.1186/s41120-018-0029-x]
[6]
Babar Z-U-D, Francis S. Identifying priority medicines policy issues for New Zealand: A general inductive study. BMJ Open 2014; 4(5): e004415-, 5, 2004415.
[http://dx.doi.org/10.1136/bmjopen-2013-004415]
[7]
Tanaka M, Idei M, Sakaguchi H, et al. Evolving landscape of new drug approval in Japan and lags from international birth dates: Retrospective regulatory analysis. Clin Pharmacol Ther 2021; 109(5): 1265-73.
[http://dx.doi.org/10.1002/cpt.2080] [PMID: 33048367]
[8]
Benedetto Tiz D, Bagnoli L, Rosati O, Marini F, Santi C, Sancineto L. FDA-Approved small molecules in 2022: Clinical uses and their synthesis. Pharmaceutics 2022; 14(11): 2538.
[http://dx.doi.org/10.3390/pharmaceutics14112538] [PMID: 36432728]
[9]
Bhutani P, Joshi G, Raja N, et al. FDA approved drugs from 2015–June 2020: A perspective. J Med Chem 2021; 64(5): 2339-81.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01786] [PMID: 33617716]
[10]
Kumar Shukla A, Shukla K, Mehani R, Jain S, Maqsood S. Analysis of FDA novel drug approvals. Biomed Pharmacol J 2021; 14(1): 225-33.
[http://dx.doi.org/10.13005/bpj/2117]
[11]
de la Torre BG, Albericio F. The pharmaceutical industry in 2021: An analysis of FDA drug approvals from the perspective of molecules. Molecules 2022; 27(3): 1075.
[http://dx.doi.org/10.3390/molecules27031075] [PMID: 35164339]
[12]
G de la Torre B, Albericio F. The pharmaceutical industry in 2018.An analysis of FDA drug approvals from the perspective of molecules. Molecules 2019; 24(4): 809.
[http://dx.doi.org/10.3390/molecules24040809] [PMID: 30813407]
[13]
Kayki-Mutlu G, Michel MC. A year in pharmacology: New drugs approved by the US Food and Drug Administration in 2020. Naunyn Schmiedebergs Arch Pharmacol 2021; 394(5): 839-52.
[http://dx.doi.org/10.1007/s00210-021-02085-3] [PMID: 33864098]
[14]
Purpura CA, Garry EM, Honig N, Case A, Rassen JA. The role of real‐world evidence in FDA‐approved new drug and biologics license applications. Clin Pharmacol Ther 2022; 111(1): 135-44.
[http://dx.doi.org/10.1002/cpt.2474] [PMID: 34726771]
[15]
U.S. Food and Drug Administration Novel drug approvals for 2021. FDA 2021. Available from: https:// www.fda. gov/ drugs/ (Accessed 25.01.2023).
[16]
Batta A, Kalra BS, Khirasaria R. Trends in FDA drug approvals over the last 2 decades: An observational study. Fam Med Prim Care Rev 2020; 9(1): 105.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_578_19]
[17]
Center for Drug Evaluation and Research. Innovation redictability. Advancing health through innovation: New drug therapy approvals 2022. FDA 2023. Available from: https://www.fda.gov/media/164429/download (Accessed on 25.01.2023).
[18]
Dhillon S. Adagrasib: First approval. Drugs 2023; 83(3): 275-85.
[http://dx.doi.org/10.1007/s40265-023-01839-y] [PMID: 36763320]
[19]
Sootome H, Fujita H, Ito K, et al. Futibatinib is a novel irreversible FGFR 1–4 inhibitor that shows selective antitumor activity against fgfr-deregulated tumors. Cancer Res 2020; 80(22): 4986-97.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-2568] [PMID: 32973082]
[20]
Keam SJ. Lutetium Lu 177 vipivotidetetraxetan: First approval. Mol Diagn Ther 2022; 26(4): 467-75.
[http://dx.doi.org/10.1007/s40291-022-00594-2] [PMID: 35553387]
[21]
Moore KN, Martin LP, O’Malley DM, Matulonis UA, Konner JA. A review of mirvetuximabsoravtansine in the treatment of platinum-resistant ovarian cancer. Future Oncol 2018; 14: 123-36.
[http://dx.doi.org/10.2217/fon-2017-0379] [PMID: 29098867]
[22]
Heo YA. Mirvetuximabsoravtansine: First approval. Drugs 2023; 83(3): 265-73.
[http://dx.doi.org/10.1007/s40265-023-01834-3] [PMID: 36656533]
[23]
Kang C. Mosunetuzumab: First approval. Drugs 2022; 82(11): 1229-34.
[http://dx.doi.org/10.1007/s40265-022-01749-5] [PMID: 35947358]
[24]
Paik J. Nivolumab plus relatlimab: First approval. Drugs 2022; 82(8): 925-31.
[http://dx.doi.org/10.1007/s40265-022-01723-1] [PMID: 35543970]
[25]
de la Fuente MI, Colman H, Rosenthal M, et al. Olutasidenib (FT-2102) in patients with relapsed or refractory IDH1 -mutant glioma: A multicenter, open-label, phase Ib/II trial. Neuro-oncol 2023; 25(1): 146-56.
[http://dx.doi.org/10.1093/neuonc/noac139] [PMID: 35639513]
[26]
Lamb YN. Pacritinib: First approval. Drugs 2022; 82(7): 831-8.
[http://dx.doi.org/10.1007/s40265-022-01718-y] [PMID: 35567653]
[27]
Damato BE, Dukes J, Goodall H, Carvajal RD. Tebentafusp: T cell redirection for the treatment of metastatic uveal melanoma. Cancers 2019; 11(7): 971.
[http://dx.doi.org/10.3390/cancers11070971] [PMID: 31336704]
[28]
Nathan P, Hassel JC, Rutkowski P, et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N Engl J Med 2021; 385(13): 1196-206.
[http://dx.doi.org/10.1056/NEJMoa2103485] [PMID: 34551229]
[29]
Pillarisetti K, Powers G, Luistro L, et al. Teclistamab is an active T cell–redirecting bispecific antibody against B-cell maturation antigen for multiple myeloma. Blood Adv 2020; 4(18): 4538-49.
[http://dx.doi.org/10.1182/bloodadvances.2020002393] [PMID: 32956453]
[30]
Kyriakidis I, Vasileiou E, Rossig C, Roilides E, Groll AH, Tragiannidis A. Invasive fungal diseases in children with hematological malignancies treated with therapies that target cell surface antigens: Monoclonal antibodies, immune checkpoint inhibitors and CAR T-cell therapies. J Fungi 2021; 7(3): 186.
[http://dx.doi.org/10.3390/jof7030186] [PMID: 33807678]
[31]
Sabari JK, Velcheti V, Shimizu K, et al. Activity of adagrasib (MRTX849) in brain metastases: Preclinical models and clinical data from patients with KRASG12C-mutant non–small cell lung cancer. Clin Cancer Res 2022; 28(15): 3318-28.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-0383] [PMID: 35404402]
[32]
Jänne PA, Riely GJ, Gadgeel SM, et al. Adagrasib in non–small-cell lung cancer harboring a KRASG12C mutation. N Engl J Med 2022; 387(2): 120-31.
[http://dx.doi.org/10.1056/NEJMoa2204619] [PMID: 35658005]
[33]
Tian H, Yang Z, He J. Adagrasib: A landmark in the KRAS G12C ‐mutated NSCLC. MedComm 2022; 3(4): e190.
[http://dx.doi.org/10.1002/mco2.190] [PMID: 36448054]
[34]
Bahleda R, Meric-Bernstam F, Goyal L, et al. Phase I, first-in-human study of futibatinib, a highly selective, irreversible FGFR1–4 inhibitor in patients with advanced solid tumors. Ann Oncol 2020; 31(10): 1405-12.
[http://dx.doi.org/10.1016/j.annonc.2020.06.018] [PMID: 32622884]
[35]
Tschan VJ, Borgna F, Busslinger SD, et al. Preclinical investigations using [177Lu]Lu-Ibu-DAB-PSMA toward its clinical translation for radioligand therapy of prostate cancer. Eur J Nucl Med Mol Imaging 2022; 49(11): 3639-50.
[http://dx.doi.org/10.1007/s00259-022-05837-2] [PMID: 35635566]
[36]
Ramnaraign B, Sartor O. PSMA-targeted radiopharmaceuticals in prostate cancer: Current data and new trials. Oncologist 2023; 28(5): 392-401.
[http://dx.doi.org/10.1093/oncolo/oyac279] [PMID: 36806966]
[37]
FDA Approved Drug Products: Elahere (Mirvetuximabsoravtansine-gynx) injection for intravenous use. FDA 2023. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761310s0001b1.pdf (Accessed on 10.05.2023).
[38]
Matulonis UA, Lorusso D, Oaknin A, et al. Efficacy and safety of mirvetuximabsoravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study. J Clin Oncol 2023; 41(13): 2436-45.
[http://dx.doi.org/10.1200/JCO.22.01900] [PMID: 36716407]
[39]
Annex I (Summary of product characteristics). European Medical Agency 2023. Available from: https://www.ema.europa.eu/en/documents/product-information/lunsumio-epar-product-information_en.pdf (Accessed on 11.05.2023).
[40]
Budde LE, Sehn LH, Matasar M, et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: A single-arm, multicentre, phase 2 study. Lancet Oncol 2022; 23(8): 1055-65.
[http://dx.doi.org/10.1016/S1470-2045(22)00335-7] [PMID: 35803286]
[41]
Annex I (Summary of product characteristics). European Medical Agency. 2023. Available from: https://www.ema.europa.eu/en/documents/product-information/opdualag-epar-product-information_en.pdf
[42]
Tawbi HA, Schadendorf D, Lipson EJ, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med 2022; 386(1): 24-34.
[http://dx.doi.org/10.1056/NEJMoa2109970] [PMID: 34986285]
[43]
Watts JM, Baer MR, Yang J, et al. Olutasidenib alone or with azacitidine in IDH1-mutated acute myeloid leukaemia and myelodysplastic syndrome: Phase 1 results of a phase 1/2 trial. Lancet Haematol 2023; 10(1): e46-58.
[http://dx.doi.org/10.1016/S2352-3026(22)00292-7] [PMID: 36370742]
[44]
Fiskus W, Verstovsek S, Manshouri T, et al. Dual PI3K/AKT/mTOR inhibitor BEZ235 synergistically enhances the activity of JAK2 inhibitor against cultured and primary human myeloproliferative neoplasm cells. Mol Cancer Ther 2013; 12(5): 577-88.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0862] [PMID: 23445613]
[45]
Verstovsek S, Mesa R, Talpaz M, et al. Retrospective analysis of pacritinib in patients with myelofibrosis and severe thrombocytopenia. Haematologica 2021; 107(7): 1599-607.
[http://dx.doi.org/10.3324/haematol.2021.279415] [PMID: 34551507]
[46]
Annex I (Summary of product characteristics). European Medical Agency 2023. Available from: https://www.ema.europa.eu/en/documents/product-information/tecvayli-epar-product-information_en.pdf
[47]
Moreau P, Garfall AL, van de Donk NWCJ, et al. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med 2022; 387(6): 495-505.
[http://dx.doi.org/10.1056/NEJMoa2203478] [PMID: 35661166]
[48]
European Medical Agency, Annex I (Summary of product characteristics). 2023. Available from: https://www.ema.europa.eu/en/documents/product-information/imjudo-epar-product-information_en.pdf (Accessed on 13.05.2023).
[49]
Abou-Alfa GK, Lau G, Kudo M, et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. N Engl J Med 2022; 1(8): EVIDoa2100070.
[http://dx.doi.org/10.1056/EVIDoa2100070]
[50]
Ou SHI, Jänne PA, Leal TA, et al. First-in-human phase I/IB dose-finding study of adagrasib (MRTX849) in patients with advanced KRASG12C solid tumors (KRYSTAL-1). J Clin Oncol 2022; 40(23): 2530-8.
[http://dx.doi.org/10.1200/JCO.21.02752] [PMID: 35167329]
[51]
Yaeger R, Weiss J, Pelster MS, et al. Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12C. N Engl J Med 2023; 388(1): 44-54.
[http://dx.doi.org/10.1056/NEJMoa2212419] [PMID: 36546659]
[52]
Torossian DH. Phase 1/2 Study of MRTX849 in patients with cancer having a KRAS G12C mutation krystal1. NCT03785249 2023. Available from: https://clinicaltrials.gov/ct2/show/NCT03785249?cond=NCT03785249&draw=2&rank=1 (Accessed 11.01.2023).
[53]
Syed YY. Futibatinib: First approval. Drugs 2022; 82(18): 1737-43.
[http://dx.doi.org/10.1007/s40265-022-01806-z] [PMID: 36441501]
[54]
Meric-Bernstam F, Bahleda R, Hierro C, et al. Futibatinib, an irreversible FGFR1–4 inhibitor, in patients with advanced solid tumorsharboring FGF/FGFR aberrations: A phase I dose-expansion study. Cancer Discov 2022; 12(2): 402-15.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0697] [PMID: 34551969]
[55]
Rizzo A, Ricci AD, Brandi G. Futibatinib, an investigational agent for the treatment of intrahepatic cholangiocarcinoma: Evidence to date and future perspectives. Expert Opin Investig Drugs 2021; 30(4): 317-24.
[http://dx.doi.org/10.1080/13543784.2021.1837774] [PMID: 33054456]
[56]
Yamamiya I, Hunt A, Yamashita F, Sonnichsen D, He Y, Benhadji KA. Evaluation of potential food effects and drug interactions with lansoprazole in healthy adult volunteers receiving futibatinib. Clin Pharmacol Drug Dev 2022; 12(3): 294-303.
[http://dx.doi.org/10.1002/cpdd.1196] [PMID: 36382853]
[57]
Benhadji K. A study of TAS-120 in patients with advanced solid. NCT02052778 2023. Available from: https://clinicaltrials.gov/ct2/results?cond=NCT02052778&term=&cntry=&state=&city=&dist= (Accessed on 12.01.2023).
[58]
Shah H, Ravi P, Sonpavde G, Jacene H. Lutetium Lu 177 vipivotide tetraxetan for metastatic castration-resistant prostate cancer. Expert Rev Anticancer Ther 2022; 22(11): 1163-75.
[http://dx.doi.org/10.1080/14737140.2022.2139679] [PMID: 36305305]
[59]
Fallah J, Agrawal S, Gittleman H, et al. FDA Approval Summary: Lutetium Lu 177 vipivotidetetraxetan for patients with metastatic castration-resistant prostate cancer. Clin Cancer Res 2022; 29(9): 1651-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-2875] [PMID: 36469000]
[60]
Kaplon H, Reichert JM. Antibodies to watch in 2021. MAbs 2021; 13(1): 1860476.
[http://dx.doi.org/10.1080/19420862.2020.1860476] [PMID: 33459118]
[61]
Tarantino P, Carmagnani PR, Corti C, et al. Antibody–drug conjugates: Smart chemotherapy delivery across tumorhistologies. CA Cancer J Clin 2022; 72(2): 165-82.
[http://dx.doi.org/10.3322/caac.21705] [PMID: 34767258]
[62]
Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to watch in 2022. MAbs 2022; 14(1): 2014296.
[http://dx.doi.org/10.1080/19420862.2021.2014296] [PMID: 35030985]
[63]
Moore KN, Oza AM, Colombo N, et al. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: Primary analysis of FORWARD I. Ann Oncol 2021; 32(6): 757-65.
[http://dx.doi.org/10.1016/j.annonc.2021.02.017] [PMID: 33667670]
[64]
Matulonis U, Lorusso D, Oaknin A, et al. Efficacy and safety of mirvetuximabsoravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: Results from the SORAYA study (LBA 4). Gynecol Oncol 2022; 166: S50.
[http://dx.doi.org/10.1016/S0090-8258(22)01297-5]
[65]
Ursula MU, Coleman R. A study of mirvetuximabsoravtansine in platinum-resistant, advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate receptor-alpha expression soraya. NCT04296890 2023. Available from: https://clinicaltrials.gov/ct2/show/NCT04296890?cond=NCT04296890&draw=2&rank=1 (Accessed on 14.01.2023).
[66]
Larivière L, Krüger JE, von Hirschheydt T, et al. End-to-end approach for the characterization and control of product-related impurities in T cell bispecific antibody preparations. Int J Pharm X 2023; 5: 100157.
[http://dx.doi.org/10.1016/j.ijpx.2023.100157] [PMID: 36687375]
[67]
Budde LE, Sehn LH, Assouline S, et al. Mosunetuzumab, a full-length bispecific CD20/CD3 antibody, displays clinical activity in relapsed/refractory B-cell non-Hodgkin lymphoma (NHL): Interim safety and efficacy results from a phase 1 study. Blood 2018; 132(S1): 399.
[http://dx.doi.org/10.1182/blood-2018-99-118344]
[68]
Roche HL. A safety, efficacy and pharmacokinetic study of BTCT4465A (Mosunetuzumab) as a single agent and combined with atezolizumab in non-hodgkin's lymphoma (NHL) and chronic lymphocytic leukemia (CLL). NCT02500407 2023. Available from: https://clinicaltrials.gov/ct2/show/NCT02500407?cond=NCT02500407&draw=2&rank=1 (Accessed on 15.01.2023).
[69]
Mann JE. Nivolumab & relatlimab-Rmbw (Opdualag™). Oncology Times 2022; 44(10): 16,18-8.
[http://dx.doi.org/10.1097/01.COT.0000831944.05424.8d]
[70]
Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in previously untreated melanoma. N Engl J Med 2015; 373(1): 23-34.
[http://dx.doi.org/10.1056/NEJMoa1504030] [PMID: 26027431]
[71]
Phillips AL, Reeves DJ. Nivolumab/relatlimab: A novel addition to immune checkpoint inhibitor therapy in unresectable or metastatic melanoma. Ann Pharmacother 2022; 10600280221131396.
[http://dx.doi.org/10.1177/10600280221131396] [PMID: 36268952]
[72]
Kang C. Olutasidenib: First Approval. Drugs 2023; 83(4): 341-6.
[http://dx.doi.org/10.1007/s40265-023-01844-1] [PMID: 36848032]
[73]
Barrett E. Open-label study of FT-2102 with or without azacitidine or cytarabine in patients with AML or MDS with an idh1 mutation. NCT02719574 2023. Available from: https://clinicaltrials.gov/ct2/show/c?cond=NCT02719574&draw=2&rank=1 (Accessed on 13.01.2023).
[74]
De Botton S, Yee KWL, Recher C, et al. Effect of olutasidenib (FT-2102) on complete remissions in patients with relapsed/refractory (R/R) m IDH1 acute myeloid leukemia (AML): Results from a planned interim analysis of a phase 2 clinical trial. J Clin Oncol 2021; 39(15_suppl): 7006.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.7006]
[75]
Mascarenhas J. Pacritinib for the treatment of patients with myelofibrosis and thrombocytopenia. Expert Rev Hematol 2022; 15(8): 671-84.
[http://dx.doi.org/10.1080/17474086.2022.2112565] [PMID: 35983661]
[76]
Tremblay D, Mesa R. Novel treatments for myelofibrosis: Beyond JAK inhibitors. Int J Hematol 2022; 115(5): 645-58.
[http://dx.doi.org/10.1007/s12185-022-03299-8] [PMID: 35182376]
[77]
Dhillon S. Tebentafusp: First approval. Drugs 2022; 82(6): 703-10.
[http://dx.doi.org/10.1007/s40265-022-01704-4] [PMID: 35364798]
[78]
Chen LN, Carvajal RD. Tebentafusp for the treatment of HLA-A*02:01–positive adult patients with unresectable or metastatic uveal melanoma. Expert Rev Anticancer Ther 2022; 22(10): 1017-27.
[http://dx.doi.org/10.1080/14737140.2022.2124971] [PMID: 36102132]
[79]
Romaniuk DS, Postovskaya AM, Khmelevskaya AA, Malko DB, Efimov GA. Rapid multiplex genotyping of 20 HLA-A 02: 01 restricted minor histocompatibility antigens. Front Immunol 2019; 10: 1226.
[http://dx.doi.org/10.3389/fimmu.2019.01226] [PMID: 31275297]
[80]
Safarzadeh KP, Safarzadeh KP, Sheikhi A. Tebentafusp: The first FDA-approved monoclonal antibody for cancer treatment in 2022. Trends Medical Sci 2022; 1(4): 4.
[http://dx.doi.org/10.5812/tms.123546]
[81]
Kang C. Teclistamab: First approval. Drugs 2022; 82(16): 1613-9.
[http://dx.doi.org/10.1007/s40265-022-01793-1] [PMID: 36352205]
[82]
Usmani SZ, Garfall AL, van de Donk NWCJ, et al. Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): A multicentre, open-label, single-arm, phase 1 study. Lancet 2021; 398(10301): 665-74.
[http://dx.doi.org/10.1016/S0140-6736(21)01338-6] [PMID: 34388396]
[83]
Janssen Research & Development. Dose escalation study of teclistamab, a humanized BCMA*CD3 bispecific antibody, in participants with relapsed or refractory multiple myeloma (MajesTEC-1). NCT03145181 2023. Available from: https://clinicaltrials.gov/ct2/show/NCT03145181?cond=NCT03145181&draw=2&rank=1 (Accessed on 14.01.2023).
[84]
Janssen Research & Development. A Study of Teclistamab in Participants With Relapsed or Refractory Multiple Myeloma (MajesTEC-1). NCT04557098 2023. Available from: https://clinicaltrials.gov/ct2/show/NCT04557098?cond=NCT04557098&draw=2&rank=1 (Accessed on 14.01.2023).
[85]
Keam SJ. Tremelimumab: First approval. Drugs 2023; 83(1): 93-102.
[http://dx.doi.org/10.1007/s40265-022-01827-8] [PMID: 36571670]
[86]
Hwang M, Chia YL, Zheng Y, et al. Population Pharmacokinetic Modeling of Tremelimumab in Patients with Advanced Solid Tumors and the Impact of Disease Status on Time‐varying Clearance. Br J Clin Pharmacol 2023; 89(5): 1601-16.
[http://dx.doi.org/10.1111/bcp.15622] [PMID: 36454221]
[87]
Even C, Goldberg SB, Siu LL, et al. 162P Population pharmacokinetic modeling of tremelimumab in patients (pts) with advanced solid tumors. Ann Oncol 2021; 32: S1451-2.
[http://dx.doi.org/10.1016/j.annonc.2021.10.181]
[88]
Ibarrondo FJ, Comin-Anduix B, Escuin-Ordinas H. Tremelimumab: Research and clinical development. OncoTargets Ther 2016; 9: 1767-76.
[http://dx.doi.org/10.2147/OTT.S65802] [PMID: 27042127]
[89]
Hoy SM. Elacestrant: First approval. Drugs 2023; 83(6): 555-61.
[http://dx.doi.org/10.1007/s40265-023-01861-0] [PMID: 37060385]
[90]
Zhou F, Yang G, Xue L, et al. SCR-6852, an oral and highly brain-penetrating estrogen receptor degrader (SERD) effectively shrinks tumors both in intracranial and subcutaneous ER+ breast cancer models. Res Sq 2023.
[http://dx.doi.org/10.21203/rs.3.rs-2863986/v1]
[91]
Patel HK, Tao N, Lee KM, et al. Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Res 2019; 21(1): 146.
[http://dx.doi.org/10.1186/s13058-019-1230-0] [PMID: 31852484]
[92]
Bhatia N, Hazra S, Thareja S. Selective Estrogen receptor degraders (SERDs) for the treatment of breast cancer: An overview. Eur J Med Chem 2023; 256: 115422.
[http://dx.doi.org/10.1016/j.ejmech.2023.115422] [PMID: 37163948]
[93]
Park B. Orserdu Approved for ER+, HER2-, ESR1-Mutated Advanced or Metastatic Breast Cancer. Oncol. Nurse Advis 2023. Available from: https://go.gale.com/ps/i.do?id=GALE%7CA737101841&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=2154350X&p=HRCA&sw=w&userGroupName=anon%7E86a44d5b
[94]
Conlan MG, de Vries EFJ, Glaudemans AWJM, Wang Y, Troy S. Pharmacokinetic and pharmacodynamic studies of elacestrant, a novel oral selective estrogen receptor degrader, in healthy post-menopausal women. Eur J Drug Metab Pharmacokinet 2020; 45(5): 675-89.
[http://dx.doi.org/10.1007/s13318-020-00635-3] [PMID: 32661909]
[95]
Conlan MG, de Vries EFJ, Glaudemans AWJM, Wang Y, Troy S. Correction to: Pharmacokinetic and pharmaco-dynamic studies of elacestrant, a novel oral selective estrogen receptor degrader, in healthy post-menopausal women. Eur J Drug Metab Pharmacokinet 2020; 45(5): 691-2.
[http://dx.doi.org/10.1007/s13318-020-00638-0] [PMID: 32862369]
[96]
Wang Y, Tang SC. The race to develop oral SERDs and other novel estrogen receptor inhibitors: recent clinical trial results and impact on treatment options. Cancer Metastasis Rev 2022; 41(4): 975-90.
[http://dx.doi.org/10.1007/s10555-022-10066-y] [PMID: 36229710]
[97]
Bardia A, Kaklamani V, Wilks S, et al. Phase I study of elacestrant (RAD1901), a novel selective estrogen receptor degrader, in ER-positive, HER2-negative advanced breast cancer. J Clin Oncol 2021; 39(12): 1360-70.
[http://dx.doi.org/10.1200/JCO.20.02272] [PMID: 33513026]
[98]
Keam SJ. Pirtobrutinib: First approval. Drugs 2023; 83(6): 547-53.
[http://dx.doi.org/10.1007/s40265-023-01860-1] [PMID: 37004673]
[99]
Liu Y, Jiang C, Yan F, et al. Pirtobrutinib overcomes ibrutinib and venetoclax resistance in mantle cell lymphoma. Blood 2021; 138(S1): 1182.
[http://dx.doi.org/10.1182/blood-2021-151401]
[100]
Kitadate A. SY08-4 CD38-targeted therapy for multiple myeloma: Mechanisms of action and clinical development. Ann Oncol 2022; 33: S431.
[http://dx.doi.org/10.1016/j.annonc.2022.05.450]
[101]
Mato AR, Shah NN, Jurczak W, et al. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): A phase 1/2 study. Lancet 2021; 397(10277): 892-901.
[http://dx.doi.org/10.1016/S0140-6736(21)00224-5] [PMID: 33676628]
[102]
Mato AR, Pagel JM, Coombs CC, et al. Pirtobrutinib, a next generation, highly selective, non-covalent BTK inhibitor in previously treated CLL/SLL: Updated results from the phase 1/2 BRUIN study. Blood 2021; 138(S1): 391.
[http://dx.doi.org/10.1182/blood-2021-147599]
[103]
Aslan B, Kismali G, Iles LR, et al. Pirtobrutinib inhibits wild-type and mutant Bruton’s tyrosine kinase-mediated signaling in chronic lymphocytic leukemia. Blood Cancer J 2022; 12(5): 80.
[http://dx.doi.org/10.1038/s41408-022-00675-9] [PMID: 35595730]
[104]
Jensen JL, Mato AR, Pena C, Roeker LE, Coombs CC. The potential of pirtobrutinib in multiple B-cell malignancies. Ther Adv Hematol 2022; 13.
[http://dx.doi.org/10.1177/20406207221101697] [PMID: 35747462]
[105]
Blombery P, Thompson ER, Lew TE, et al. Enrichment of BTK Leu528Trp mutations in patients with CLL on zanubrutinib: potential for pirtobrutinib cross-resistance. Blood Adv 2022; 6(20): 5589-92.
[http://dx.doi.org/10.1182/bloodadvances.2022008325] [PMID: 35901282]
[106]
Woyach JA, Flinn IW, Awan FT, et al. Efficacy and safety of nemtabrutinib, a wild-type and c481s-mutated bruton tyrosine kinase inhibitor for b-cell malignancies: updated analysis of the open-label phase 1/2 dose-expansion bellwave-001 study. Blood 2022; 140(S1): 7004-6.
[http://dx.doi.org/10.1182/blood-2022-163596]
[107]
Berberabe A. BTK inhibitors stretch frontline approaches in mantle cell lymphoma. Target Oncol 2023; 12(2): 18.
[108]
Kang C. Retifanlimab: First approval. Drugs 2023; 83(8): 731-7.
[http://dx.doi.org/10.1007/s40265-023-01884-7] [PMID: 37184754]
[109]
van Damme C, Demols A, del Marmol V. Cutaneous, oral and genital lichenoid reactions associated with retifanlimab, a new PD ‐1 inhibitor. J Eur Acad Dermatol Venereol 2023; 37(3): e395-6.
[http://dx.doi.org/10.1111/jdv.18785] [PMID: 36433782]
[110]
Alsina M, Arrazubi V, Diez M, Tabernero J. Current developments in gastric cancer: From molecular profiling to treatment strategy. Nat Rev Gastroenterol Hepatol 2023; 20(3): 155-70.
[http://dx.doi.org/10.1038/s41575-022-00703-w] [PMID: 36344677]
[111]
Ding JT, Yang KP, Zhou HN, Huang YF, Li H, Zong Z. Landscapes and mechanisms of CD8+ T cell exhaustion in gastrointestinal cancer. Front Immunol 2023; 14: 1149622.
[http://dx.doi.org/10.3389/fimmu.2023.1149622] [PMID: 37180158]
[112]
Leidner R, Haddad R, Bourayou N, et al. 677 A phase 2, open-label, multicenter study of INCAGN01876 (anti-GITR agonist) in combination with retifanlimab (anti–PD-1) in recurrent or metastatic head and neck squamous cell carcinoma. J Immunother Cancer 2022; 10(2)
[http://dx.doi.org/10.1136/jitc-2022-SITC2022.0676]
[113]
Rao S, Anandappa G, Capdevila J, et al. A phase II study of retifanlimab (INCMGA00012) in patients with squamous carcinoma of the anal canal who have progressed following platinum-based chemotherapy (POD1UM-202). ESMO Open 2022; 7(4): 100529.
[http://dx.doi.org/10.1016/j.esmoop.2022.100529] [PMID: 35816951]
[114]
Catenacci DVT, Kang YK, Yoon HH, et al. Margetuximab with retifanlimab as first-line therapy in HER2+/PD-L1+ unresectable or metastatic gastroesophageal adenocarcinoma: MAHOGANY cohort A. ESMO Open 2022; 7(5): 100563.
[http://dx.doi.org/10.1016/j.esmoop.2022.100563] [PMID: 36029651]
[115]
Patel M, Ascierto PA, Thistlethwaite F, et al. 704TiP SAR445256 (KY1044) in combination with atezolizumab in patients (pts) with recurrent/metastatic head and neck squamous cell carcinoma (HNSCC). Ann Oncol 2022; 33: S864-5.
[http://dx.doi.org/10.1016/j.annonc.2022.07.828]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy