Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

A Review of Current and Prospective Treatments for Channelopathies, with a Focus on Gene and Protein Therapy

Author(s): Monica Sakla, Ulrike Breitinger, Hans-Georg Breitinger, Samar Mansour and Salma Nabil Tammam*

Volume 29, Issue 17, 2023

Published on: 13 June, 2023

Page: [1341 - 1360] Pages: 20

DOI: 10.2174/1381612829666230601122846

Price: $65

Abstract

Reduced cell surface expression or the malfunctioning of ion channels gives rise to a group of disorders known as channelopathies. To treat the underlying cause, the delivery and/or expression of a functional ion channel into the cell membrane of the cell of interest is required. Unfortunately, for most channelopathies, current treatment options are only symptomatic and treatments that rectify the underlying damage are still lacking. Within this context, approaches that rely on gene and protein therapy are required. Gene therapy would allow the expression of a functional protein, provided that the cellular machinery in the diseased cell could correctly fold and traffic the protein to the cell membrane. Whereas protein therapy would allow the direct delivery of a functional protein, provided that the purification process does not affect protein function and a suitable delivery vehicle for targeted delivery is used. In this review, we provide an overview of channelopathies and available symptomatic treatments. The current state of gene therapy approaches mainly using viral vectors is discussed, which is followed by the role of nanomedicine in protein therapy and how nanomedicine could be exploited for the delivery of functional ion channels to diseased cells.

Keywords: Channelopathies, nanomedicine, gene therapy, protein therapy, cellular machinery, symptomatic treatments.

[1]
Alexander SPH, Mathie A, Peters JA. ION CHANNELS. Br J Pharmacol 2011; 164: S137-74.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01649_5.x] [PMID: 21585344]
[2]
Alexander SPH, Mathie A, Peters JA. Ligand-gated ion channels. Br J Pharmacol 2011; 164: S115-35.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01649_4.x]
[3]
Avila A, Nguyen L, Rigo JM. Glycine receptors and brain development. Front Cell Neurosci 2013; 7: 184.
[http://dx.doi.org/10.3389/fncel.2013.00184] [PMID: 24155690]
[4]
Cascio M. Structure and function of the glycine receptor and related nicotinicoid receptors. J Biol Chem 2004; 279(19): 19383-6.
[http://dx.doi.org/10.1074/jbc.R300035200] [PMID: 15023997]
[5]
Pereira MMC, Parker J, Stratford FLL, McPherson M, Dormer RL. Activation mechanisms for the cystic fibrosis transmembrane conductance regulator protein involve direct binding of cAMP. Biochem J 2007; 405(1): 181-9.
[http://dx.doi.org/10.1042/BJ20061879] [PMID: 17381427]
[6]
Christensen AP, Corey DP. TRP channels in mechanosensation: Direct or indirect activation? Nat Rev Neurosci 2007; 8(7): 510-21.
[http://dx.doi.org/10.1038/nrn2149] [PMID: 17585304]
[7]
Gadsby DC. Ion channels versus ion pumps: The principal difference, in principle. Nat Rev Mol Cell Biol 2009; 10(5): 344-52.
[http://dx.doi.org/10.1038/nrm2668] [PMID: 19339978]
[8]
Kim JB. Channelopathies. Korean J Pediatr 2014; 57(1): 1-18.
[http://dx.doi.org/10.3345/kjp.2014.57.1.1] [PMID: 24578711]
[9]
Imbrici P, Liantonio A, Camerino GM, et al. Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery. Front Pharmacol 2016; 7: 121.
[http://dx.doi.org/10.3389/fphar.2016.00121] [PMID: 27242528]
[10]
Schmitt N, Calloe K, Nielsen NH, et al. The novel C-terminal KCNQ1 mutation M520R alters protein trafficking. Biochem Biophys Res Commun 2007; 358(1): 304-10.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.127] [PMID: 17482572]
[11]
Mohler PJ, Rivolta I, Napolitano C, et al. Na v 1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Na v 1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci 2004; 101(50): 17533-8.
[http://dx.doi.org/10.1073/pnas.0403711101] [PMID: 15579534]
[12]
Wang X, Matteson J, An Y, et al. COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code. J Cell Biol 2004; 167(1): 65-74.
[http://dx.doi.org/10.1083/jcb.200401035] [PMID: 15479737]
[13]
Herren AW, Bers DM, Grandi E. Post-translational modifications of the cardiac Na channel: contribution of CaMKII-dependent phosphorylation to acquired arrhythmias. Am J Physiol Heart Circ Physiol 2013; 305(4): H431-45.
[http://dx.doi.org/10.1152/ajpheart.00306.2013] [PMID: 23771687]
[14]
Hübner CA, Jentsch TJ. Ion channel diseases. Hum Mol Genet 2002; 11(20): 2435-45.
[http://dx.doi.org/10.1093/hmg/11.20.2435] [PMID: 12351579]
[15]
Dworakowska B, Dołowy K. Ion channels-related diseases. Acta Biochim Pol 2000; 47(3): 685-703.
[http://dx.doi.org/10.18388/abp.2000_3989] [PMID: 11310970]
[16]
Abriel H, Gavillet B, Biollaz J, et al. Molecular and clinical determinants of drug-induced long QT syndrome: An iatrogenic channelopathy. Swiss Med Wkly 2004; 134(47-48): 685-94.
[http://dx.doi.org/10.4414/smw.2004.10532] [PMID: 15616901]
[17]
Ayad RF, Assar MD, Simpson L, Garner JB, Schussler JM. Causes and management of drug-induced long QT syndrome. Proc Bayl Univ Med Cent 2010; 23(3): 250-5.
[http://dx.doi.org/10.1080/08998280.2010.11928628] [PMID: 20671821]
[18]
Hajela RK, Huntoon KM, Atchison WD. Lambert-Eaton syndrome antibodies target multiple subunits of voltage-gated Ca2+ channels. Muscle Nerve 2015; 51(2): 176-84.
[http://dx.doi.org/10.1002/mus.24295] [PMID: 24862203]
[19]
Hart IK, Waters C, Vincent A, et al. Autoantibodies detected to expressed K+ channels are implicated in neuromyotonia. Ann Neurol 1997; 41(2): 238-46.
[http://dx.doi.org/10.1002/ana.410410215] [PMID: 9029073]
[20]
Buckley C, Vincent A. Autoimmune channelopathies. Nat Clin Pract Neurol 2005; 1(1): 22-33.
[http://dx.doi.org/10.1038/ncpneuro0033] [PMID: 16932489]
[21]
Modell SM, Lehmann MH. The long QT syndrome family of cardiac ion channelopathies: A HuGE review. Genet Med 2006; 8(3): 143-55.
[http://dx.doi.org/10.1097/01.gim.0000204468.85308.86] [PMID: 16540748]
[22]
Rudic B, Schimpf R, Borggrefe M, Short QT. Short QT syndrome - review of diagnosis and treatment. Arrhythm Electrophysiol Rev 2014; 3(2): 76-9.
[http://dx.doi.org/10.15420/aer.2014.3.2.76] [PMID: 26835070]
[23]
Goodnow CC, Sprent J, de St Groth BF, Vinuesa CG. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 2005; 435(7042): 590-7.
[http://dx.doi.org/10.1038/nature03724] [PMID: 15931211]
[24]
Jamilloux Y, Frih H, Bernard C, et al. Thymomes et maladies auto-immunes. Rev Med Interne 2018; 39(1): 17-26.
[http://dx.doi.org/10.1016/j.revmed.2017.03.003] [PMID: 28365191]
[25]
Scarpino S, Di Napoli A, Stoppacciaro A, et al. Expression of autoimmune regulator gene (AIRE) and T regulatory cells in human thymomas. Clin Exp Immunol 2007; 149(3): 504-12.
[http://dx.doi.org/10.1111/j.1365-2249.2007.03442.x] [PMID: 17590173]
[26]
Weksler B, Lu B. Alterations of the immune system in thymic malignancies. J Thorac Oncol 2014; 9(9): S137-42.
[http://dx.doi.org/10.1097/JTO.0000000000000299] [PMID: 25396311]
[27]
Oldstone MBA. Molecular mimicry and immune‐mediated diseases. FASEB J 1998; 12(13): 1255-65.
[http://dx.doi.org/10.1096/fasebj.12.13.1255] [PMID: 9761770]
[28]
Wykes RC, Lignani G. Gene therapy and editing: Novel potential treatments for neuronal channelopathies. Neuropharmacology 2018; 132: 108-17.
[http://dx.doi.org/10.1016/j.neuropharm.2017.05.029] [PMID: 28564577]
[29]
Peng C, Rich ED, Varnum MD. Achromatopsia-associated mutation in the human cone photoreceptor cyclic nucleotide-gated channel CNGB3 subunit alters the ligand sensitivity and pore properties of heteromeric channels. J Biol Chem 2003; 278(36): 34533-40.
[http://dx.doi.org/10.1074/jbc.M305102200] [PMID: 12815043]
[30]
Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev 2002; 82(3): 769-824.
[http://dx.doi.org/10.1152/physrev.00008.2002] [PMID: 12087135]
[31]
Pascual-Camps I, Barranco-Gonzalez H, Aviñó-Martínez J, Silva E, Harto-Castaño M. Diagnosis and treatment options for achromatopsia: A review of the literature. J Pediatr Ophthalmol Strabismus 2018; 55(2): 85-92.
[http://dx.doi.org/10.3928/01913913-20171117-01] [PMID: 29257187]
[32]
Marigo V, Kutluer M, Huang L. Targeting molecular pathways for the treatment of inherited retinal degeneration. Neural Regen Res 2020; 15(10): 1784-91.
[http://dx.doi.org/10.4103/1673-5374.280303] [PMID: 32246618]
[33]
Jalkanen R, Bech-Hansen NT, Tobias R, et al. A novel CACNA1F gene mutation causes Aland island eye disease. Invest Ophthalmol Vis Sci 2007; 48(6): 2498-502.
[http://dx.doi.org/10.1167/iovs.06-1103] [PMID: 17525176]
[34]
Handklo-Jamal R, Meisel E, Yakubovich D, et al. Andersen-tawil syndrome is associated with impaired PIP2 regulation of the potassium channel Kir2.1. Front Pharmacol 2020; 11: 672.
[http://dx.doi.org/10.3389/fphar.2020.00672] [PMID: 32499698]
[35]
Sansone V, Tawil R. Management and treatment of Andersen-Tawil Syndrome (ATS). Neurotherapeutics 2007; 4(2): 233-7.
[http://dx.doi.org/10.1016/j.nurt.2007.01.005] [PMID: 17395133]
[36]
Misra SN, Kahlig KM, George AL Jr. Impaired Na V 1.2 function and reduced cell surface expression in benign familial neonatal-infantile seizures. Epilepsia 2008; 49(9): 1535-45.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01619.x] [PMID: 18479388]
[37]
Yılmaz Ü, Yılmaz TS, Dizdarer G, Akıncı G, Güzel O, Tekgül H. Efficacy and tolerability of the first antiepileptic drug in children with newly diagnosed idiopathic epilepsy. Seizure 2014; 23(4): 252-9.
[http://dx.doi.org/10.1016/j.seizure.2013.12.001] [PMID: 24370319]
[38]
Maljevic S, Vejzovic S, Bernhard MK, et al. Novel KCNQ3 mutation in a large family with benign familial neonatal epilepsy: A rare cause of neonatal seizures. Mol Syndromol 2016; 7(4): 189-96.
[http://dx.doi.org/10.1159/000447461] [PMID: 27781029]
[39]
Milrod CJ, Palmer JJ, Milrod LM. Levetiracetam is less effective than phenobarbital in treating seizures associated with KCNQ2 variant of benign familial neonatal convulsions. J Pediatr Neurol 2019; 17(4): 158-60.
[http://dx.doi.org/10.1055/s-0038-1673637]
[40]
Ye P, Xu J, Luo Y, Su Z, Yao K. Familial autosomal recessive bestrophinopathy: Identification of a novel variant in BEST1 gene and the specific metabolomic profile. BMC Med Genet 2020; 21(1): 16.
[http://dx.doi.org/10.1186/s12881-020-0951-3] [PMID: 31969119]
[41]
Oh SJ, Lee CJ. Distribution and function of the bestrophin-1 (Best1) channel in the brain. Exp Neurobiol 2017; 26(3): 113-21.
[http://dx.doi.org/10.5607/en.2017.26.3.113] [PMID: 28680296]
[42]
Witsberger E, Marmorstein A, Pulido J. Diffuse outer layer opacification: A novel finding in patients with autosomal recessive bestrophinopathy. Asia Pac J Ophthalmol 2019; 8(6): 469-75.
[http://dx.doi.org/10.1097/APO.0000000000000261] [PMID: 31789649]
[43]
Jungbluth H. Central core disease. Orphanet J Rare Dis 2007; 2(1): 25.
[http://dx.doi.org/10.1186/1750-1172-2-25] [PMID: 17504518]
[44]
Landouré G, Zdebik AA, Martinez TL, et al. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 2010; 42(2): 170-4.
[http://dx.doi.org/10.1038/ng.512] [PMID: 20037586]
[45]
Johnson N, McCorquodale D, Pucillo E. Management of charcotmarie-tooth disease: improving long-term care with a multidisciplinary approach. J Multidiscip Healthc 2016; 7: 7.
[http://dx.doi.org/10.2147/JMDH.S69979]
[46]
Wallace RH, Marini C, Petrou S, et al. Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 2001; 28(1): 49-52.
[http://dx.doi.org/10.1038/ng0501-49] [PMID: 11326275]
[47]
Kessler SK, McGinnis E. A practical guide to treatment of childhood absence epilepsy. Paediatr Drugs 2019; 21(1): 15-24.
[http://dx.doi.org/10.1007/s40272-019-00325-x] [PMID: 30734897]
[48]
Jalkanen R, Mäntyjärvi M, Tobias R, et al. X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J Med Genet 2006; 43(8): 699-704.
[http://dx.doi.org/10.1136/jmg.2006.040741] [PMID: 16505158]
[49]
Hamel CP. Cone rod dystrophies. Orphanet J Rare Dis 2007; 2(1): 7.
[http://dx.doi.org/10.1186/1750-1172-2-7] [PMID: 17270046]
[50]
Goldberg YP, MacFarlane J, MacDonald ML, et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 2007; 71(4): 311-9.
[http://dx.doi.org/10.1111/j.1399-0004.2007.00790.x] [PMID: 17470132]
[51]
Pérez-López LM, Cabrera-González M, Gutiérrez-de la Iglesia D, Ricart S, Knörr-Giménez G. Update review and clinical presentation in congenital insensitivity to pain and anhidrosis. Case Rep Pediatr 2015; 2015: 589852.
[http://dx.doi.org/10.1155/2015/589852] [PMID: 26579324]
[52]
Finsterer J. Congenital myasthenic syndromes. Orphanet J Rare Dis 2019; 14(1): 57.
[http://dx.doi.org/10.1186/s13023-019-1025-5] [PMID: 30808424]
[53]
Nakamura M, Sanuki R, Yasuma TR, et al. TRPM1 mutations are associated with the complete form of congenital stationary night blindness. Mol Vis 2010; 16: 425-37.
[PMID: 20300565]
[54]
Williams B, Lopez JA, Maddox JW, Lee A. Functional impact of a congenital stationary night blindness type 2 mutation depends on subunit composition of Cav1.4 Ca2+ channels. J Biol Chem 2020; 295(50): 17215-26.
[http://dx.doi.org/10.1074/jbc.RA120.014138] [PMID: 33037074]
[55]
Jung J, Lin H, Koh YI, et al. Rare KCNQ4 variants found in public databases underlie impaired channel activity that may contribute to hearing impairment. Exp Mol Med 2019; 51(8): 1-12.
[http://dx.doi.org/10.1038/s12276-019-0300-9] [PMID: 31434872]
[56]
Yang T, Gurrola JG II, Wu H, et al. Mutations of KCNJ10 together with mutations of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome. Am J Hum Genet 2009; 84(5): 651-7.
[http://dx.doi.org/10.1016/j.ajhg.2009.04.014] [PMID: 19426954]
[57]
Grimmer JF, Hedlund G, Park A. Steroid treatment of hearing loss in enlarged vestibular aqueduct anomaly. Int J Pediatr Otorhinolaryngol 2008; 72(11): 1711-5.
[http://dx.doi.org/10.1016/j.ijporl.2008.08.009] [PMID: 18817986]
[58]
Marini C, Scheffer IE, Nabbout R, et al. The genetics of dravet syndrome. Epilepsia 2011; 52 (Suppl. 2): 24-9.
[http://dx.doi.org/10.1111/j.1528-1167.2011.02997.x] [PMID: 21463275]
[59]
Wirrell EC. Treatment of dravet syndrome. Can J Neurol Sci 2016; 43(S3): S13-8.
[http://dx.doi.org/10.1017/cjn.2016.249]
[60]
Jain P, Sharma S, Tripathi M. Diagnosis and management of epileptic encephalopathies in children. Epilepsy Res Treat 2013; 2013: 501981.
[http://dx.doi.org/10.1155/2013/501981] [PMID: 23970964]
[61]
AlSaif S, Umair M, Alfadhel M. Biallelic SCN2A gene mutation causing early infantile epileptic encephalopathy: Case report and review. J Cent Nerv Syst Dis 2019; 11: 1179573519849938.
[http://dx.doi.org/10.1177/1179573519849938] [PMID: 31205438]
[62]
Celmina M, Micule I, Inashkina I, et al. EAST/SeSAME syndrome: Review of the literature and introduction of four new Latvian patients. Clin Genet 2019; 95(1): 63-78.
[http://dx.doi.org/10.1111/cge.13374] [PMID: 29722015]
[63]
Choi KD, Choi JH. Episodic ataxias: Clinical and genetic features. J Mov Disord 2016; 9(3): 129-35.
[http://dx.doi.org/10.14802/jmd.16028] [PMID: 27667184]
[64]
Orsucci D, Raglione LM, Mazzoni M, Vista M. Therapy of episodic ataxias: Case report and review of the literature. Drugs Context 2019; 8: 1-6.
[http://dx.doi.org/10.7573/dic.212576] [PMID: 30891074]
[65]
Strupp M, Kalla R, Dichgans M, Freilinger T, Glasauer S, Brandt T. Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology 2004; 62(9): 1623-5.
[http://dx.doi.org/10.1212/01.WNL.0000125691.74109.53] [PMID: 15136697]
[66]
Zhang P, Xiao F, Li X, et al. Familial episodic pain syndrome: A case report and literature review. Ann Transl Med 2022; 10(4): 238-8.
[http://dx.doi.org/10.21037/atm-22-102] [PMID: 35280382]
[67]
Grieco GS, Gagliardi S, Ricca I, et al. New CACNA1A deletions are associated to migraine phenotypes. J Headache Pain 2018; 19(1): 75.
[http://dx.doi.org/10.1186/s10194-018-0891-x] [PMID: 30167989]
[68]
Di Stefano V, Rispoli MG, Pellegrino N, et al. Diagnostic and therapeutic aspects of hemiplegic migraine. J Neurol Neurosurg Psychiatry 2020; 91(7): 764-71.
[http://dx.doi.org/10.1136/jnnp-2020-322850] [PMID: 32430436]
[69]
Razak SA, Tan EH, Yusoff AAM, Abdullah JM. Generalized epilepsy with febrile seizure plus (GEFS+) spectrum: Novel de novo mutation of SCN1A detected in a Malaysian patient. J Pediatr Neurosci 2012; 7(2): 123-5.
[http://dx.doi.org/10.4103/1817-1745.102575] [PMID: 23248692]
[70]
Camfield P, Camfield C. Febrile seizures and genetic epilepsy with febrile seizures plus (GEFS+). Epileptic Disord 2015; 17(2): 124-33.
[http://dx.doi.org/10.1684/epd.2015.0737] [PMID: 25917466]
[71]
Wang J, Yu S, Zhang Q, Chen Y, Bao X, Wu X. KCNMA1 mutation in children with paroxysmal dyskinesia and epilepsy: Case report and literature review. Transl Sci Rare Dis 2017; 2(3-4): 165-73.
[http://dx.doi.org/10.3233/TRD-170018]
[72]
Unterberger I, Trinka E. Review: Diagnosis and treatment of paroxysmal dyskinesias revisited. Ther Adv Neurol Disord 2008; 1(2): 67-74.
[http://dx.doi.org/10.1177/1756285608095119] [PMID: 21180566]
[73]
Bode A, Lynch JW. The impact of human hyperekplexia mutations on glycine receptor structure and function. Mol Brain 2014; 7(1): 2.
[http://dx.doi.org/10.1186/1756-6606-7-2] [PMID: 24405574]
[74]
Zhou L, Chillag KL, Nigro MA. Hyperekplexia: A treatable neurogenetic disease. Brain Dev 2002; 24(7): 669-74.
[http://dx.doi.org/10.1016/S0387-7604(02)00095-5] [PMID: 12427512]
[75]
Statland JM, Fontaine B, Hanna MG, et al. Review of the diagnosis and treatment of periodic paralysis. Muscle Nerve 2018; 57(4): 522-30.
[http://dx.doi.org/10.1002/mus.26009] [PMID: 29125635]
[76]
Ke T, Gomez CR, Mateus HE, Castano JA, Wang QK. Novel CACNA1S mutation causes autosomal dominant hypokalemic periodic paralysis in a South American family. J Hum Genet 2009; 54(11): 660-4.
[http://dx.doi.org/10.1038/jhg.2009.92] [PMID: 19779499]
[77]
Cossette P, Liu L, Brisebois K, et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 2002; 31(2): 184-9.
[http://dx.doi.org/10.1038/ng885] [PMID: 11992121]
[78]
Auvin S. Treatment of myoclonic seizures in patients with juvenile myoclonic epilepsy. Neuropsychiatr Dis Treat 2008; 3(6): 729-34.
[http://dx.doi.org/10.2147/NDT.S1107] [PMID: 19300607]
[79]
Ta TA, Pessah IN. Ryanodine receptor type 1 (RyR1) possessing malignant hyperthermia mutation R615C exhibits heightened sensitivity to dysregulation by non-coplanar 2,2′,3,5′,6-pentachlorobiphenyl (PCB 95). Neurotoxicology 2007; 28(4): 770-9.
[http://dx.doi.org/10.1016/j.neuro.2006.08.007] [PMID: 17023049]
[80]
Bach G, Zeevi DA, Frumkin A, Kogot-Levin A. Mucolipidosis type IV and the mucolipins. Biochem Soc Trans 2010; 38(6): 1432-5.
[http://dx.doi.org/10.1042/BST0381432] [PMID: 21118102]
[81]
Dangel ME, Bremer DL, Rogers GL. Treatment of corneal opacification in mucolipidosis IV with conjunctival transplantation. Am J Ophthalmol 1985; 99(2): 137-41.
[http://dx.doi.org/10.1016/0002-9394(85)90221-1] [PMID: 3970116]
[82]
Bissinger RL, Koch FR. Nonlethal multiple pterygium syndrome: Escobar syndrome. Adv Neonatal Care 2014; 14(1): 24-9.
[http://dx.doi.org/10.1097/ANC.0000000000000039] [PMID: 24472885]
[83]
Mori Y, Yamashita S, Kato M, et al. Thomsen disease with ptosis and abnormal MR findings. Neuromuscul Disord 2016; 26(11): 805-8.
[http://dx.doi.org/10.1016/j.nmd.2016.08.016] [PMID: 27666773]
[84]
Ohtaki E, Komori H, Yamaguchi Y, Matsuishi T. Successful dantrolene sodium treatment of a patient with myotonia congenita (Thomsen’s disease). Pediatr Int 1991; 33(5): 668-71.
[http://dx.doi.org/10.1111/j.1442-200X.1991.tb01884.x] [PMID: 1799124]
[85]
Liu XL, Huang XJ, Shen JY, et al. Myotonia congenita: Novel mutations in CLCN1 gene. Channels (Austin) 2015; 9(5): 292-8.
[http://dx.doi.org/10.1080/19336950.2015.1075676] [PMID: 26260254]
[86]
Angelini C, Marozzo R, Pegoraro V. Current and emerging therapies in Becker Muscular Dystrophy (BMD). Acta Myol 2019; 38(3): 172-9.
[87]
Nichols WA, Henderson BJ, Marotta CB, et al. Mutation linked to autosomal dominant nocturnal frontal lobe epilepsy reduces low-sensitivity α4β2, and increases α5α4β2, nicotinic receptor surface expression. PLoS One 2016; 11(6): e0158032.
[http://dx.doi.org/10.1371/journal.pone.0158032] [PMID: 27336596]
[88]
Provini F, Plazzi G, Tinuper P, Vandi S, Lugaresi E, Montagna P. Nocturnal frontal lobe epilepsy: A clinical and polygraphic overview of 100 consecutive cases. Brain 1999; 122(6): 1017-31.
[http://dx.doi.org/10.1093/brain/122.6.1017] [PMID: 10356056]
[89]
Palma C, Prior C, Gómez-González C, et al. A SCN4A mutation causing paramyotonia congenita. Neuromuscul Disord 2017; 27(12): 1123-5.
[http://dx.doi.org/10.1016/j.nmd.2017.09.008] [PMID: 29111379]
[90]
Jitpimolmard N, Matthews E, Fialho D. Treatment updates for neuromuscular channelopathies. Curr Treat Options Neurol 2020; 22(10): 34.
[http://dx.doi.org/10.1007/s11940-020-00644-2] [PMID: 32848354]
[91]
Fertleman CR, Baker MD, Parker KA, et al. SCN9A mutations in paroxysmal extreme pain disorder: Allelic variants underlie distinct channel defects and phenotypes. Neuron 2006; 52(5): 767-74.
[http://dx.doi.org/10.1016/j.neuron.2006.10.006] [PMID: 17145499]
[92]
Renthal W. Pain Genetics. In: Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease. Elsevier 2020; pp. 397-410.
[http://dx.doi.org/10.1016/B978-0-12-813866-3.00023-0]
[93]
Cannon SC. Myotonic Disorders. In: Encyclopedia of the Neurological Sciences. Elsevier 2014; pp. 296-8.
[http://dx.doi.org/10.1016/B978-0-12-385157-4.00635-7]
[94]
Tang Z, Chen Z, Tang B, Jiang H. Primary erythromelalgia: A review. Orphanet J Rare Dis 2015; 10(1): 127.
[http://dx.doi.org/10.1186/s13023-015-0347-1] [PMID: 26419464]
[95]
Ba-Abbad R, Holder GE, Robson AG, et al. Isolated rod dysfunction associated with a novel genotype of CNGB1. Am J Ophthalmol Case Rep 2019; 14: 83-6.
[http://dx.doi.org/10.1016/j.ajoc.2019.03.004] [PMID: 30976726]
[96]
Orzalesi N, Pierrottet C, Porta A, Aschero M. Long-term treatment of retinitis pigmentosa with acetazolamide. Graefes Arch Clin Exp Ophthalmol 1993; 231(5): 254-6.
[http://dx.doi.org/10.1007/BF00919100] [PMID: 8319913]
[97]
Virgili G, Rubin G. Orientation and mobility training for adults with low vision. Cochrane Libr 2010; 2010(5): CD003925.
[http://dx.doi.org/10.1002/14651858.CD003925.pub3] [PMID: 20464725]
[98]
Han C, Hoeijmakers JGJ, Ahn HS, et al. Nav1.7-related small fiber neuropathy: Impaired slow-inactivation and DRG neuron hyperexcitability. Neurology 2012; 78(21): 1635-43.
[http://dx.doi.org/10.1212/WNL.0b013e3182574f12] [PMID: 22539570]
[99]
Themistocleous AC, Ramirez JD, Serra J, Bennett DLH. The clinical approach to small fibre neuropathy and painful channelopathy. Pract Neurol 2014; 14(6): 368-79.
[http://dx.doi.org/10.1136/practneurol-2013-000758] [PMID: 24778270]
[100]
Alonso I, Barros J, Tuna A, et al. Phenotypes of spinocerebellar ataxia type 6 and familial hemiplegic migraine caused by a unique CACNA1A missense mutation in patients from a large family. Arch Neurol 2003; 60(4): 610-4.
[http://dx.doi.org/10.1001/archneur.60.4.610] [PMID: 12707077]
[101]
Yabe I, Sasaki H, Yamashita I, Takei A, Tashiro K. Clinical trial of acetazolamide in SCA6, with assessment using the Ataxia Rating Scale and body stabilometry. Acta Neurol Scand 2001; 104(1): 44-7.
[http://dx.doi.org/10.1034/j.1600-0404.2001.00299.x] [PMID: 11442442]
[102]
LoRusso E, Hickman JJ, Guo X. Ion channel dysfunction and altered motoneuron excitability in ALS. Neurol Disord Epilepsy J 2019; 3(2): 124.
[103]
Uzair M, Qaiser H, Arshad M, Zafar A, Bashir S. Cannabinoid neurobiology and medical cannabis intervention for amyotrophic lateral sclerosis. ALS 2022; pp. 148-70.
[http://dx.doi.org/10.4018/978-1-6684-5652-1.ch006]
[104]
Marini M, Arbustini E, Disertori M. Atrial standstill: A paralysis of cardiological relevance. Ital Heart J Suppl 2004; 5(9): 681-6.
[105]
Brodie OT, Michowitz Y, Belhassen B. Pharmacological therapy in brugada syndrome. Arrhythm Electrophysiol Rev 2018; 7(2): 135-42.
[http://dx.doi.org/10.15420/aer.2018.21.2] [PMID: 29967687]
[106]
Leenhardt A, Denjoy I, Guicheney P. Catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol 2012; 5(5): 1044-52.
[http://dx.doi.org/10.1161/CIRCEP.111.962027] [PMID: 23022705]
[107]
Mestroni L, Brun F, Spezzacatene A, Sinagra G, Taylor MRG. Genetic causes of dilated cardiomyopathy. Prog Pediatr Cardiol 2014; 37(1-2): 13-8.
[http://dx.doi.org/10.1016/j.ppedcard.2014.10.003] [PMID: 25584016]
[108]
Massin EK. Current treatment of dilated cardiomyopathy. Tex Heart Inst J 1991; 18(1): 41-9.
[PMID: 15227507]
[109]
Moric-Janiszewska E, Markiewicz-Łoskot G. Review on the genetics of arrhythmogenic right ventricular dysplasia. Europace 2007; 9(5): 259-66.
[http://dx.doi.org/10.1093/europace/eum034] [PMID: 17363426]
[110]
Provenier F, Droogmans S. Atrial fibrillation and flecainide - safety, effectiveness and quality of life outcomes. Eur Cardiol 2010; 6(3): 44.
[http://dx.doi.org/10.15420/ecr.2010.6.3.44]
[111]
Früh A, Siem G, Holmström H, Døhlen G, Haugaa KH. The Jervell and Lange-Nielsen syndrome; atrial pacing combined with ß-blocker therapy, a favorable approach in young high-risk patients with long QT syndrome? Heart Rhythm 2016; 13(11): 2186-92.
[http://dx.doi.org/10.1016/j.hrthm.2016.07.020] [PMID: 27451284]
[112]
Stimers JR, Song L, Rusch NJ, Rhee SW. Overexpression of the large-conductance, Ca2+-Activated K+ (BK) channel shortens action potential duration in HL-1 Cardiomyocytes. PLoS One 2015; 10(6): e0130588.
[http://dx.doi.org/10.1371/journal.pone.0130588] [PMID: 26091273]
[113]
Gemma LW, Ward GM, Dettmer MM, et al. β-blockers protect against dispersion of repolarization during exercise in congenital long-QT syndrome type 1. J Cardiovasc Electrophysiol 2011; 22(10): 1141-6.
[http://dx.doi.org/10.1111/j.1540-8167.2011.02091.x] [PMID: 21635612]
[114]
Hiniesto-Iñigo I, Castro-Gonzalez LM, Corradi V, et al. Endocannabinoids enhance hKV7.1/KCNE1 channel function and shorten the cardiac action potential and QT interval. EBioMedicine 2023; 89: 104459.
[http://dx.doi.org/10.1016/j.ebiom.2023.104459] [PMID: 36796231]
[115]
Chiang DY, Kim JJ, Valdes SO, et al. Loss-of-Function SCN5A mutations associated with sinus node dysfunction, atrial arrhythmias, and poor pacemaker capture. Circ Arrhythm Electrophysiol 2015; 8(5): 1105-12.
[http://dx.doi.org/10.1161/CIRCEP.115.003098] [PMID: 26111534]
[116]
Adán V, Crown LA. Diagnosis and treatment of sick sinus syndrome. Am Fam Physician 2003; 67(8): 1725-32.
[PMID: 12725451]
[117]
Mulders SM, Knoers NV, Van Lieburg AF, et al. New mutations in the AQP2 gene in nephrogenic diabetes insipidus resulting in functional but misrouted water channels. J Am Soc Nephrol 1997; 8(2): 242-8.
[http://dx.doi.org/10.1681/ASN.V82242] [PMID: 9048343]
[118]
Bockenhauer D, Bichet DG. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol 2015; 11(10): 576-88.
[http://dx.doi.org/10.1038/nrneph.2015.89] [PMID: 26077742]
[119]
Amin N, Alvi NS, Barth JH, et al. Pseudohypoaldosteronism type 1: Clinical features and management in infancy. Endocrinol Diabetes Metab Case Rep 2013; 2013: 130010.
[http://dx.doi.org/10.1530/EDM-13-0010] [PMID: 24616761]
[120]
Enslow BT, Stockand JD, Berman JM. Liddle’s syndrome mechanisms, diagnosis and management. Integr Blood Press Control 2019; 12: 13-22.
[http://dx.doi.org/10.2147/IBPC.S188869] [PMID: 31564964]
[121]
Amirlak I, Dawson KP. Bartter syndrome: An overview. QJM 2000; 93(4): 207-15.
[http://dx.doi.org/10.1093/qjmed/93.4.207] [PMID: 10787448]
[122]
Littlewood JM, Lee MR, Meadow SR. Treatment of Bartter’s syndrome in early childhood with prostaglandin synthetase inhibitors. Arch Dis Child 1978; 53(1): 43-8.
[http://dx.doi.org/10.1136/adc.53.1.43] [PMID: 415668]
[123]
Katayama K, Povalko N, Yatsuga S, et al. New TRPM6 mutation and management of hypomagnesaemia with secondary hypocalcaemia. Brain Dev 2015; 37(3): 292-8.
[http://dx.doi.org/10.1016/j.braindev.2014.06.006] [PMID: 24985022]
[124]
Gbadegesin R, Lavin P, Foreman J, Winn M. Pathogenesis and therapy of focal segmental glomerulosclerosis: An update. Pediatr Nephrol 2011; 26(7): 1001-15.
[http://dx.doi.org/10.1007/s00467-010-1692-x] [PMID: 21110043]
[125]
Torra R. Recent advances in the clinical management of autosomal dominant polycystic kidney disease. F1000 Res 2019; 8: 1-8.
[http://dx.doi.org/10.12688/f1000research.17109.1]
[126]
Ilkhanipoor H, Karamizadeh Z. Changing the treatment of permanent neonatal diabetes mellitus from insulin to glibenclamide in a 4-month-old infant with KCNJ11 activating mutation. Int J Prev Med 2013; 4(9): 1078-81.
[PMID: 24130952]
[127]
Passanisi S, Timpanaro T, Lo Presti D, Mammì C, Caruso-Nicoletti M. Treatment of transient neonatal diabetes mellitus: Insulin pump or insulin glargine? Our experience. Diabetes Technol Ther 2014; 16(12): 880-4.
[http://dx.doi.org/10.1089/dia.2014.0055] [PMID: 25437016]
[128]
Gϋemes M, Rahman SA, Kapoor RR, et al. Hyperinsulinemic hypoglycemia in children and adolescents: Recent advances in understanding of pathophysiology and management. Rev Endocr Metab Disord 2020; 21(4): 577-97.
[http://dx.doi.org/10.1007/s11154-020-09548-7] [PMID: 32185602]
[129]
Stanley CA. Perspective on the genetics and diagnosis of congenital hyperinsulinism disorders. J Clin Endocrinol Metab 2016; 101(3): 815-26.
[http://dx.doi.org/10.1210/jc.2015-3651] [PMID: 26908106]
[130]
Lin SH, Huang CL. Mechanism of thyrotoxic periodic paralysis. J Am Soc Nephrol 2012; 23(6): 985-8.
[http://dx.doi.org/10.1681/ASN.2012010046] [PMID: 22460532]
[131]
Lam L, Nair RJ, Tingle L. Thyrotoxic periodic paralysis. Proc Bayl Univ Med Cent 2006; 19(2): 126-9.
[http://dx.doi.org/10.1080/08998280.2006.11928143] [PMID: 16609738]
[132]
Stark Z, Savarirayan R. Osteopetrosis. Orphanet J Rare Dis 2009; 4(1): 5.
[http://dx.doi.org/10.1186/1750-1172-4-5] [PMID: 19232111]
[133]
Farmakidis C, Pasnoor M, Dimachkie MM, Barohn RJ. Treatment of myasthenia gravis. Neurol Clin 2018; 36(2): 311-37.
[http://dx.doi.org/10.1016/j.ncl.2018.01.011] [PMID: 29655452]
[134]
Farrugia ME, Goodfellow JA. A practical approach to managing patients with myasthenia gravis—opinions and a review of the literature. Front Neurol 2020; 11: 604.
[http://dx.doi.org/10.3389/fneur.2020.00604] [PMID: 32733360]
[135]
Iodice V, Kimpinski K, Vernino S, Sandroni P, Low PA. Immunotherapy for autoimmune autonomic ganglionopathy. Auton Neurosci 2009; 146(1-2): 22-5.
[http://dx.doi.org/10.1016/j.autneu.2008.11.001] [PMID: 19056323]
[136]
Stangel M. Lindquist. Update on Treatment Options for Lambert& ndash; eaton myasthenic syndrome: focus on use of amifampridine. Neuropsychiatr Dis Treat 2011; 341.
[http://dx.doi.org/10.2147/NDT.S10464]
[137]
Greenlee JE. Treatment of paraneoplastic cerebellar degeneration. Curr Treat Options Neurol 2013; 15(2): 185-200.
[http://dx.doi.org/10.1007/s11940-012-0215-4] [PMID: 23315179]
[138]
Maskery M, Chhetri SK, Dayanandan R, Gall C, Emsley HCA. Morvan syndrome. Neurohospitalist 2016; 6(1): 32-5.
[http://dx.doi.org/10.1177/1941874415580597] [PMID: 26740856]
[139]
Thompson J, Bi M, Murchison AG, et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 2018; 141(2): 348-56.
[http://dx.doi.org/10.1093/brain/awx323] [PMID: 29272336]
[140]
Gomes FM, Lapresa AV, García SMH, Hernández HL, Doyague SMJ. Successful treatment of anti-NMDA receptor encephalitis with early teratoma removal and plasmapheresis. Medicine 2018; 97(31): e11325.
[http://dx.doi.org/10.1097/MD.0000000000011325] [PMID: 30075499]
[141]
Popescu A, Kao AH, Neuropsychiatric Systemic Lupus Erythematosus A. Neuropsychiatric systemic lupus erythematosus. Curr Neuropharmacol 2011; 9(3): 449-57.
[http://dx.doi.org/10.2174/157015911796557984] [PMID: 22379459]
[142]
Kowarik MC, Soltys J, Bennett JL. The treatment of neuromyelitis optica. J Neuroophthalmol 2014; 34(1): 70-82.
[http://dx.doi.org/10.1097/WNO.0000000000000102] [PMID: 24531318]
[143]
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered expression of ion channels in white matter lesions of progressive multiple sclerosis: What do we know about their function? Front Cell Neurosci 2021; 15: 685703.
[http://dx.doi.org/10.3389/fncel.2021.685703] [PMID: 34276310]
[144]
Dietrich M, Hartung HP, Albrecht P. Neuroprotective properties of 4-aminopyridine. Neurol Neuroimmunol Neuroinflamm 2021; 8(3): e976.
[http://dx.doi.org/10.1212/NXI.0000000000000976] [PMID: 33653963]
[145]
Kreindler JL. Cystic fibrosis: Exploiting its genetic basis in the hunt for new therapies. Pharmacol Ther 2010; 125(2): 219-29.
[http://dx.doi.org/10.1016/j.pharmthera.2009.10.006] [PMID: 19903491]
[146]
Accurso FJ, Rowe SM, Clancy JP, et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med 2010; 363(21): 1991-2003.
[http://dx.doi.org/10.1056/NEJMoa0909825] [PMID: 21083385]
[147]
Chojnacki M, Lemieszek M. Role of vitamin D3 in selected pulmonary diseases with particular emphasis on lung fibrosis. Ann Agric Environ Med 2023; 30(1): 31-44.
[http://dx.doi.org/10.26444/aaem/161583] [PMID: 36999853]
[148]
Lundstrom K. Viral vectors in gene therapy. Diseases 2018; 6(2): 42.
[http://dx.doi.org/10.3390/diseases6020042] [PMID: 29883422]
[149]
Telemaque S, Marsh JD. Modification of cardiovascular ion channels by gene therapy. Expert Rev Cardiovasc Ther 2009; 7(8): 939-53.
[http://dx.doi.org/10.1586/erc.09.76] [PMID: 19673672]
[150]
Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008; 21(4): 583-93.
[http://dx.doi.org/10.1128/CMR.00008-08] [PMID: 18854481]
[151]
Ellis J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 2005; 16(11): 1241-6.
[http://dx.doi.org/10.1089/hum.2005.16.1241] [PMID: 16259557]
[152]
Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 2006; 17(3): 253-63.
[http://dx.doi.org/10.1089/hum.2006.17.253] [PMID: 16544975]
[153]
Tros de Ilarduya C, Sun Y, Düzgüneş N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 2010; 40(3): 159-70.
[http://dx.doi.org/10.1016/j.ejps.2010.03.019] [PMID: 20359532]
[154]
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15(8): 541-55.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[155]
Ostróżka-Cieślik A, Sarecka-Hujar B. The use of nanotechnology in modern pharmacotherapy. In: Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics. Elsevier 2017; pp. 139-58.
[http://dx.doi.org/10.1016/B978-0-323-52725-5.00007-1]
[156]
Bouard D, Alazard-Dany N, Cosset F-L. Viral vectors: From virology to transgene expression. Br J Pharmacol 2009; 157(2): 153-65.
[http://dx.doi.org/10.1038/bjp.2008.349] [PMID: 18776913]
[157]
Michalakis S, Mühlfriedel R, Tanimoto N, et al. Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function. Mol Ther 2010; 18(12): 2057-63.
[http://dx.doi.org/10.1038/mt.2010.149] [PMID: 20628362]
[158]
Mühlfriedel R, Tanimoto N, Seeliger M. Genersatztherapie bei genetisch bedingter Zapfenblindheit. Klin Monatsbl Augenheilkd 2014; 231(3): 232-40.
[http://dx.doi.org/10.1055/s-0034-1368180] [PMID: 24658860]
[159]
Guziewicz KE, Cideciyan AV, Beltran WA, et al. BEST1 gene therapy corrects a diffuse retina-wide microdetachment modulated by light exposure. Proc Natl Acad Sci 2018; 115(12): E2839-48.
[http://dx.doi.org/10.1073/pnas.1720662115] [PMID: 29507198]
[160]
Tanenhaus A, Stowe T, Young A, et al. Cell-selective adeno-associated virus-mediated SCN1A gene regulation therapy rescues mortality and seizure phenotypes in a dravet syndrome mouse model and is well tolerated in nonhuman primates. Hum Gene Ther 2022; 33(11-12): 579-97.
[http://dx.doi.org/10.1089/hum.2022.037] [PMID: 35435735]
[161]
Hsiao J, Yuan TY, Tsai MS, et al. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of dravet syndrome. EBioMedicine 2016; 9: 257-77.
[http://dx.doi.org/10.1016/j.ebiom.2016.05.011] [PMID: 27333023]
[162]
Potapova I, Plotnikov A, Lu Z, et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 2004; 94(7): 952-9.
[http://dx.doi.org/10.1161/01.RES.0000123827.60210.72] [PMID: 14988226]
[163]
Yankelson L, Feld Y, Bressler-Stramer T, et al. Cell therapy for modification of the myocardial electrophysiological substrate. Circulation 2008; 117(6): 720-31.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.671776] [PMID: 18212286]
[164]
Sasano T, McDonald AD, Kikuchi K, Donahue JK. Molecular ablation of ventricular tachycardia after myocardial infarction. Nat Med 2006; 12(11): 1256-8.
[http://dx.doi.org/10.1038/nm1503] [PMID: 17072309]
[165]
Hyde SC, Gill DR, Higgins CF, et al. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature 1993; 362(6417): 250-5.
[http://dx.doi.org/10.1038/362250a0] [PMID: 7681548]
[166]
Ostedgaard LS, Rokhlina T, Karp PH, et al. A shortened adeno-associated virus expression cassette for CFTR gene transfer to cystic fibrosis airway epithelia. Proc Natl Acad Sci USA 2005; 102(8): 2952-7.
[http://dx.doi.org/10.1073/pnas.0409845102] [PMID: 15703296]
[167]
Fischer AC, Smith CI, Cebotaru L, et al. Expression of a truncated cystic fibrosis transmembrane conductance regulator with an AAV5-pseudotyped vector in primates. Mol Ther 2007; 15(4): 756-63.
[http://dx.doi.org/10.1038/sj.mt.6300059] [PMID: 17299412]
[168]
Moss RB, Rodman D, Spencer LT, et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis trans-membrane regulator gene transfer to the lungs of patients with cystic fibrosis: A multicenter, double-blind, placebo-controlled trial. Chest 2004; 125(2): 509-21.
[http://dx.doi.org/10.1378/chest.125.2.509] [PMID: 14769732]
[169]
Chang Q, Wang J, Li Q, et al. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human jervell and lange‐nielsen deafness syndrome. EMBO Mol Med 2015; 7(8): 1077-86.
[http://dx.doi.org/10.15252/emmm.201404929] [PMID: 26084842]
[170]
Lai NC, Roth DM, Gao MH, et al. Intracoronary delivery of adenovirus encoding adenylyl cyclase VI increases left ventricular function and cAMP-generating capacity. Circulation 2000; 102(19): 2396-401.
[http://dx.doi.org/10.1161/01.CIR.102.19.2396] [PMID: 11067795]
[171]
Hammond HK, Penny WF, Traverse JH, et al. Intracoronary gene transfer of adenylyl cyclase 6 in patients with heart failure. JAMA Cardiol 2016; 1(2): 163-71.
[http://dx.doi.org/10.1001/jamacardio.2016.0008] [PMID: 27437887]
[172]
Jaski BE, Jessup ML, Mancini DM, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 2009; 15(3): 171-81.
[http://dx.doi.org/10.1016/j.cardfail.2009.01.013] [PMID: 19327618]
[173]
Jessup M, Greenberg B, Mancini D, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): A phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011; 124(3): 304-13.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.022889] [PMID: 21709064]
[174]
Tammam S, Malak P, Correa D, et al. Nuclear delivery of recombinant OCT4 by chitosan nanoparticles for transgene-free generation of protein-induced pluripotent stem cells. Oncotarget 2016; 7(25): 37728-39.
[http://dx.doi.org/10.18632/oncotarget.9276] [PMID: 27183911]
[175]
Leader B, Baca QJ, Golan DE. Protein therapeutics: A summary and pharmacological classification. Nat Rev Drug Discov 2008; 7(1): 21-39.
[http://dx.doi.org/10.1038/nrd2399] [PMID: 18097458]
[176]
Ramadan S, Tammam SN, Shetab Boushehri MA, et al. Liposomal delivery of functional transmembrane ion channels into the cell membranes of target cells; a potential approach for the treatment of channelopathies. Int J Biol Macromol 2019; 153: 1080-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.238] [PMID: 31756462]
[177]
Sakla M, Breitinger U, Breitinger HG, Mansour S, Tammam SN. Delivery of trans-membrane proteins by liposomes; the effect of liposome size and formulation technique on the efficiency of protein delivery. Int J Pharm 2021; 606: 120879.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120879] [PMID: 34265391]
[178]
Kuboyama A, Sasaki T, Shimizu M, Inoue J, Sato R. The expression of Transmembrane Protein 100 is regulated by alterations in calcium signaling rather than endoplasmic reticulum stress. Biosci Biotechnol Biochem 2018; 82(8): 1377-83.
[http://dx.doi.org/10.1080/09168451.2018.1464899] [PMID: 29690857]
[179]
Kwon M, Firestein BL. DNA Transfection: Calcium phosphate method. Methods Mol Biol 2013; 1018: 107-10.
[http://dx.doi.org/10.1007/978-1-62703-444-9_10]
[180]
Shi C, Shin YO, Hanson J, Cass B, Loewen MC, Durocher Y. Purification and characterization of a recombinant G-protein-coupled receptor, Saccharomyces cerevisiae Step 2, transiently expressed in HEK293 EBNA1 cells. Biochemistry 2005; 44(48): 15705-14.
[http://dx.doi.org/10.1021/bi051292p] [PMID: 16313173]
[181]
Hu D, Wu J, Xu L, Zhang R, Chen L. A method for the establishment of a cell line with stable expression of the GFP-LC3 reporter protein. Mol Med Rep 2012; 6(4): 783-6.
[http://dx.doi.org/10.3892/mmr.2012.988] [PMID: 22825056]
[182]
Jensen HM, Eng T, Chubukov V, Herbert RA, Mukhopadhyay A. Improving membrane protein expression and function using genomic edits. Sci Rep 2017; 7(1): 13030.
[http://dx.doi.org/10.1038/s41598-017-12901-7] [PMID: 29026162]
[183]
Shen YM, Hirschhorn RR, Mercer WE, et al. Gene transfer: DNA microinjection compared with DNA transfection with a very high efficiency. Mol Cell Biol 1982; 2(9): 1145-54.
[http://dx.doi.org/10.1128/mcb.2.9.1145-1154.1982] [PMID: 6294505]
[184]
Brault J, Vaganay G, Le Roy A, Lenormand JL, Cortes S, Stasia MJ. Therapeutic effects of proteoliposomes on X-linked chronic granulomatous disease: Proof of concept using macrophages differentiated from patient-specific induced pluripotent stem cells. Int J Nanomed 2017; 12: 2161-77.
[http://dx.doi.org/10.2147/IJN.S128611] [PMID: 28356734]
[185]
Khambhati K, Bhattacharjee G, Gohil N, Braddick D, Kulkarni V, Singh V. Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. Front Bioeng Biotechnol 2019; 7: 248.
[http://dx.doi.org/10.3389/fbioe.2019.00248] [PMID: 31681738]
[186]
Zemella A, Thoring L, Hoffmeister C, Kubick S. Cell-free protein synthesis: Pros and cons of prokaryotic and eukaryotic systems. ChemBioChem 2015; 16(17): 2420-31.
[http://dx.doi.org/10.1002/cbic.201500340] [PMID: 26478227]
[187]
Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: Not just a soap opera. Biochim Biophys Acta Biomembr 2004; 1666(1-2): 105-17.
[http://dx.doi.org/10.1016/j.bbamem.2004.04.011] [PMID: 15519311]
[188]
Lin S-H, Guidotti G. Purification of membrane proteins. Methods Enzymol 2009; 463: 619-29.
[http://dx.doi.org/10.1016/S0076-6879(09)63035-4]
[189]
Orwick-Rydmark M, Arnold T, Linke D. The use of detergents to purify membrane proteins. Curr Protoc Protein Sci 2016; 84(1): 8.1-, 35.
[http://dx.doi.org/10.1002/0471140864.ps0408s84] [PMID: 27038269]
[190]
Palanirajan SK, Govindasamy P, Gummadi SN. Polystyrene adsorbents: Rapid and efficient surrogate for dialysis in membrane protein purification. Sci Rep 2020; 10(1): 16334.
[http://dx.doi.org/10.1038/s41598-020-73522-1] [PMID: 33005012]
[191]
Jeffery CJ. Expression, solubilization, and purification of bacterial membrane proteins. Curr Protoc Protein Sci 2016; 83(1): 1-15.
[http://dx.doi.org/10.1002/0471140864.ps2915s83] [PMID: 26836409]
[192]
Bhatt FH, Jeffery CJ. Expression, detergent solubilization, and purification of a membrane transporter, the MexB multidrug resistance protein. J Vis Exp 2010; (46): 2134.
[http://dx.doi.org/10.3791/2134] [PMID: 21178960]
[193]
Spek SJF, Koopmans F, Paliukhovich I, et al. Glycine receptor complex analysis using immunoprecipitation‐blue native gel electrophoresis‐mass spectrometry. Proteomics 2020; 20(3-4): 1900403.
[http://dx.doi.org/10.1002/pmic.201900403] [PMID: 31984645]
[194]
Yang Z, Wang C, Zhou Q, et al. Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains. Protein Sci 2014; 23(6): 769-89.
[http://dx.doi.org/10.1002/pro.2460] [PMID: 24652590]
[195]
Bordag N, Keller S. α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins. Chem Phys Lipids 2010; 163(1): 1-26.
[http://dx.doi.org/10.1016/j.chemphyslip.2009.07.009] [PMID: 19682979]
[196]
Zhou HX, Cross TA. Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 2013; 42(1): 361-92.
[http://dx.doi.org/10.1146/annurev-biophys-083012-130326] [PMID: 23451886]
[197]
Rosenberg MF, Kamis AB, Aleksandrov LA, Ford RC, Riordan JR. Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 2004; 279(37): 39051-7.
[http://dx.doi.org/10.1074/jbc.M407434200] [PMID: 15247233]
[198]
Cascio M, Shenkel S, Grodzicki RL, Sigworth FJ, Fox RO. Functional reconstitution and characterization of recombinant human alpha 1-glycine receptors. J Biol Chem 2001; 276(24): 20981-8.
[http://dx.doi.org/10.1074/jbc.M010968200] [PMID: 11145968]
[199]
Putman M, van Veen HW, Poolman B, Konings WN. Restrictive use of detergents in the functional reconstitution of the secondary multidrug transporter LmrP. Biochemistry 1999; 38(3): 1002-8.
[http://dx.doi.org/10.1021/bi981863w] [PMID: 9893996]
[200]
Muinao T, Pal M, Boruah HPD. Cytosolic and transmembrane protein extraction methods of breast and ovarian cancer cells: A comparative study. J Biomol Tech 2018; 29(3): 71-8.
[http://dx.doi.org/10.7171/jbt.18-2903-002] [PMID: 30174558]
[201]
Zhang X. Less is more: Membrane protein digestion beyond urea-trypsin solution for next-level proteomics. Mol Cell Proteomics 2015; 14(9): 2441-53.
[http://dx.doi.org/10.1074/mcp.R114.042572] [PMID: 26081834]
[202]
Al-Sabi A, Kaza S, Le Berre M, et al. Position-dependent attenuation by Kv1.6 of N-type inactivation of Kv1.4-containing channels. Biochem J 2011; 438(2): 389-96.
[http://dx.doi.org/10.1042/BJ20102169] [PMID: 21352098]
[203]
González M, Argaraña CE, Fidelio GD. Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomol Eng 1999; 16(1-4): 67-72.
[http://dx.doi.org/10.1016/S1050-3862(99)00041-8] [PMID: 10796986]
[204]
Zeheb R, Orr GA. Use of avidin-iminobiotin complexes for purifying plasma membrane proteins. Methods Enzymol 1986; 122: 87-94.
[http://dx.doi.org/10.1016/0076-6879(86)22153-9]
[205]
Shehadul IM, Aryasomayajula A, Selvaganapathy P. A review on macroscale and microscale cell lysis methods. Micromachines 2017; 8(3): 83.
[http://dx.doi.org/10.3390/mi8030083]
[206]
Augenstein DC, Thrasher K, Sinskey AJ, Wang DIC. Optimization in the recovery of a labile intracellular enzyme. Biotechnol Bioeng 1974; 16(11): 1433-47.
[http://dx.doi.org/10.1002/bit.260161102] [PMID: 4441628]
[207]
Papanayotou I, Sun B, Roth AF, Davis NG. Protein aggregation induced during glass bead lysis of yeast. Yeast 2010; 27(10): 801-16.
[http://dx.doi.org/10.1002/yea.1771] [PMID: 20641011]
[208]
El-Safy S, Tammam SN, Abdel-Halim M, et al. Collagenase loaded chitosan nanoparticles for digestion of the collagenous scar in liver fibrosis: The effect of chitosan intrinsic collagen binding on the success of targeting. Eur J Pharm Biopharm 2020; 148: 54-66.
[http://dx.doi.org/10.1016/j.ejpb.2020.01.003] [PMID: 31945489]
[209]
Tammam SN, Azzazy HME, Lamprecht A. Nuclear and cytoplasmic delivery of lactoferrin in glioma using chitosan nanoparticles: Cellular location dependent-action of lactoferrin. Eur J Pharm Biopharm 2018; 129: 74-9.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.027] [PMID: 29802982]
[210]
Yu M, Wu J, Shi J, Farokhzad OC. Nanotechnology for protein delivery: Overview and perspectives. J Control Release 2016; 240: 24-37.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.012]
[211]
Tammam SN, Lamprecht A. Nanostructures in Drug Delivery. In: In Pharmaceutical Nanotechnology Innovation and Production. Wiley-VCH Verlag GmbH & Co. KGaA 2016; pp. 101-34.
[http://dx.doi.org/10.1002/9783527800681.ch6]
[212]
Mansoor S, Kondiah PPD, Choonara YE, Pillay V. Polymer-based nanoparticle strategies for insulin delivery. Polymers 2019; 11(9): 1380.
[http://dx.doi.org/10.3390/polym11091380] [PMID: 31443473]
[213]
Thomas Cordonnier AS. Protein encapsulation into PLGA nanoparticles by a novel phase separation method using non-toxic solvents. J Nanomed Nanotechnol 2014; 5(6)
[http://dx.doi.org/10.4172/2157-7439.1000241]
[214]
Stie MB, Thoke HS, Issinger OG, Hochscherf J, Guerra B, Olsen LF. Delivery of proteins encapsulated in chitosan-tripolyphosphate nanoparticles to human skin melanoma cells. Colloids Surf B Biointerfaces 2019; 174: 216-23.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.005] [PMID: 30465996]
[215]
Xu X, Costa A, Burgess DJ. Protein encapsulation in unilamellar liposomes: high encapsulation efficiency and a novel technique to assess lipid-protein interaction. Pharm Res 2012; 29(7): 1919-31.
[http://dx.doi.org/10.1007/s11095-012-0720-x] [PMID: 22403024]
[216]
Manzanares D, Ceña V. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics 2020; 12(4): 371.
[http://dx.doi.org/10.3390/pharmaceutics12040371] [PMID: 32316537]
[217]
Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem Soc Rev 2017; 46(14): 4218-44.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[218]
Tammam SN, Azzazy HME, Lamprecht A. How successful is nuclear targeting by nanocarriers? J Control Release 2016; 229: 140-53.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.022] [PMID: 26995759]
[219]
Henderson IM, Collins AM, Quintana HA, Montaño GA, Martinez JA, Paxton WF. Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles. Polymer 2016; 83: 239-45.
[http://dx.doi.org/10.1016/j.polymer.2015.12.014]
[220]
Kube S, Hersch N, Naumovska E, et al. Fusogenic liposomes as nanocarriers for the delivery of intracellular proteins. Langmuir 2017; 33(4): 1051-9.
[http://dx.doi.org/10.1021/acs.langmuir.6b04304] [PMID: 28059515]
[221]
Zakharian E. Recording of ion channel activity in planar lipid bilayer experiments. Methods Mol Biol 2013; 998: 109-18.
[http://dx.doi.org/10.1007/978-1-62703-351-0_8]
[222]
Hirano M, Yamamoto D, Asakura M, et al. A lipid bilayer formed on a hydrogel bead for single ion channel recordings. Micromachines 2020; 11(12): 1070.
[http://dx.doi.org/10.3390/mi11121070] [PMID: 33271761]
[223]
Kageyama H, Ma T, Sato M, Komiya M, Tadaki D, Hirano-Iwata A. New aspects of bilayer lipid membranes for the analysis of ion channel functions. Membranes 2022; 12(9): 863.
[http://dx.doi.org/10.3390/membranes12090863] [PMID: 36135882]
[224]
de Planque MRR. Lipid bilayer platforms for parallel ion channel recordings. Jpn J Appl Phys 2022; 61: SC0804.
[http://dx.doi.org/10.35848/1347-4065/ac4f7a]
[225]
Winterstein LM, Kukovetz K, Rauh O, et al. Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. J Gen Physiol 2018; 150(4): 637-46.
[http://dx.doi.org/10.1085/jgp.201711904] [PMID: 29487088]
[226]
Tonggu L, Wang L. Structure of the human BK ion channel in lipid environment. Membranes 2022; 12(8): 758.
[http://dx.doi.org/10.3390/membranes12080758] [PMID: 36005673]
[227]
Rigaud JL, Lévy D. Reconstitution of membrane proteins into liposomes. Methods Enzymol 2003; 372: 65-86.
[http://dx.doi.org/10.1016/S0076-6879(03)72004-7]
[228]
Kasahara M, Hinkle PC. Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes. Proc Natl Acad Sci 1976; 73(2): 396-400.
[http://dx.doi.org/10.1073/pnas.73.2.396] [PMID: 1061142]
[229]
Barenholzt Y, Amselem S, D L. A new method for preparation of phospholipid vesicles (liposomes) - french press. FEBS Lett 1979; 99(1): 210-4.
[http://dx.doi.org/10.1016/0014-5793(79)80281-1] [PMID: 437128]
[230]
Mimms LT, Zampighi G, Nozaki Y, Tanford C, Reynolds JA. Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside. Biochemistry 1981; 20(4): 833-40.
[http://dx.doi.org/10.1021/bi00507a028] [PMID: 7213617]
[231]
Lévy D, Bluzat A, Seigneuret M, Rigaud JL. A systematic study of liposome and proteoliposome reconstitution involving Bio-Bead-mediated Triton X-100 removal. Biochim Biophys Acta Biomembr 1990; 1025(2): 179-90.
[http://dx.doi.org/10.1016/0005-2736(90)90096-7] [PMID: 2364077]
[232]
Zhang X, Fu W, Palivan CG, Meier W. Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane. Sci Rep 2013; 3(1): 2196.
[http://dx.doi.org/10.1038/srep02196] [PMID: 23846807]
[233]
Lo CH, Zeng J. Application of polymersomes in membrane protein study and drug discovery: Progress, strategies, and perspectives. Bioeng Transl Med 2023; 8(1): e10350.
[http://dx.doi.org/10.1002/btm2.10350] [PMID: 36684106]
[234]
Graff A, Fraysse-Ailhas C, Palivan CG, et al. Amphiphilic copolymer membranes promote nadh:ubiquinone oxidoreductase activity: Towards an electron-transfer nanodevice. Macromol Chem Phys 2010; 211(2): 229-38.
[http://dx.doi.org/10.1002/macp.200900517]
[235]
Lomora M, Garni M, Itel F, Tanner P, Spulber M, Palivan CG. Polymersomes with engineered ion selective permeability as stimuli-responsive nanocompartments with preserved architecture. Biomaterials 2015; 53: 406-14.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.080] [PMID: 25890738]
[236]
Bjørkskov FB, Krabbe SL, Nurup CN, et al. Purification and functional comparison of nine human Aquaporins produced in Saccharomyces cerevisiae for the purpose of biophysical characterization. Sci Rep 2017; 7(1): 16899.
[http://dx.doi.org/10.1038/s41598-017-17095-6] [PMID: 29203835]
[237]
Wang L, Tonggu L. Membrane protein reconstitution for functional and structural studies. Sci China Life Sci 2015; 58(1): 66-74.
[http://dx.doi.org/10.1007/s11427-014-4769-0] [PMID: 25576454]
[238]
Rigaud JL. Membrane proteins: Functional and structural studies using reconstituted proteoliposomes and 2-D crystals. Braz J Med Biol Res 2002; 35(7): 753-66.
[http://dx.doi.org/10.1590/S0100-879X2002000700001] [PMID: 12131914]
[239]
Johnson M. Protein Quantitation. Materials and Methods 2012; 2.
[http://dx.doi.org/10.13070/mm.en.2.115]
[241]
Tammam SN, Azzazy HME, Breitinger HG, Lamprecht A. Chitosan nanoparticles for nuclear targeting: The effect of nanoparticle size and nuclear localization sequence density. Mol Pharm 2015; 12(12): 4277-89.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00478] [PMID: 26465978]
[242]
[243]
Tammam SN, Azzazy HME, Lamprecht A. A high throughput method for quantification of cell surface bound and internalized chitosan nanoparticles. Int J Biol Macromol 2015; 81: 858-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.021] [PMID: 26385503]
[244]
Portillo-Téllez MC, Bello M, Salcedo G, Gutiérrez G, Gómez-Vidales V, García-Hernández E. Folding and homodimerization of wheat germ agglutinin. Biophys J 2011; 101(6): 1423-31.
[http://dx.doi.org/10.1016/j.bpj.2011.07.037] [PMID: 21943423]
[245]
Yang NJ, Hinner MJ. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. Methods Mol Biol 2015; 1266: 29-53.
[http://dx.doi.org/10.1007/978-1-4939-2272-7_3]
[246]
Vecino AJ, Segura RL, Ugarte-Uribe B, et al. Reconstitution in liposome bilayers enhances nucleotide binding affinity and ATP-specificity of TrwB conjugative coupling protein. Biochim Biophys Acta Biomembr 2010; 1798(11): 2160-9.
[http://dx.doi.org/10.1016/j.bbamem.2010.07.005] [PMID: 20647001]
[247]
Knol J, Sjollema K, Poolman B. Detergent-mediated reconstitution of membrane proteins. Biochemistry 1998; 37(46): 16410-5.
[http://dx.doi.org/10.1021/bi981596u] [PMID: 9819233]
[248]
Darmon A, Bar-Noy S, Ginsburg H, Cabantchik ZI. Oriented reconstitution of red cell membrane proteins and assessment of their transmembrane disposition by immunoquenching of fluorescence. Biochim Biophys Acta Biomembr 1985; 817(2): 238-48.
[http://dx.doi.org/10.1016/0005-2736(85)90025-2] [PMID: 3893545]
[249]
Matos C, Moutinho C, Lobão P. Liposomes as a model for the biological membrane: studies on daunorubicin bilayer interaction. J Membr Biol 2012; 245(2): 69-75.
[http://dx.doi.org/10.1007/s00232-011-9414-2] [PMID: 22210277]
[250]
Braun T, Kleusch C, Naumovska E, Merkel R, Csiszár A. A bioanalytical assay to distinguish cellular uptake routes for liposomes. Cytometry A 2016; 89(3): 301-8.
[http://dx.doi.org/10.1002/cyto.a.22792] [PMID: 26551759]
[251]
Lira RB, Seabra MABL, Matos ALL, et al. Studies on intracellular delivery of carboxyl-coated CdTe quantum dots mediated by fusogenic liposomes. J Mater Chem B Mater Biol Med 2013; 1(34): 4297-305.
[http://dx.doi.org/10.1039/c3tb20245c] [PMID: 32261026]
[252]
Csisza A, Hersch N, Dieluweit S, Biehl R, Merkel R, Hoffmann B. Novel fusogenic liposomes for fluorescent cell labeling and membrane modification. Bioconjug Chem 2010; 21(3): 537-43.
[253]
Watabe A, Yamaguchi T, Kawanishi T, et al. Target-cell specificity of fusogenic liposomes: Membrane fusion-mediated macromolecule delivery into human blood mononuclear cells. Biochim Biophys Acta Biomembr 1999; 1416(1-2): 339-48.
[http://dx.doi.org/10.1016/S0005-2736(98)00238-7] [PMID: 9889393]
[254]
Yoshikawa T, Okada N, Nakagawa S. Fusogenic liposomes and their suitability for gene delivery. Future Lipidol 2006; 1(6): 735-42.
[http://dx.doi.org/10.2217/17460875.1.6.735]
[255]
Jurkat-Rott K, Lehmann-Horn F. The patch clamp technique in ion channel research. Curr Pharm Biotechnol 2004; 5(4): 387-95.
[http://dx.doi.org/10.2174/1389201043376715] [PMID: 15320769]
[256]
Yu H, Li M, Wang W, Wang X. High throughput screening technologies for ion channels. Acta Pharmacol Sin 2016; 37(1): 34-43.
[http://dx.doi.org/10.1038/aps.2015.108] [PMID: 26657056]
[257]
Baxter DF, Kirk M, Garcia AF, et al. A novel membrane potential-sensitive fluorescent dye improves cell-based assays for ion channels. SLAS Discov 2002; 7(1): 79-85.
[http://dx.doi.org/10.1177/108705710200700110] [PMID: 11897058]
[258]
Epps DE, Wolfe ML, Groppi V. Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol (Dibac4(3)) in model systems and cells. Chem Phys Lipids 1994; 69(2): 137-50.
[http://dx.doi.org/10.1016/0009-3084(94)90035-3] [PMID: 8181103]
[259]
Gill S, Gill R, Lee SS, et al. Flux assays in high throughput screening of ion channels in drug discovery. Assay Drug Dev Technol 2003; 1(5): 709-17.
[http://dx.doi.org/10.1089/154065803770381066] [PMID: 15090243]
[260]
Hamilton TC, Weir SW, Weston AH. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein. Br J Pharmacol 1986; 88(1): 103-11.
[http://dx.doi.org/10.1111/j.1476-5381.1986.tb09476.x] [PMID: 3708211]
[261]
Terstappen GC. Functional analysis of native and recombinant ion channels using a high-capacity nonradioactive rubidium efflux assay. Anal Biochem 1999; 272(2): 149-55.
[http://dx.doi.org/10.1006/abio.1999.4179] [PMID: 10415083]
[262]
Gervais C, Dô F, Cantin A, et al. Development and validation of a high-throughput screening assay for the hepatitis C virus p7 viroporin. SLAS Discov 2011; 16(3): 363-9.
[http://dx.doi.org/10.1177/1087057110396215] [PMID: 21343600]
[263]
Su Z, Brown EC, Wang W, MacKinnon R. Novel cell-free high-throughput screening method for pharmacological tools targeting K+ channels. Proc Natl Acad Sci 2016; 113(20): 5748-53.
[http://dx.doi.org/10.1073/pnas.1602815113] [PMID: 27091997]
[264]
Arslan Yildiz A, Kang C, Sinner EK. Biomimetic membrane platform containing hERG potassium channel and its application to drug screening. Analyst 2013; 138(7): 2007-12.
[http://dx.doi.org/10.1039/c3an36159d] [PMID: 23423263]
[265]
Tunuguntla R, Bangar M, Kim K, Stroeve P, Ajo-Franklin CM, Noy A. Lipid bilayer composition can influence the orientation of proteorhodopsin in artificial membranes. Biophys J 2013; 105(6): 1388-96.
[http://dx.doi.org/10.1016/j.bpj.2013.07.043] [PMID: 24047990]
[266]
Hickey KD, Buhr MM. Lipid bilayer composition affects transmembrane protein orientation and function. J Lipids 2011; 2011: 208457.
[http://dx.doi.org/10.1155/2011/208457] [PMID: 21490797]
[267]
Muller S, Zhao Y, Brown TL, Morgan AC, Kohler H. TransMabs: cell-penetrating antibodies, the next generation. Expert Opin Biol Ther 2005; 5(2): 237-41.
[http://dx.doi.org/10.1517/14712598.5.2.237] [PMID: 15757385]
[268]
Choi HJ, Montemagno CD. Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett 2005; 5(12): 2538-42.
[http://dx.doi.org/10.1021/nl051896e] [PMID: 16351211]
[269]
Choi H-J, Montemagno CD. Reconstruction of cellular processes in nanoscale artificial organelles solvent-free incorporation of proteins into block copolymers. 2006 Sixth IEEE Conference on Nanotechnology. 150-3.
[http://dx.doi.org/10.1109/NANO.2006.247593]
[270]
Guihard G, Proteau S, Payet MD, Escande D, Rousseau E. Patch-clamp study of liver nuclear ionic channels reconstituted into giant proteoliposomes. FEBS Lett 2000; 476(3): 234-9.
[http://dx.doi.org/10.1016/S0014-5793(00)01752-X] [PMID: 10913620]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy