Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Involvement of Nrf2 Signaling in Lead-induced Toxicity

Author(s): Mohammad-Reza Arabnezhad, Fatemeh Haghani, Ali Ghaffarian-Bahraman, Emad Jafarzadeh, Hamidreza Mohammadi, Javad Ghasemian Yadegari, Tahereh Farkhondeh, Michael Aschner, Majid Darroudi, Somayeh Marouzi and Saeed Samarghandian*

Volume 31, Issue 23, 2024

Published on: 12 July, 2023

Page: [3529 - 3549] Pages: 21

DOI: 10.2174/0929867330666230522143341

Price: $65

conference banner
Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2) is used as one of the main protective factors against various pathological processes, as it regulates cells resistant to oxidation. Several studies have extensively explored the relationship between environmental exposure to heavy metals, particularly lead (Pb), and the development of various human diseases. These metals have been reported to be able to, directly and indirectly, induce the production of reactive oxygen species (ROS) and cause oxidative stress in various organs. Since Nrf2 signaling is important in maintaining redox status, it has a dual role depending on the specific biological context. On the one hand, Nrf2 provides a protective mechanism against metal-induced toxicity; on the other hand, it can induce metalinduced carcinogenesis upon prolonged exposure and activation. Therefore, the aim of this review was to summarize the latest knowledge on the functional interrelation between toxic metals, such as Pb and Nrf2 signaling.

Keywords: Nrf2 pathway, lead, Pb, oxidative stress, carcinogenesis, toxicity.

[1]
Krajka-Kuźniak, V.; Paluszczak, J.; Baer-Dubowska, W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacol. Rep., 2017, 69(3), 393-402.
[http://dx.doi.org/10.1016/j.pharep.2016.12.011] [PMID: 28267640]
[2]
Sun, Z.; Chin, Y.E.; Zhang, D.D. Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Mol. Cell. Biol., 2009, 29(10), 2658-2672.
[http://dx.doi.org/10.1128/MCB.01639-08] [PMID: 19273602]
[3]
Theodore, M.; Kawai, Y.; Yang, J.; Kleshchenko, Y.; Reddy, S.P.; Villalta, F.; Arinze, I.J. Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J. Biol. Chem., 2008, 283(14), 8984-8994.
[http://dx.doi.org/10.1074/jbc.M709040200] [PMID: 18238777]
[4]
Katoh, Y.; Itoh, K.; Yoshida, E.; Miyagishi, M.; Fukamizu, A.; Yamamoto, M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells, 2001, 6(10), 857-868.
[http://dx.doi.org/10.1046/j.1365-2443.2001.00469.x] [PMID: 11683914]
[5]
Nioi, P.; Nguyen, T.; Sherratt, P.J.; Pickett, C.B. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol. Cell. Biol., 2005, 25(24), 10895-10906.
[http://dx.doi.org/10.1128/MCB.25.24.10895-10906.2005] [PMID: 16314513]
[6]
Rojo, A.I.; Medina-Campos, O.N.; Rada, P.; Zúñiga-Toalá, A.; López-Gazcón, A.; Espada, S.; Pedraza-Chaverri, J.; Cuadrado,, A. Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: Role of glycogen synthase kinase-3. Free Radic. Biol. Med., 2012, 52(2), 473-487.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.003] [PMID: 22142471]
[7]
Yang, G.; Zhao, K.; Ju, Y.; Mani, S.; Cao, Q.; Puukila, S.; Khaper, N.; Wu, L.; Wang, R. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid. Redox Signal., 2013, 18(15), 1906-1919.
[http://dx.doi.org/10.1089/ars.2012.4645] [PMID: 23176571]
[8]
Jaramillo, M.C.; Zhang, D.D. The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev., 2013, 27(20), 2179-2191.
[http://dx.doi.org/10.1101/gad.225680.113] [PMID: 24142871]
[9]
Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol., 2013, 1(1), 45-49.
[http://dx.doi.org/10.1016/j.redox.2012.10.001] [PMID: 24024136]
[10]
Furukawa, M.; Xiong, Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol., 2005, 25(1), 162-171.
[http://dx.doi.org/10.1128/MCB.25.1.162-171.2005] [PMID: 15601839]
[11]
Niture, S.K.; Khatri, R.; Jaiswal, A.K. Regulation of Nrf2—an update. Free Radic. Biol. Med., 2014, 66, 36-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.008] [PMID: 23434765]
[12]
Ogura, T.; Tong, K.I.; Mio, K.; Maruyama, Y.; Kurokawa, H.; Sato, C.; Yamamoto, M. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Proc. Natl. Acad. Sci. , 2010, 107(7), 2842-2847.
[http://dx.doi.org/10.1073/pnas.0914036107] [PMID: 20133743]
[13]
Zipper, L.M.; Mulcahy, R.T. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J. Biol. Chem., 2002, 277(39), 36544-36552.
[http://dx.doi.org/10.1074/jbc.M206530200] [PMID: 12145307]
[14]
Hayes, J.D.; McMahon, M. NRF2 and KEAP1 mutations: Permanent activation of an adaptive response in cancer. Trends Biochem. Sci., 2009, 34(4), 176-188.
[http://dx.doi.org/10.1016/j.tibs.2008.12.008] [PMID: 19321346]
[15]
Komatsu, M.; Kurokawa, H.; Waguri, S.; Taguchi, K.; Kobayashi, A.; Ichimura, Y.; Sou, Y.S.; Ueno, I.; Sakamoto, A.; Tong, K.I.; Kim, M.; Nishito, Y.; Iemura, S.; Natsume, T.; Ueno, T.; Kominami, E.; Motohashi, H.; Tanaka, K.; Yamamoto, M. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol., 2010, 12(3), 213-223.
[http://dx.doi.org/10.1038/ncb2021] [PMID: 20173742]
[16]
Taguchi, K.; Motohashi, H.; Yamamoto, M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells, 2011, 16(2), 123-140.
[http://dx.doi.org/10.1111/j.1365-2443.2010.01473.x] [PMID: 21251164]
[17]
Um, H.C.; Jang, J.H.; Kim, D.H.; Lee, C.; Surh, Y.J. Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells. Nitric Oxide, 2011, 25(2), 161-168.
[http://dx.doi.org/10.1016/j.niox.2011.06.001] [PMID: 21703357]
[18]
Kansanen, E.; Jyrkkänen, H.K.; Levonen, A.L. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic. Biol. Med., 2012, 52(6), 973-982.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.038] [PMID: 22198184]
[19]
Hayes, J.D.; McMahon, M.; Chowdhry, S.; Dinkova-Kostova, A.T. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid. Redox Signal., 2010, 13(11), 1713-1748.
[http://dx.doi.org/10.1089/ars.2010.3221] [PMID: 20446772]
[20]
Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J.D.; Yamamoto, M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev., 1999, 13(1), 76-86.
[http://dx.doi.org/10.1101/gad.13.1.76] [PMID: 9887101]
[21]
Kim, J-H.; Yu, S.; Chen, J.D.; Kong, A.N. The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains. Oncogene, 2013, 32(4), 514-527.
[http://dx.doi.org/10.1038/onc.2012.59] [PMID: 22370642]
[22]
Rachakonda, G.; Xiong, Y.; Sekhar, K.R.; Stamer, S.L.; Liebler, D.C.; Freeman, M.L. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3. Chem. Res. Toxicol., 2008, 21(3), 705-710.
[http://dx.doi.org/10.1021/tx700302s] [PMID: 18251510]
[23]
Chowdhry, S.; Zhang, Y.; McMahon, M.; Sutherland, C.; Cuadrado, A.; Hayes, J.D. Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene, 2013, 32(32), 3765-3781.
[http://dx.doi.org/10.1038/onc.2012.388] [PMID: 22964642]
[24]
Wardyn, J.D.; Ponsford, A.H.; Sanderson, C.M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans., 2015, 43(4), 621-626.
[http://dx.doi.org/10.1042/BST20150014] [PMID: 26551702]
[25]
Itoh, K.; Chiba, T.; Takahashi, S.; Ishii, T.; Igarashi, K.; Katoh, Y.; Oyake, T.; Hayashi, N.; Satoh, K.; Hatayama, I.; Yamamoto, M.; Nabeshima, Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun., 1997, 236(2), 313-322.
[http://dx.doi.org/10.1006/bbrc.1997.6943] [PMID: 9240432]
[26]
Ashrafizadeh, M.; Ahmadi, Z.; Kotla, N.G.; Afshar, E.G.; Samarghandian, S.; Mandegary, A.; Pardakhty, A.; Mohammadinejad, R.; Sethi, G. Nanoparticles targeting STATs in cancer therapy. Cells, 2019, 8(10), 1158.
[27]
Wielandt, A.M.; Vollrath, V.; Farias, M.; Chianale, J. Bucillamine induces glutathione biosynthesis via activation of the transcription factor Nrf2. Biochem. Pharmacol., 2006, 72(4), 455-462.
[http://dx.doi.org/10.1016/j.bcp.2006.05.011] [PMID: 16806086]
[28]
Karin, M.; Yamamoto, Y.; Wang, Q.M. The IKK NF-κB system: A treasure trove for drug development. Nat. Rev. Drug Discov., 2004, 3(1), 17-26.
[http://dx.doi.org/10.1038/nrd1279] [PMID: 14708018]
[29]
Soares, M.P.; Seldon, M.P.; Gregoire, I.P.; Vassilevskaia, T.; Berberat, P.O.; Yu, J.; Tsui, T.Y.; Bach, F.H. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J. Immunol., 2004, 172(6), 3553-3563.
[http://dx.doi.org/10.4049/jimmunol.172.6.3553] [PMID: 15004156]
[30]
Ganesh Yerra, V.; Negi, G.; Sharma, S.S.; Kumar, A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol., 2013, 1(1), 394-397.
[http://dx.doi.org/10.1016/j.redox.2013.07.005] [PMID: 24024177]
[31]
Chen, L-G.; Zhang, Y-Q.; Wu, Z-Z.; Hsieh, C-W.; Chu, C-S.; Wung, B-S.J.I.J.M.M. Peanut arachidin-1 enhances Nrf2-mediated protective mechanisms against TNF-α- induced ICAM-1 expression and NF-κB activation in endothelial cells Int. J. Mol. Med., 2018, 41(1), 541-547.
[PMID: 29115410]
[32]
Liu, G.H.; Qu, J.; Shen, X. NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim. Biophys. Acta Mol. Cell Res., 2008, 1783(5), 713-727.
[http://dx.doi.org/10.1016/j.bbamcr.2008.01.002] [PMID: 18241676]
[33]
Ichimura, Y.; Waguri, S.; Sou, Y.; Kageyama, S.; Hasegawa, J.; Ishimura, R.; Saito, T.; Yang, Y.; Kouno, T.; Fukutomi, T.; Hoshii, T.; Hirao, A.; Takagi, K.; Mizushima, T.; Motohashi, H.; Lee, M.S.; Yoshimori, T.; Tanaka, K.; Yamamoto, M.; Komatsu, M. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell, 2013, 51(5), 618-631.
[http://dx.doi.org/10.1016/j.molcel.2013.08.003] [PMID: 24011591]
[34]
Chen, W.; Sun, Z.; Wang, X.J.; Jiang, T.; Huang, Z.; Fang, D.; Zhang, D.D. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol. Cell, 2009, 34(6), 663-673.
[http://dx.doi.org/10.1016/j.molcel.2009.04.029] [PMID: 19560419]
[35]
Gorrini, C.; Baniasadi, P.S.; Harris, I.S.; Silvester, J.; Inoue, S.; Snow, B.; Joshi, P.A.; Wakeham, A.; Molyneux, S.D.; Martin, B.; Bouwman, P.; Cescon, D.W.; Elia, A.J.; Winterton-Perks, Z.; Cruickshank, J.; Brenner, D.; Tseng, A.; Musgrave, M.; Berman, H.K.; Khokha, R.; Jonkers, J.; Mak, T.W.; Gauthier, M.L. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. J. Exp. Med., 2013, 210(8), 1529-1544.
[http://dx.doi.org/10.1084/jem.20121337] [PMID: 23857982]
[36]
Bae, S.H.; Sung, S.H.; Oh, S.Y.; Lim, J.M.; Lee, S.K.; Park, Y.N.; Lee, H.E.; Kang, D.; Rhee, S.G. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab., 2013, 17(1), 73-84.
[http://dx.doi.org/10.1016/j.cmet.2012.12.002] [PMID: 23274085]
[37]
Huen, M.S.Y.; Sy, S.M.H.; Chen, J. BRCA1 and its toolbox for the maintenance of genome integrity. Nat. Rev. Mol. Cell Biol., 2010, 11(2), 138-148.
[http://dx.doi.org/10.1038/nrm2831] [PMID: 20029420]
[38]
Silva-Islas, C.A.; Maldonado, P.D. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol. Res., 2018, 134, 92-99.
[http://dx.doi.org/10.1016/j.phrs.2018.06.013] [PMID: 29913224]
[39]
Shan, Y.; Wei, Z.; Tao, L.; Wang, S.; Zhang, F.; Shen, C.; Wu, H.; Liu, Z.; Zhu, P.; Wang, A.; Chen, W.; Lu, Y. Prophylaxis of diallyl disulfide on skin carcinogenic model via p21-dependent Nrf2 stabilization. Sci. Rep., 2016, 6(1), 35676.
[http://dx.doi.org/10.1038/srep35676] [PMID: 27759091]
[40]
Emami, M.H.; Sereshki, N.; Malakoutikhah, Z.; Dehkordi, S.A.E.; Fahim, A.; Mohammadzadeh, S.; Maghool, F. Nrf2 signaling pathway in trace metal carcinogenesis: A crosstalk between oxidative stress and angiogenesis. Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol., 2022, 254, 109266.
[41]
Kim, J.; Keum, Y.S. NRF2, a key regulator of antioxidants with two faces towards cancer. Oxid. Med. Cell. Longev., 2016, 2016, 2746457.
[http://dx.doi.org/10.1155/2016/2746457]
[42]
Mohammadi, S.; Shafiee, M.; Faraji, S.N.; Rezaeian, M.; Ghaffarian-Bahraman, A. Contamination of breast milk with lead, mercury, arsenic, and cadmium in Iran: A systematic review and meta-analysis. Biometals, 2022, 35(4), 711-728.
[http://dx.doi.org/10.1007/s10534-022-00395-4] [PMID: 35575819]
[43]
Krzywy, I.; Krzywy, E.; Pastuszak-Gabinowska, M.; Brodkiewicz, A. Lead-is there something to be afraid of? Ann. Acad. Med. Stetin., 2010, 56(2), 118-128.
[PMID: 21469290]
[44]
Ab Latif Wani, A.; Usmani, J. Lead toxicity: A review. Interdiscip. Toxicol., 2015.
[45]
Drop, B.; Mariola, J.; Agnieszka, B.; Krzysztof, K.; Nitsch-Osuch, A.; Magdalena, B. Satisfaction with life and adaptive reactions in people treated for chronic obstructive pulmonary disease. In: Clinical Pulmonary Research; Springer, 2018; pp. 41-47.
[http://dx.doi.org/10.1007/5584_2018_242]
[46]
Charkiewicz, A.E.; Backstrand, J.R.; Health, P. Lead toxicity and pollution in Poland. Int. Int. J. Environ. Res. Public Health, 2020, 17(12), 4385.
[http://dx.doi.org/10.3390/ijerph17124385] [PMID: 32570851]
[47]
Ghaffarian-Bahraman, A.; Taherifard, A.; Esmaeili, A.; Ahmadinia, H.; Rezaeian, M. Evaluation of blood lead among painters of buildings and cars. Toxicol. Ind. Health, 2021, 37(12), 737-744.
[http://dx.doi.org/10.1177/07482337211042731] [PMID: 34797729]
[48]
Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: a review. Interdiscip. Toxicol., 2015, 8(2), 55-64.
[http://dx.doi.org/10.1515/intox-2015-0009] [PMID: 27486361]
[49]
Bellinger, D.C. Very low lead exposures and children’s neurodevelopment. Curr. Opin. Pediatr., 2008, 20(2), 172-177.
[http://dx.doi.org/10.1097/MOP.0b013e3282f4f97b] [PMID: 18332714]
[50]
Liu, B.; Zhang, H.; Tan, X.; Yang, D.; Lv, Z.; Jiang, H.; Lu, J.; Baiyun, R.; Zhang, Z. GSPE reduces lead-induced oxidative stress by activating the Nrf2 pathway and suppressing miR153 and GSK-3β in rat kidney. Oncotarget, 2017, 8(26), 42226-42237.
[http://dx.doi.org/10.18632/oncotarget.15033] [PMID: 28178683]
[51]
AL-Megrin, W.A.; Alomar, S..; Alkhuriji, A.F.; Metwally, D.M.; Mohamed,, S.K.; Kassab, R.B.; Abdel Moneim, A.E.; El-Khadragy, M.F. Luteolin protects against testicular injury induced by lead acetate by activating the Nrf2/HO ‐1 pathway. IUBMB Life, 2020, 72(8), 1787-1798.
[http://dx.doi.org/10.1002/iub.2311] [PMID: 32478470]
[52]
Aglan, H.S.; Gebremedhn, S.; Salilew-Wondim, D.; Neuhof, C.; Tholen, E.; Holker, M.; Schellander, K.; Tesfaye, D. Regulation of Nrf2 and NF-κB during lead toxicity in bovine granulosa cells. Cell Tissue Res., 2020, 380(3), 643-655.
[http://dx.doi.org/10.1007/s00441-020-03177-x] [PMID: 32185525]
[53]
Albarakati, A.J.A.; Baty, R.S.; Aljoudi, A.M.; Habotta, O.A.; Elmahallawy, E.K.; Kassab, R.B.; Abdel Moneim, A.E. Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways. Mol. Biol. Rep., 2020, 47(4), 2591-2603.
[http://dx.doi.org/10.1007/s11033-020-05346-1] [PMID: 32144527]
[54]
Liu, C.M.; Tian, Z.K.; Zhang, Y.J.; Ming, Q.L.; Ma, J.Q.; Ji, L.P. Effects of gastrodin against lead-induced brain injury in mice associated with the Wnt/Nrf2 pathway. Nutrients, 2020, 12(6), 1805.
[http://dx.doi.org/10.3390/nu12061805] [PMID: 32560430]
[55]
Yang, L.; Li, X.; Jiang, A.; Li, X.; Chang, W.; Chen, J.; Ye, F. Metformin alleviates lead-induced mitochondrial fragmentation via AMPK/Nrf2 activation in SH-SY5Y cells. Redox Biol., 2020, 36, 101626.
[http://dx.doi.org/10.1016/j.redox.2020.101626] [PMID: 32863218]
[56]
Ye, F.; Li, X.; Li, L.; Lyu, L.; Yuan, J.; Chen, J.; Toxicology, C. The role of Nrf2 in protection against Pb-induced oxidative stress and apoptosis in SH-SY5Y cells. Food Chem. Toxicol., 2015, 86, 191-201.
[http://dx.doi.org/10.1016/j.fct.2015.10.009] [PMID: 26498409]
[57]
Wang, Y.; Fang, J.; Huang, S.; Chen, L.; Fan, G.; Wang, C. The chronic effects of low lead level on the expressions of Nrf2 and Mrp1 of the testes in the rats. Environ. Toxicol. Pharmacol., 2013, 35(1), 109-116.
[http://dx.doi.org/10.1016/j.etap.2012.12.001] [PMID: 23274417]
[58]
y Ortiz, M.T.; Téllez-Rojo, M.M.; Hu, H.; Wright, A.; HernándezÁvila, R.; Amarasiriwardena,, C.; Lupoli, N.; Mercado-García, A.; Pantic,, I.; Lamadrid-Figueroa, H.J.E.r Lead in candy consumed and blood lead levels of children living in Mexico City Environ. Res., 2016, 147, 497-502.
[59]
Staniak, S. Sources and levels of lead in food. Pol. J. Agron., 2014, 19, 36-45.
[60]
Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem., 2018, 119(1), 157-184.
[http://dx.doi.org/10.1002/jcb.26234] [PMID: 28643849]
[61]
Wieczorek, J.; Baran, A.; Urbański, K.; Mazurek, R.; Klimowicz-Pawlas, A. Assessment of the pollution and ecological risk of lead and cadmium in soils. Environ. Geochem. Health, 2018, 40(6), 2325-2342.
[http://dx.doi.org/10.1007/s10653-018-0100-5] [PMID: 29589150]
[62]
Sirivarasai, J.; Kaojarern, S.; Chanprasertyothin, S.; Panpunuan, P.; Petchpoung, K.; Tatsaneeyapant, A.; Yoovathaworn, K.; Sura, T.; Kaojarern, S.; Sritara, P.J.B.r.i. Environmental lead exposure, catalase gene, and markers of antioxidant and oxidative stress relation to hypertension: An analysis based on the EGAT study. Biomed. Res., 2015, 2015, 856319.
[http://dx.doi.org/10.1155/2015/856319]
[63]
Jakubowski, J.J.P.M.O.S.P. Lead and its inorganic compounds, other than lead arsenate and lead chromate as Pb, inhalable fraction. Documentation of suggested occupational exposure limits (OELs). Podstawy Metody Oceny Srodowiska Pracy., 2014, 80, 111-144.
[http://dx.doi.org/10.5604/1231868X.1111932]
[64]
Zawadzki, M.; Poreba, R.; Gać, P. Mechanisms and toxic effects of lead on the cardiovascular system. Med. Pr., 2006, 57(6), 543-549.
[PMID: 17533992]
[65]
Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods, 2020, 30(3), 167-176.
[http://dx.doi.org/10.1080/15376516.2019.1701594] [PMID: 31818169]
[66]
Ghaffarian-Bahraman, A.; Arabnezhad, M.R.; Keshavarzi, M.; Davani-Davari, D.; Jamshidzadeh, A.; Mohammadi-Bardbori, A. Influence of cellular redox environment on aryl hydrocarbon receptor ligands induced melanogenesis. Toxicol. in Vitro, 2022, 79, 105282.
[http://dx.doi.org/10.1016/j.tiv.2021.105282] [PMID: 34856342]
[67]
Lin, J.L.; Lin-Tan, D.T.; Hsu, K.H.; Yu, C.C. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N. Engl. J. Med., 2003, 348(4), 277-286.
[http://dx.doi.org/10.1056/NEJMoa021672] [PMID: 12540640]
[68]
Wedeen, R.P.; Maesaka, J.K.; Weiner, B.; Lipat, G.A.; Lyons, M.M.; Vitale, L.F.; Joselow, M.M. Occupational lead nephropathy. Am. J. Med., 1975, 59(5), 630-641.
[http://dx.doi.org/10.1016/0002-9343(75)90224-7] [PMID: 1200035]
[69]
Lin, J.L.; Huang, P.T. Body lead stores and urate excretion in men with chronic renal disease J. Rheumatol., 1994, 21(4), 705-709.
[PMID: 8035397]
[70]
Benjelloun, M.; Tarrass, F.; Hachim, K.; Medkouri, G.; Benghanem, M.G.; Ramdani, B. Chronic lead poisoning: A “forgotten” cause of renal disease Saudi J. Kidney Dis. Transpl., 2007, 18(1), 83-86.
[PMID: 17237897]
[71]
Haghani, F.; Arabnezhad, M.R.; Mohammadi, S.; Ghaffarian-Bahraman, A. Aloe vera and streptozotocin-induced diabetes mellitus. Rev. Bras. Farmacogn., 2022, 32(2), 174-187.
[http://dx.doi.org/10.1007/s43450-022-00231-3] [PMID: 35287334]
[72]
Yu, C.C.; Lin, J.L.; Lin-Tan, D.T. Environmental exposure to lead and progression of chronic renal diseases: A four-year prospective longitudinal study. J. Am. Soc. Nephrol., 2004, 15(4), 1016-1022.
[http://dx.doi.org/10.1097/01.ASN.0000118529.01681.4F] [PMID: 15034104]
[73]
Yang, S.; Xiao, L.; Song, P.; Xu, X.; Liu, F.; Sun, L. Is lead chelation therapy effective for chronic kidney disease? A meta-analysis. Nephrology , 2014, 19(1), 56-59.
[http://dx.doi.org/10.1111/nep.12162] [PMID: 24341661]
[74]
Pant, N.; Upadhyay, G.; Pandey, S.; Mathur, N.; Saxena, D.K.; Srivastava, S.P. Lead and cadmium concentration in the seminal plasma of men in the general population: Correlation with sperm quality. Reprod. Toxicol., 2003, 17(4), 447-450.
[http://dx.doi.org/10.1016/S0890-6238(03)00036-4] [PMID: 12849856]
[75]
Vigeh, M.; Smith, D.R.; Hsu, P.C. How does lead induce male infertility? Iran. J. Reprod. Med., 2011, 9(1), 1-8.
[PMID: 25356074]
[76]
Morán-Martínez, J.; Carranza-Rosales , P.; Morales-Vallarta, M.; A Heredia-Rojas, J.; Bassol-Mayagoitia, S.; Betancourt-Martínez, D.N.; M Cerda-Flores, .R Chronic environmental exposure to lead affects semen quality in a Mexican men population Iran. J. Reprod. Med., 2013, 11(4), 267-274.
[PMID: 24639755]
[77]
Guzikowski, W.; Szynkowska, M.I.; Motak-Pochrzęst, H.; Pawlaczyk, A.; Sypniewski, S. Trace elements in seminal plasma of men from infertile couples. Arch. Med. Sci., 2015, 3(3), 591-598.
[http://dx.doi.org/10.5114/aoms.2015.52363] [PMID: 26170853]
[78]
Taha, E.A.; Sayed, S.K.; Ghandour, N.M.; Mahran, A.M.; Saleh, M.A.; Amin, M.M.; Shamloul, R. Correlation between seminal lead and cadmium and seminal parameters in idiopathic oligoasthenozoospermic males. Urol. Pol., 2013, 65(1), 84-92.
[http://dx.doi.org/10.5173/ceju.2013.01.art28] [PMID: 24579002]
[79]
Li, C.J.; Yeh, C.Y.; Chen, R.Y.; Tzeng, C.R.; Han, B.C.; Chien, L.C. Biomonitoring of blood heavy metals and reproductive hormone level related to low semen quality. J. Hazard. Mater., 2015, 300, 815-822.
[http://dx.doi.org/10.1016/j.jhazmat.2015.08.027] [PMID: 26340548]
[80]
Yu, T.; Li, Z.; Wang, X.; Niu, K.; Xiao, J.; Li, B. Effect of lead exposure on male sexual hormone Wei Sheng Yen Chiu, 2010, 39(4), 413-415.
[PMID: 20726225]
[81]
Sadeghniat Haghighi, K.; Aminian, O.; Chavoshi, F.; Bahaedini, L.S.; Soltani, S.; Rahmati Najarkolaei, F. Relationship between blood lead level and male reproductive hormones in male lead exposed workers of a battery factory: A cross-sectional study Iran. J. Reprod. Med., 2013, 11(8), 673-676.
[PMID: 24639806]
[82]
Chen, C.; Wang, N.; Zhai, H.; Nie, X.; Sun, H.; Han, B.; Li, Q.; Chen, Y.; Cheng, J.; Xia, F.; Zhao, L.; Zheng, Y.; Shen, Z.; Lu, Y. Associations of blood lead levels with reproductive hormone levels in men and postmenopausal women: Results from the SPECT-China Study. Sci. Rep., 2016, 6(1), 37809.
[http://dx.doi.org/10.1038/srep37809] [PMID: 27898110]
[83]
Mendola, P.; Messer, L.C.; Rappazzo, K. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult female. Fertil. Steril., 2008, 89(S2), e81-e94.
[http://dx.doi.org/10.1016/j.fertnstert.2007.12.036] [PMID: 18308071]
[84]
Balabanič, D.; Rupnik, M.; Klemenčič, A.K. Negative impact of endocrine-disrupting compounds on human reproductive health. Reprod. Fertil. Dev., 2011, 23(3), 403-416.
[http://dx.doi.org/10.1071/RD09300] [PMID: 21426858]
[85]
Lei, H.L.; Wei, H.J.; Ho, H.Y.; Liao, K.W.; Chien, L.C. Relationship between risk factors for infertility in women and lead, cadmium, and arsenic blood levels: A cross-sectional study from Taiwan. BMC Public Health, 2015, 15(1), 1220.
[http://dx.doi.org/10.1186/s12889-015-2564-x] [PMID: 26653029]
[86]
Park, S.K.; O’Neill, M.S.; Vokonas, P.S.; Sparrow, D.; Wright, R.O.; Coull, B.; Nie, H.; Hu, H.; Schwartz, J. Air pollution and heart rate variability: Effect modification by chronic lead exposure. Epidemiology, 2008, 19(1), 111-120.
[http://dx.doi.org/10.1097/EDE.0b013e31815c408a] [PMID: 18091001]
[87]
Lamadrid-Figueroa, H.; Téllez-Rojo, M.M.; Hernández-Avila, M.; Trejo-Valdivia, B.; Solano-González, M.; Mercado-Garcia, A.; Smith, D.; Hu, H.; Wright, R.O Association between the plasma/whole blood lead ratio and history of spontaneous abortion: A nested cross-sectional study. BMC Pregnancy Childbirth, 2007, 7(1), 22.
[http://dx.doi.org/10.1186/1471-2393-7-22] [PMID: 17900368]
[88]
Vigeh, M.; Yokoyama, K.; Shinohara, A.; Afshinrokh, M.; Yunesian, M. Early pregnancy blood lead levels and the risk of premature rupture of the membranes. Reprod. Toxicol., 2010, 30(3), 477-480.
[http://dx.doi.org/10.1016/j.reprotox.2010.05.007] [PMID: 20576532]
[89]
Zhu, M.; Fitzgerald, E.F.; Gelberg, K.H.; Lin, S.; Druschel, C.M. Maternal low-level lead exposure and fetal growth. Environ. Health Perspect., 2010, 118(10), 1471-1475.
[http://dx.doi.org/10.1289/ehp.0901561] [PMID: 20562053]
[90]
Rzymski, P.; Tomczyk, K.; Rzymski, P.; Poniedziałek, B.; Opala, T.; Wilczak, M. Impact of heavy metals on the female reproductive system. Ann. Agric. Environ. Med., 2015, 22(2), 259-264.
[http://dx.doi.org/10.5604/12321966.1152077] [PMID: 26094520]
[91]
Seyom, E.; Abera, M.; Tesfaye, M.; Fentahun, N. Maternal and fetal outcome of pregnancy related hypertension in Mettu Karl Referral Hospital, Ethiopia. J. Ovarian Res., 2015, 8(1), 10.
[http://dx.doi.org/10.1186/s13048-015-0135-5] [PMID: 25824330]
[92]
Yazbeck, C.; Thiebaugeorges, O.; Moreau, T.; Goua, V.; Debotte, G.; Sahuquillo, J.; Forhan, A.; Foliguet, B.; Magnin, G.; Slama, R.; Charles, M.A.; Huel, G. Maternal blood lead levels and the risk of pregnancy-induced hypertension: The EDEN cohort study. Environ. Health Perspect., 2009, 117(10), 1526-1530.
[http://dx.doi.org/10.1289/ehp.0800488] [PMID: 20019901]
[93]
Hong, Y.C.; Kulkarni, S.S.; Lim, Y.H.; Kim, E.; Ha, M.; Park, H.; Kim, Y.; Kim, B.N.; Chang, N.; Oh, S.Y.; Kim, Y.J.; Park, C.; Ha, E. Postnatal growth following prenatal lead exposure and calcium intake. Pediatrics, 2014, 134(6), 1151-1159.
[http://dx.doi.org/10.1542/peds.2014-1658] [PMID: 25422017]
[94]
Dyer, CA Heavy metals as endocrine-disrupting chemicals. Endocrine-disrupting chemicals: from basic research to clinical practice 2007, 111-33.
[95]
Selevan, S.G.; Rice, D.C.; Hogan, K.A.; Euling, S.Y.; Pfahles-Hutchens, A.; Bethel, J. Blood lead concentration and delayed puberty in girls. N. Engl. J. Med., 2003, 348(16), 1527-1536.
[http://dx.doi.org/10.1056/NEJMoa020880] [PMID: 12700372]
[96]
Dearth, R.K.; Hiney, J.K.; Srivastava, V.; Burdick, S.B.; Bratton, G.R.; Dees, W.L. Effects of lead (Pb) exposure during gestation and lactation on female pubertal development in the rat. Reprod. Toxicol., 2002, 16(4), 343-352.
[http://dx.doi.org/10.1016/S0890-6238(02)00037-0] [PMID: 12220594]
[97]
Eum, K-D.; Weisskopf, M.G.; Nie, L.H.; Hu, H.; Korrick, S.A.J.E.h.p Cumulative lead exposure and age at menopause in the Nurses’ Health Study cohort Environ. Health Perspect., 2014, 122(3), 229-234.
[98]
Doumouchtsis, K.K.; Doumouchtsis, S.K.; Doumouchtsis, E.K.; Perrea, D.N. The effect of lead intoxication on endocrine functions. J. Endocrinol. Invest., 2009, 32(2), 175-183.
[http://dx.doi.org/10.1007/BF03345710] [PMID: 19411819]
[99]
Schantz, S.L.; Widholm, J.J. Cognitive effects of endocrine-disrupting chemicals in animals. Environ. Health Perspect., 2001, 109(12), 1197-1206.
[http://dx.doi.org/10.1289/ehp.011091197] [PMID: 11748026]
[100]
Hirsch, H.V.B.; Possidente, D.; Possidente, B. Pb2+: An endocrine disruptor in Drosophila? Physiol. Behav., 2010, 99(2), 254-259.
[http://dx.doi.org/10.1016/j.physbeh.2009.09.014] [PMID: 19800356]
[101]
Dobrakowski, M.; Kasperczyk, A.; Czuba, Z.P.; Machoń-Grecka, A.; Szlacheta, Z.; Kasperczyk, S.; Toxicology, E. The influence of chronic and subacute exposure to lead on the levels of prolactin, leptin, osteopontin, and follistatin in humans. Hum. Exp. Toxicol., 2017, 36(6), 587-593.
[http://dx.doi.org/10.1177/0960327116658106] [PMID: 27402680]
[102]
Peschke, E.; Kaiser, H.U.; Schrank, F.; Schumann, J. . Morphological studies on the adrenal cortex of Wistar rats following lead poisoning and experimental hypothyroidism. Gegenbaurs Morphol. Jahrb., 1981, 127(6), 869-900.
[PMID: 7341352]
[103]
Thang, N.Q.; Huy, B.T.; Van Tan, L.; Phuong, N.T.K. toxicology, Lead and arsenic accumulation and its effects on plasma cortisol levels in Oreochromis sp. Bull. Environ. Contam. Toxicol., 2017, 99(2), 187-193.
[http://dx.doi.org/10.1007/s00128-017-2113-7] [PMID: 28528485]
[104]
Kim, D.; Lawrence, D.A. Immunotoxic effects of inorganic lead on host resistance of mice with different circling behavior preferences. Brain Behav. Immun., 2000, 14(4), 305-317.
[http://dx.doi.org/10.1006/brbi.2000.0609] [PMID: 11120598]
[105]
Singh, B.; Chandran, V.; Bandhu, H.K.; Mittal, B.R.; Bhattacharya, A.; Jindal, S.K.; Varma, S. Impact of lead exposure on pituitary-thyroid axis in humans. Biometals, 2000, 13(2), 187-192.
[http://dx.doi.org/10.1023/A:1009201426184] [PMID: 11016408]
[106]
Pekcici, R.; Kavlakoğlu, B.; Yilmaz, S.; Şahin, M.; Delibaşi, T.J.C.E.m. Effects of lead on thyroid functions in lead-exposed workers Cent. Eur. J. Med., 2010, 5(2), 215-218.
[107]
Mitra, P.; Sharma, S.; Purohit, P.; Sharma, P. Clinical and molecular aspects of lead toxicity: An update. Crit. Rev. Clin. Lab. Sci., 2017, 54(7-8), 506-528.
[http://dx.doi.org/10.1080/10408363.2017.1408562] [PMID: 29214886]
[108]
Cleveland, L.M.; Minter, M.L.; Cobb, K.A.; Scott, A.A.; German, V.F. Lead hazards for pregnant women and children: part 1: Immigrants and the poor shoulder most of the burden of lead exposure in this country. Part 1 of a two-part article details how exposure happens, whom it affects, and the harm it can do. Am. J. Nurs., 2008, 108(10), 40-49.
[http://dx.doi.org/10.1097/01.NAJ.0000337736.76730.66]
[109]
Needleman, H.L.; Schell, A.; Bellinger, D.; Leviton, A.; Allred, E.N. The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report. N. Engl. J. Med., 1990, 322(2), 83-88.
[http://dx.doi.org/10.1056/NEJM199001113220203] [PMID: 2294437]
[110]
Liu, J.; Li, L.; Wang, Y.; Yan, C.; Liu, X. Impact of low blood lead concentrations on IQ and school performance in Chinese children. PLoS One, 2013, 8(5), e65230.
[http://dx.doi.org/10.1371/journal.pone.0065230] [PMID: 23734241]
[111]
Liu, J.; Liu, X.; Wang, W.; McCauley, L.; Pinto-Martin, J.; Wang, Y.; Li, L.; Yan, C.; Rogan, W.J. Blood lead concentrations and children’s behavioral and emotional problems: A cohort study. JAMA Pediatr., 2014, 168(8), 737-745.
[http://dx.doi.org/10.1001/jamapediatrics.2014.332] [PMID: 25090293]
[112]
Sanders, T.; Liu, Y.; Buchner, V.; Tchounwou, P.B. Neurotoxic effects and biomarkers of lead exposure: A review. Rev. Environ. Health, 2009, 24(1), 15-45.
[http://dx.doi.org/10.1515/REVEH.2009.24.1.15] [PMID: 19476290]
[113]
Wright, J.P.; Dietrich, K.N.; Ris, M.D.; Hornung, R.W.; Wessel, S.D.; Lanphear, B.P.; Ho, M.; Rae, M.N. Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med., 2008, 5(5), e101.
[http://dx.doi.org/10.1371/journal.pmed.0050101] [PMID: 18507497]
[114]
Basha, M.R.; Wei, W.; Bakheet, S.A.; Benitez, N.; Siddiqi, H.K.; Ge, Y.W.; Lahiri, D.K.; Zawia, N.H. The fetal basis of amyloidogenesis: Exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J. Neurosci., 2005, 25(4), 823-829.
[http://dx.doi.org/10.1523/JNEUROSCI.4335-04.2005] [PMID: 15673661]
[115]
Patrick, L. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity Altern. Med. Rev., 2006, 11(2), 114-127.
[PMID: 16813461]
[116]
Samarghandian, S.; Asadi-Samani, M.; Farkhondeh, T.; Bahmani, M. Assessment the effect of saffron ethanolic extract (Crocus sativus L.) on oxidative damages in aged male rat liver. Der. Pharm. Lett., 2016, 8(3), 283-290.
[117]
Reuben, A.; Caspi, A.; Belsky, D.W.; Broadbent, J.; Harrington, H.; Sugden, K.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Moffitt, T.E. Association of childhood blood lead levels with cognitive function and socioeconomic status at age 38 years and with IQ change and socioeconomic mobility between childhood and adulthood. JAMA, 2017, 317(12), 1244-1251.
[http://dx.doi.org/10.1001/jama.2017.1712] [PMID: 28350927]
[118]
Zheng, W.; Aschner, M.; Ghersi-Egea, J.F. Brain barrier systems: A new frontier in metal neurotoxicological research. Toxicol. Appl. Pharmacol., 2003, 192(1), 1-11.
[http://dx.doi.org/10.1016/S0041-008X(03)00251-5] [PMID: 14554098]
[119]
Bhowmik, A.; Khan, R.; Ghosh, M.K.J.B.R.I. Blood brain barrier: A challenge for effectual therapy of brain tumors. Biomed Res. Int., 2015, 2015, 320941.
[http://dx.doi.org/10.1155/2015/320941]
[120]
Markovac, J.; Goldstein, G.W. Picomolar concentrations of lead stimulate brain protein kinase C. Nature, 1988, 334(6177), 71-73.
[http://dx.doi.org/10.1038/334071a0] [PMID: 3386747]
[121]
Guilarte, T.R.; Miceli, R.C.; Jett, D.A.J.N. Neurochemical aspects of hippocampal and cortical Pb2+ neurotoxicity. Neurotoxicology, 1994, 15(3), 459-466.
[PMID: 7854579]
[122]
Sadiq, S.; Ghazala, Z.; Chowdhury, A.; Büsselberg, D.J.J.T. Metal toxicity at the synapse: Presynaptic, postsynaptic, and long-term effects. J. Toxicol., 2012, 2012, 132671.
[http://dx.doi.org/10.1155/2012/132671]
[123]
Toscano, C.D.; Guilarte, T.R. Lead neurotoxicity: From exposure to molecular effects. Brain Res. Brain Res. Rev., 2005, 49(3), 529-554.
[http://dx.doi.org/10.1016/j.brainresrev.2005.02.004] [PMID: 16269318]
[124]
Neal, A.P.; Worley, P.F.; Guilarte, T.R. Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology, 2011, 32(2), 281-289.
[http://dx.doi.org/10.1016/j.neuro.2010.12.013] [PMID: 21192972]
[125]
Stansfield, K.H.; Pilsner, J.R.; Lu, Q.; Wright, R.O.; Guilarte, T.R. Dysregulation of BDNF-TrkB signaling in developing hippocampal neurons by Pb(2+): Implications for an environmental basis of neurodevelopmental disorders. Toxicol. Sci., 2012, 127(1), 277-295.
[http://dx.doi.org/10.1093/toxsci/kfs090] [PMID: 22345308]
[126]
Chen, W.W.; Zhang, X.; Huang, W.J.E.R.M.P.S. Neural stem cells in lead toxicity Eur. Rev. Med. Pharmacol. Sci., 2016, 20(24), 5174-5177.
[PMID: 28051273]
[127]
Baranowska-Bosiacka, I.; Gutowska, I.; Rybicka, M.; Nowacki, P.; Chlubek, D. Neurotoxicity of lead. Hypothetical molecular mechanisms of synaptic function disorders. Neurol. Neurochir. Pol., 2012, 46(6), 569-578.
[http://dx.doi.org/10.5114/ninp.2012.31607] [PMID: 23319225]
[128]
Thomson, R.M.; Parry, G.J. Neuropathies associated with excessive exposure to lead. Muscle Nerve, 2006, 33(6), 732-741.
[http://dx.doi.org/10.1002/mus.20510] [PMID: 16477615]
[129]
Rubens, O.; Logina, I.; Kravale, I.; Eglîte, M.; Donaghy, M. Peripheral neuropathy in chronic occupational inorganic lead exposure: a clinical and electrophysiological study. J. Neurol. Neurosurg. Psychiatry, 2001, 71(2), 200-204.
[http://dx.doi.org/10.1136/jnnp.71.2.200] [PMID: 11459892]
[130]
Yang, L.; Hung, L.Y.; Zhu, Y.; Ding, S.; Margolis, K.G.; Leong, K.W.J.c. Long title: Materials Engineering in Gut Microbiome and Human Health Research, 2022, 2022, 9804014.
[131]
Obeng-Gyasi, E.; Armijos, R.; Weigel, M.; Filippelli, G.; Sayegh, M. Cardiovascular-related outcomes in US adults exposed to lead. Int. J. Environ. Res. Public Health, 2018, 15(4), 759.
[http://dx.doi.org/10.3390/ijerph15040759] [PMID: 29662032]
[132]
Aros, C.; Remuzzi, G. The renin-angiotensin system in progression, remission and regression of chronic nephropathies. J. Hypertens. Suppl., 2002, 20(3), S45-S53.
[PMID: 12184055]
[133]
Vaziri, N.D.; Ding, Y. Effect of lead on nitric oxide synthase expression in coronary endothelial cells: Role of superoxide. Hypertension, 2001, 37(2), 223-226.
[http://dx.doi.org/10.1161/01.HYP.37.2.223] [PMID: 11230275]
[134]
Vaziri, N.D.; Ding, Y.; Ni, Z.; Therapeutics, E. . Compensatory up-regulation of nitric-oxide synthase isoforms in leadinduced hypertension; reversal by a superoxide dismutasemimetic drug J. Pharmacol. Exp. Ther., 2001, 298(2), 679-685.
[PMID: 11454931]
[135]
Vaziri, N.D.; Physiology, C. Mechanisms of lead-induced hypertension and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol., 2008, 295(2), H454-H465.
[http://dx.doi.org/10.1152/ajpheart.00158.2008] [PMID: 18567711]
[136]
Peters, J.L.; Kubzansky, L.D.; Ikeda, A.; Fang, S.C.; Sparrow, D.; Weisskopf, M.G.; Wright, R.O.; Vokonas, P.; Hu, H.; Schwartz, J. Lead concentrations in relation to multiple biomarkers of cardiovascular disease: The Normative Aging Study. Environ. Health Perspect., 2012, 120(3), 361-366.
[http://dx.doi.org/10.1289/ehp.1103467] [PMID: 22142875]
[137]
Bhatnagar, A. Environmental cardiology. Circ. Res., 2006, 99(7), 692-705.
[http://dx.doi.org/10.1161/01.RES.0000243586.99701.cf] [PMID: 17008598]
[138]
Xu, C.; Shu, Y.; Fu, Z.; Hu, Y.; Mo, X.J.S. Associations between lead concentrations and cardiovascular risk factors in US adolescents Sci. Rep., 2017, 7(1), 1-8.
[PMID: 28127051]
[139]
Ademuyiwa, O.; Ugbaja, R.N.; Idumebor, F.; Adebawo, O. Plasma lipid profiles and risk of cardiovascular disease in occupational lead exposure in Abeokuta, Nigeria. Lipids Health Dis., 2005, 4(1), 19.
[http://dx.doi.org/10.1186/1476-511X-4-19] [PMID: 16191200]
[140]
Valentino, M.; Rapisarda, V.; Santarelli, L.; Bracci, M.; Scorcelletti, M.; Di Lorenzo, L.; Cassano, F.; Soleo, L. Effect of lead on the levels of some immunoregulatory cytokines in occupationally exposed workers. Hum. Exp. Toxicol., 2007, 26(7), 551-556.
[http://dx.doi.org/10.1177/0960327107073817] [PMID: 17884957]
[141]
Khazdair, M.R.; Boskabady, M.H.; Afshari, R.; Dadpour, B.; Behforouz, A.; Javidi, M.; Abbasnezhad, A.; Moradi, V.; Tabatabaie, S.S. Respiratory symptoms and pulmonary function testes in lead exposed workers. Iran. Red Crescent Med. J., 2012, 14(11), 738-743.
[http://dx.doi.org/10.5812/ircmj.4134] [PMID: 23396762]
[142]
Leem, A.Y.; Kim, S.K.; Chang, J.; Kang, Y.A.; Kim, Y.S.; Park, M.S.; Kim, S.Y.; Kim, E.Y.; Chung, K.S.; Jung, J.Y. ERelationship between blood levels of heavy metals and lung function based on the Korean National Health and Nutrition Examination Survey IV-V Int. J. Chron. Obstruct. Pulmon. Dis., 2015, 10, 1559-1570.
[PMID: 26345298]
[143]
Dietert, R.R.; Lee, J.E.; Hussain, I.; Piepenbrink, M. Developmental immunotoxicology of lead. Toxicol. Appl. Pharmacol., 2004, 198(2), 86-94.
[http://dx.doi.org/10.1016/j.taap.2003.08.020] [PMID: 15236947]
[144]
Min, J.Y.; Min, K.B.; Kim, R.; Cho, S.I.; Paek, D. Blood lead levels and increased bronchial responsiveness. Biol. Trace Elem. Res., 2008, 123(1-3), 41-46.
[http://dx.doi.org/10.1007/s12011-008-8099-6] [PMID: 18286239]
[145]
Pugh Smith, P.; Nriagu, J.O. Lead poisoning and asthma among low-income and African American children in Saginaw, Michigan. Environ. Res., 2011, 111(1), 81-86.
[http://dx.doi.org/10.1016/j.envres.2010.11.007] [PMID: 21144501]
[146]
Mohammed, A.A.; Mohamed, F.Y.; El-Okda, E.S.; Ahmed, A.B. Blood lead levels and childhood asthma. Indian Pediatr., 2015, 52(4), 303-306.
[http://dx.doi.org/10.1007/s13312-015-0628-8] [PMID: 25929627]
[147]
Hong, Y.C.; Hwang, S.S.; Kim, J.H.; Lee, K.H.; Lee, H.J.; Lee, K.H.; Yu, S.D.; Kim, D.S. Metals in particulate pollutants affect peak expiratory flow of schoolchildren. Environ. Health Perspect., 2007, 115(3), 430-434.
[http://dx.doi.org/10.1289/ehp.9531] [PMID: 17431494]
[148]
Madaniyazi, L.; Guo, Y.; Ye, X.; Kim, D.; Zhang, Y.; Pan, X. Effects of airborne metals on lung function in inner Mongolian schoolchildren. J. Occup. Environ. Med., 2013, 55(1), 80-86.
[http://dx.doi.org/10.1097/JOM.0b013e31826ef177] [PMID: 23247605]
[149]
Rokadia, H.K.; Agarwal, S. Serum heavy metals and obstructive lung disease: Results from the National Health and Nutrition Examination Survey. Chest, 2013, 143(2), 388-397.
[http://dx.doi.org/10.1378/chest.12-0595] [PMID: 22911427]
[150]
Samarghandian, S.; Borji, A.; Afshari, R.; Delkhosh, M.B.; Gholami, A. The effect of lead acetate on oxidative stress and antioxidant status in rat bronchoalveolar lavage fluid and lung tissue. Toxicol. Mech. Methods, 2013, 23(6), 432-436.
[151]
Vij, A.G.; Dhundasi, S.J.A.A.J.M.S. Hemopoietic, hemostatic and mutagenic effects of lead and possible prevention by zinc and vitamin C Al Ameen J. Med. Sci., 2009, 2(2), 27-36.
[152]
Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol., 2012, 5(2), 47-58.
[http://dx.doi.org/10.2478/v10102-012-0009-2] [PMID: 23118587]
[153]
Ahamed, M.; Verma, S.; Kumar, A.; Siddiqui, M.K.J. Environmental exposure to lead and its correlation with biochemical indices in children. Sci. Total Environ., 2005, 346(1-3), 48-55.
[http://dx.doi.org/10.1016/j.scitotenv.2004.12.019] [PMID: 15993681]
[154]
Jangid, A.P.; John, P.; Yadav, D.; Mishra, S.; Sharma, P.J.I.J.O.C.B. Impact of chronic lead exposure on selected biological markers. Indian J. Clin. Biochem., 2012, 27(1), 83-89.
[http://dx.doi.org/10.1007/s12291-011-0163-x]
[155]
Carocci, A.; Catalano, A.; Lauria, G.; Sinicropi, M.S.; Genchi, G. toxicology, Lead toxicity, antioxidant defense and environment Rev. Environ. Contam. Toxicol., 2016, 238, 45-67.
[PMID: 26670034]
[156]
Mushak, P. Bioavailability, Gastro-intestinal absorption of lead in children and adults: overview of biological and biophysico-chemical aspects. Chem. Spec. Bioavail., 1991, 3(3-4), 87-104.
[http://dx.doi.org/10.1080/09542299.1991.11083160]
[157]
Mudipalli, A. Lead hepatotoxicity & potential health effects. Indian J. Med. Res., 2007, 126(6), 518-527.
[PMID: 18219078]
[158]
Janin, Y.; Couinaud, C.; Stone, A.; Wise, L. The “leadinduced colic” syndrome in lead intoxication Surg. Annu., 1985, 17, 287-307.
[PMID: 3156432]
[159]
Yang, C.C.; Chuang, C.S.; Lin, C.I.; Wang, C.L.; Huang, Y.C.; Chuang, H.Y. The association of the blood lead level and serum lipid concentrations may be modified by the genetic combination of the metallothionein 2A polymorphisms rs10636 GC and rs28366003 AA. J. Clin. Lipidol., 2017, 11(1), 234-241.
[http://dx.doi.org/10.1016/j.jacl.2016.12.010] [PMID: 28391890]
[160]
Mhillaj, E.; Catino, S.; Miceli, F.M.; Santangelo, R.; Trabace, L.; Cuomo, V.; Mancuso, C. Ferulic acid improves cognitive skills through the activation of the heme oxygenase system in the rat. Mol. Neurobiol., 2018, 55(2), 905-916.
[http://dx.doi.org/10.1007/s12035-017-0381-1] [PMID: 28083818]
[161]
Yu, C.; Pan, S.; Dong, M.; Niu, Y. Astragaloside IV attenuates lead acetate-induced inhibition of neurite outgrowth through activation of Akt-dependent Nrf2 pathway in vitro. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(6), 1195-1203.
[http://dx.doi.org/10.1016/j.bbadis.2017.03.006] [PMID: 28315454]
[162]
Yu, C.L.; Zhao, X.M.; Niu, Y.C. Ferulic acid protects against lead acetate-induced inhibition of neurite outgrowth by upregulating HO-1 in PC12 cells: Involvement of ERK1/2-Nrf2 pathway. Mol. Neurobiol., 2016, 53(9), 6489-6500.
[http://dx.doi.org/10.1007/s12035-015-9555-x] [PMID: 26611834]
[163]
Yu, C.; Zhang, J.; Li, X.; Liu, J.; Niu, Y. Astragaloside IV-induced Nrf2 nuclear translocation ameliorates lead-related cognitive impairments in mice. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(1), 118853.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118853] [PMID: 32941941]
[164]
Miceli, N.; Cavò, E.; Ragusa, S.; Cacciola, S.; Dugo,, P.; Mondello, L.; Marino, A.; Cincotta, F.; Condurso,, C.; Taviano, M.F Biodiversity, phytochemical characterization and biological activities of a hydroalcoholic extract obtained from the aerial parts of Matthiola incana (L.) R. Br. subsp. incana (Brassicaceae) growing wild in Sicily (Italy). Chem. Biodivers., 2019, 16(4), e1800677.
[http://dx.doi.org/10.1002/cbdv.201800677] [PMID: 30779421]
[165]
Soleimanzadeh, A.; Kian, M.; Moradi, S.; Mahmoudi, S. Carob (Ceratonia siliqua L.) fruit hydro-alcoholic extract alleviates reproductive toxicity of lead in male mice: Evidence on sperm parameters, sex hormones, oxidative stress biomarkers and expression of Nrf2 and iNOS Avicenna J. Phytomed., 2020, 10(1), 35-49.
[PMID: 31921606]
[166]
Rao, F.; Zhai, Y.; Sun, F. Punicalagin mollifies lead acetate-induced oxidative imbalance in male reproductive system. Int. J. Mol. Sci., 2016, 17(8), 1269.
[http://dx.doi.org/10.3390/ijms17081269] [PMID: 27529221]
[167]
Alotaibi, M.F.; Al-Joufi, F.; Abou Seif, H.S.; Alzoghaibi, M.A.; Djouhri, L.; Ahmeda, A.F.; Mahmoud, A.M. Development; Therapy, umbelliferone inhibits spermatogenic defects and testicular injury in lead-intoxicated rats by suppressing oxidative stress and inflammation, and improving Nrf2/HO-1 signaling. Drug Des. Devel. Ther., 2020, 14, 4003-4019.
[http://dx.doi.org/10.2147/DDDT.S265636] [PMID: 33061305]
[168]
Jiang, X.; Xing, X.; Zhang, Y.; Zhang, C.; Wu, Y.; Chen, Y.; Meng, R.; Jia, H.; Cheng, Y.; Zhang, Y.; Su, J. Lead exposure activates the Nrf2/Keap1 pathway, aggravates oxidative stress, and induces reproductive damage in female mice. Ecotoxicol. Environ. Saf., 2021, 207, 111231.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111231] [PMID: 32916527]
[169]
Li, N.; Zhao, Y.; Shen, Y.; Cheng, Y.; Qiao, M.; Song, L.; Huang, X.; Safety, E. Protective effects of folic acid on oxidative damage of rat spleen induced by lead acetate. Ecotoxicol. Environ. Saf., 2021, 211, 111917.
[http://dx.doi.org/10.1016/j.ecoenv.2021.111917] [PMID: 33497860]
[170]
Silveira, E.A.; Siman, F.D.M.; de Oliveira Faria, T.; Vescovi, M.V.A.; Furieri, L.B.; Lizardo, J.H.F.; Stefanon, I.; Padilha, A.S.; Vassallo, D.V. Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radic. Biol. Med., 2014, 67, 366-376.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.11.021] [PMID: 24308934]
[171]
Omidi, M.; Ghafarian-Bahraman, A.; Mohammadi-Bardbori, A. GSH/GSSG redox couple plays central role in aryl hydrocarbon receptor-dependent modulation of cytochrome P450 1A1. J. Biochem. Mol. Toxicol., 2018, 32(7), e22164.
[http://dx.doi.org/10.1002/jbt.22164] [PMID: 29975444]
[172]
Samarghandian, S.; Azimi-Nezhad, M.; Mehrad-Majd, H.; Mirhafez, S.R. Thymoquinone ameliorates acute renal failure in gentamicin-treated adult male rats. Pharmacol., 2015, 96(3-4), 112-7.
[173]
Liu, B.; Jiang, H.; Lu, J.; Baiyun, R.; Li, S.; Lv, Y.; Li, D.; Wu, H.; Zhang, Z. Grape seed procyanidin extract ameliorates lead-induced liver injury via miRNA153 and AKT/GSK-3β/Fyn-mediated Nrf2 activation. J. Nutr. Biochem., 2018, 52, 115-123.
[http://dx.doi.org/10.1016/j.jnutbio.2017.09.025] [PMID: 29175668]
[174]
Li, Y.; Darwish, W.S.; Chen, Z.; Hui, T.; Wu, Y.; Hirotaka, S.; Chiba, H.; Hui, S.P. Identification of lead-produced lipid hydroperoxides in human HepG2 cells and protection using rosmarinic and ascorbic acids with a reference to their regulatory roles on Nrf2-Keap1 antioxidant pathway. Chem. Biol. Interact., 2019, 314, 108847.
[http://dx.doi.org/10.1016/j.cbi.2019.108847] [PMID: 31610155]
[175]
Long, M.; Liu, Y.; Cao, Y.; Wang, N.; Dang, M.; He, J. Proanthocyanidins attenuation of chronic lead-induced liver oxidative damage in kunming mice via the Nrf2/ARE pathway. Nutrients, 2016, 8(10), 656.
[http://dx.doi.org/10.3390/nu8100656] [PMID: 27775649]
[176]
Song, Y.; Sun, H.; Gao, S.; Tang, K.; Zhao, Y.; Xie, G.; Gao, H.; Toxicology, P.P.C. Saikosaponin a attenuates lead-induced kidney injury through activating Nrf2 signaling pathway. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 242, 108945.
[http://dx.doi.org/10.1016/j.cbpc.2020.108945] [PMID: 33278595]
[177]
Zhang, Y.; Zhang, P.; Yu, P.; Shang, X.; Fu, Y.; Lu, Y.; Li, Y. Protective effects of andrographolide on lead-induced kidney injury through inhibiting inflammatory and oxidative responses in common carp. Aquacult. Rep., 2020, 17, 100395.
[http://dx.doi.org/10.1016/j.aqrep.2020.100395]
[178]
Keshavarzi, M.; Khoshnoud, M.J.; Ghaffarian Bahraman, A.; Mohammadi-Bardbori, A. An endogenous ligand of aryl hydrocarbon receptor 6-formylindolo [3, 2-b] carbazole (FICZ) is a signaling molecule in neurogenesis of adult hippocampal neurons. J. Mol. Neurosci., 2020, 70(5), 806-817.
[http://dx.doi.org/10.1007/s12031-020-01506-x] [PMID: 32040828]
[179]
Cao, Y.; Wang, D.; Li, Q.; Liu, H.; Jin, C.; Yang, J.; Wu, S.; Lu, X.; Cai, Y. Activation of Nrf2 by lead sulfide nanoparticles induces impairment of learning and memory. Metallomics, 2020, 12(1), 34-41.
[http://dx.doi.org/10.1039/c9mt00151d] [PMID: 31687725]
[180]
Li, H.; Lan, T.; Yun, C.; Yang, K.; Du, Z.; Luo, X.; Hao, E.; Deng, J. Mangiferin exerts neuroprotective activity against lead-induced toxicity and oxidative stress via Nrf2 pathway. Chin. Herb. Med., 2020, 12(1), 36-46.
[http://dx.doi.org/10.1016/j.chmed.2019.12.002] [PMID: 36117559]
[181]
Hoseinrad, H.; Shahrestanaki, J.K.; Moosazadeh Moghaddam, M.; Mousazadeh, A.; Yadegari, P.; Afsharzadeh, N. Protective effect of vitamin D3 against Pb-induced neurotoxicity by regulating the Nrf2 and NF-κB pathways. Neurotox. Res., 2021, 39(3), 687-696.
[http://dx.doi.org/10.1007/s12640-020-00322-w] [PMID: 33400182]
[182]
S. Yousef, A.O.; A Fahad, A.; Abdel Moneim, A.E.; Metwally, D.M; El-Khadragy, M.F; Kassab, R.B The neuroprotective role of coenzyme Q10 against lead acetate-induced neurotoxicity is mediated by antioxidant, anti-inflammatory and anti-apoptotic activities. Int. J. Environ. Res. Public Health, 2019, 16(16), 2895.
[http://dx.doi.org/10.3390/ijerph16162895] [PMID: 31412628]
[183]
Ye, F.; Li, X.; Li, L.; Yuan, J.; Chen, J.J.O.M. t-BHQ provides protection against lead neurotoxicity via Nrf2/HO-1 pathway Oxid. Med. Cell. Longev., 2016, 2016, 2075915.
[184]
Su, P.; Zhang, J.; Wang, S.; Aschner, M.; Cao, Z.; Zhao, F.; Wang, D.; Chen, J.; Luo, W.J.N. Genistein alleviates leadinduced neurotoxicity in vitro and in vivo: Involvement of multiple signaling pathways Neurotoxicology, 2016, 53, 153-164.
[185]
Li, C.; Pan, Z.; Xu, T.; Zhang, C.; Wu, Q.; Niu, Y. Puerarin induces the upregulation of glutathione levels and nuclear translocation of Nrf2 through PI3K/Akt/GSK-3β signaling events in PC12 cells exposed to lead. Neurotoxicol. Teratol., 2014, 46, 1-9.
[http://dx.doi.org/10.1016/j.ntt.2014.08.007] [PMID: 25195717]
[186]
Li, R.; Li, X.; Wu, H.; Yang, Z.; Fei, L.; Zhu, J. Theaflavin attenuates cerebral ischemia/reperfusion injury by abolishing miRNA-128-3p-mediated Nrf2 inhibition and reducing oxidative stress. Mol. Med. Rep., 2019, 20(6), 4893-4904.
[http://dx.doi.org/10.3892/mmr.2019.10755] [PMID: 31638230]
[187]
Zhang, X-J.; Cui, H-Y.; Yang, Y.; Zhang, C.; Zhu, C.H.; Miao, J.Y.; Chen, R. Rosmarinic acid elicits neuroprotection in ischemic stroke via Nrf2 and heme oxygenase 1 signaling. Neural Regen. Res., 2018, 13(12), 2119-2128.
[http://dx.doi.org/10.4103/1673-5374.241463] [PMID: 30323140]
[188]
Li, W.; Suwanwela, N.C.; Patumraj, S. Curcumin by down-regulating NF-kB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral I/R. Microvasc. Res., 2016, 106, 117-127.
[http://dx.doi.org/10.1016/j.mvr.2015.12.008] [PMID: 26686249]
[189]
Narayanan, S.V.; Dave, K.R.; Saul, I.; Perez-Pinzon, M.A. Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2–related factor 2. Stroke, 2015, 46(6), 1626-1632.
[http://dx.doi.org/10.1161/STROKEAHA.115.008921] [PMID: 25908459]
[190]
Wu, S.; Yue, Y.; Peng, A.; Zhang, L.; Xiang, J.; Cao, X.; Ding, H.; Yin, S. Myricetin ameliorates brain injury and neurological deficits via Nrf2 activation after experimental stroke in middle-aged rats. Food Funct., 2016, 7(6), 2624-2634.
[http://dx.doi.org/10.1039/C6FO00419A] [PMID: 27171848]
[191]
Wicha, P.; Tocharus, J.; Janyou, A.; Jittiwat, J.; Changtam, C.; Suksamrarn, A.; Tocharus, C. Hexahydrocurcumin protects against cerebral ischemia/reperfusion injury, attenuates inflammation, and improves antioxidant defenses in a rat stroke model. PLoS One, 2017, 12(12), e0189211.
[http://dx.doi.org/10.1371/journal.pone.0189211] [PMID: 29220411]
[192]
Wu, S.; Yue, Y.; Li, J.; Li, Z.; Li, X.; Niu, Y.; Xiang, J.; Ding, H. Procyanidin B2 attenuates neurological deficits and blood-brain barrier disruption in a rat model of cerebral ischemia. Mol. Nutr. Food Res., 2015, 59(10), 1930-1941.
[http://dx.doi.org/10.1002/mnfr.201500181] [PMID: 26228251]
[193]
Guo, M.; Lu, H.; Qin, J.; Qu, S.; Wang, W.; Guo, Y.; Liao, W.; Song, M.; Chen, J.; Wang, Y. research, c., Biochanin A provides neuroprotection against cerebral ischemia/reperfusion injury by Nrf2-mediated inhibition of oxidative stress and inflammation signaling pathway in rats. Med. Sci. Monit., 2019, 25, 8975-8983.
[http://dx.doi.org/10.12659/MSM.918665] [PMID: 31767824]
[194]
Zhao, X.; Sun, G.; Ting, S.M.; Song, S.; Zhang, J.; Edwards, N.J.; Aronowski, J. Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance. J. Neurochem., 2015, 133(1), 144-152.
[http://dx.doi.org/10.1111/jnc.12974] [PMID: 25328080]
[195]
Liu, D.; Wang, H.; Zhang, Y.; Zhang, Z. development; therapy, Protective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathway. Drug Des. Devel. Ther., 2020, 14, 51-60.
[http://dx.doi.org/10.2147/DDDT.S228751] [PMID: 32021091]
[196]
Yang, Z.; Weian, C.; Susu, H.; Hanmin, W. Protective effects of mangiferin on cerebral ischemia–reperfusion injury and its mechanisms. Eur. J. Pharmacol., 2016, 771, 145-151.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.003] [PMID: 26656757]
[197]
Farkhondeh, T.; Samarghandian, S.; Azimin-Nezhad, M.; Samini, F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med., 2015, 8(2), 2465.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy