Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Advances in Chitosan-based Drug Delivery Systems in Melanoma: A Narrative Review

Author(s): Parisa Maleki Dana, Jamal Hallajzadeh*, Zatollah Asemi*, Mohammad Ali Mansournia and Bahman Yousefi

Volume 31, Issue 23, 2024

Published on: 03 July, 2023

Page: [3488 - 3501] Pages: 14

DOI: 10.2174/0929867330666230518143654

Price: $65

conference banner
Abstract

Melanoma accounts for the minority of skin cancer cases. However, it has the highest mortality rate among the subtypes of skin cancer. At the early stages of the disease, patients show a good prognosis after the surgery, but developing metastases leads to a remarkable drop in patients’ 5-year survival rate. Despite the advances made in the therapeutic approaches to this disease, melanoma treatment is still facing several obstacles. Systemic toxicity, water insolubility, instability, lack of proper biodistribution, inadequate cellular penetration, and rapid clearance are some of the challenges that should be addressed in the field of melanoma treatment. While various delivery systems have been developed to circumvent these challenges, chitosan-based delivery platforms have indicated significant success. Chitosan that is produced by the deacetylation of chitin can be formulated into different materials (e.g., nanoparticle, film, and hydrogel) due to its characteristics. Both in vitro and in vivo studies have reported that chitosan-based materials can be used in drug delivery systems while offering a solution for the common problems in this area, such as enhancing biodistribution and skin penetration as well as the sustained release of the drugs. Herein, we reviewed the studies concerning the role of chitosan as a drug delivery system in melanoma and discussed how these drug systems are used for delivering chemotherapeutic drugs (e.g., doxorubicin and paclitaxel), genes (e.g., TRAIL), and RNAs (e.g., miRNA199a and STAT3 siRNA) successfully. Furthermore, we take a look into the role of chitosan-based nanoparticles in neutron capture therapy.

Keywords: Chitosan, drug delivery, melanoma, chemotherapy, neutron capture therapy, skin cancer.

[1]
Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379.
[http://dx.doi.org/10.1080/15384047.2019.1640032] [PMID: 31366280]
[2]
Nabavi, S.M.; Russo, G.L.; Tedesco, I.; Daglia, M.; Orhan, I.E.; Nabavi, S.F.; Bishayee, A.; Nagulapalli, V.K.C.; Abdollahi, M.; Hajheydari, Z. Curcumin and melanoma: From chemistry to medicine. Nutr. Cancer, 2018, 70(2), 164-175.
[http://dx.doi.org/10.1080/01635581.2018.1412485] [PMID: 29300102]
[3]
Martincorena, I.; Roshan, A.; Gerstung, M.; Ellis, P.; Van Loo, P.; McLaren, S.; Wedge, D.C.; Fullam, A.; Alexandrov, L.B.; Tubio, J.M.; Stebbings, L.; Menzies, A.; Widaa, S.; Stratton, M.R.; Jones, P.H.; Campbell, P.J. High burden and pervasive positive selection of somatic mutations in normal human skin. Science, 2015, 348(6237), 880-886.
[http://dx.doi.org/10.1126/science.aaa6806] [PMID: 25999502]
[4]
Robles-Espinoza, C.D.; Roberts, N.D.; Chen, S.; Leacy, F.P.; Alexandrov, L.B.; Pornputtapong, N.; Halaban, R.; Krauthammer, M.; Cui, R.; Timothy, B.D.; Adams, D.J. Germline MC1R status influences somatic mutation burden in melanoma. Nat. Commun., 2016, 7(1), 12064.
[http://dx.doi.org/10.1038/ncomms12064] [PMID: 27403562]
[5]
Williams, P.F.; Olsen, C.M.; Hayward, N.K.; Whiteman, D.C. Melanocortin 1 receptor and risk of cutaneous melanoma: A meta-analysis and estimates of population burden. Int. J. Cancer, 2011, 129(7), 1730-1740.
[http://dx.doi.org/10.1002/ijc.25804] [PMID: 21128237]
[6]
Alshamsan, A.; Hamdy, S.; Haddadi, A.; Samuel, J.; El-Kadi, A.O.S.; Uludağ, H.; Lavasanifar, A. STAT3 knockdown in b16 melanoma by siRNA lipopolyplexes induces bystander immune response in vitro and in vivo. Transl. Oncol., 2011, 4(3), 178-188.
[http://dx.doi.org/10.1593/tlo.11100] [PMID: 21633673]
[7]
Lens, M.B.; Dawes, M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br. J. Dermatol., 2004, 150(2), 179-185.
[http://dx.doi.org/10.1111/j.1365-2133.2004.05708.x] [PMID: 14996086]
[8]
Thompson, J.F.; Scolyer, R.A.; Kefford, R.F. Cutaneous melanoma. Lancet, 2005, 365(9460), 687-701.
[http://dx.doi.org/10.1016/S0140-6736(05)17951-3] [PMID: 15721476]
[9]
Gowda, R.; Robertson, B.M.; Iyer, S.; Barry, J.; Dinavahi, S.S.; Robertson, G.P. The role of exosomes in metastasis and progression of melanoma. Cancer Treat. Rev., 2020, 85, 101975.
[http://dx.doi.org/10.1016/j.ctrv.2020.101975] [PMID: 32050108]
[10]
Liu, Q.; Das, M.; Liu, Y.; Huang, L. Targeted drug delivery to melanoma. Adv. Drug Deliv. Rev., 2018, 127, 208-221.
[http://dx.doi.org/10.1016/j.addr.2017.09.016] [PMID: 28939379]
[11]
Mundra, V.; Li, W.; Mahato, R.I. Nanoparticle-mediated drug delivery for treating melanoma. Nanomedicine, 2015, 10(16), 2613-2633.
[http://dx.doi.org/10.2217/nnm.15.111] [PMID: 26244818]
[12]
Hudson, D.; Margaritis, A. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit. Rev. Biotechnol., 2014, 34(2), 161-179.
[http://dx.doi.org/10.3109/07388551.2012.743503] [PMID: 23294062]
[13]
Sundar, S.; Kundu, J.; Kundu, S.C. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater., 2010, 11(1), 014104.
[http://dx.doi.org/10.1088/1468-6996/11/1/014104] [PMID: 27877319]
[14]
Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release, 2004, 100(1), 5-28.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.010] [PMID: 15491807]
[15]
Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Vaghari, H.; Anarjan, N.; Ahmadi, O.; Berenjian, A. Chitosan magnetic nanoparticles for drug delivery systems. Crit. Rev. Biotechnol., 2017, 37(4), 492-509.
[http://dx.doi.org/10.1080/07388551.2016.1185389] [PMID: 27248312]
[16]
Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci., 2020, 21(2), 487.
[http://dx.doi.org/10.3390/ijms21020487] [PMID: 31940963]
[17]
Vaghari, H.; Jafarizadeh-Malmiri, H.; Berenjian, A.; Anarjan, N. Recent advances in application of chitosan in fuel cells. Sustain. Chem. Process., 2013, 1(1), 16.
[http://dx.doi.org/10.1186/2043-7129-1-16]
[18]
Ryu, J.H.; Yoon, H.Y.; Sun, I.C.; Kwon, I.C.; Kim, K. Tumor-targeting glycol chitosan nanoparticles for cancer heterogeneity. Adv. Mater., 2020, 32(51), 2002197.
[http://dx.doi.org/10.1002/adma.202002197] [PMID: 33051905]
[19]
Gover Antoniraj, M.; Maria Leena, M.; Moses, J.A.; Anandharamakrishnan, C. Cross-linked chitosan microparticles preparation by modified three fluid nozzle spray drying approach. Int. J. Biol. Macromol., 2020, 147, 1268-1277.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.254] [PMID: 31770556]
[20]
Kiti, K.; Suwantong, O. The potential use of curcumin-β- cyclodextrin inclusion complex/chitosan-loaded cellulose sponges for the treatment of chronic wound. Int. J. Biol. Macromol., 2020, 164, 3250-3258.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.190] [PMID: 32860794]
[21]
Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Zabermawi, N.M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Abd El-Hakim, Y.M.; Al-Sagheer, A.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol., 2020, 164, 2726-2744.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.153] [PMID: 32841671]
[22]
Xie, M.; Huang, K.; Yang, F.; Wang, R.; Han, L.; Yu, H.; Ye, Z.; Wu, F. Chitosan nanocomposite films based on halloysite nanotubes modification for potential biomedical applications. Int. J. Biol. Macromol., 2020, 151, 1116-1125.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.154] [PMID: 31751717]
[23]
Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol., 2017, 105(Pt 2), 1358-1368.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.087] [PMID: 28735006]
[24]
Caracciolo, G.; Vali, H.; Moore, A.; Mahmoudi, M. Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today, 2019, 27, 6-10.
[http://dx.doi.org/10.1016/j.nantod.2019.06.001]
[25]
Hoda, J.M.; Mohammad, A.G.J.; Aydin, B. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am. J. Biochem. Biotechnol., 2012, 8(4)
[26]
Wang, J.J.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomedicine, 2011, 6, 765-774.
[PMID: 21589644]
[27]
Pang, Y.; Qin, A.; Lin, X.; Yang, L.; Wang, Q.; Wang, Z.; Shan, Z.; Li, S.; Wang, J.; Fan, S.; Hu, Q. Biodegradable and biocompatible high elastic chitosan scaffold is cell-friendly both in vitro and in vivo. Oncotarget, 2017, 8(22), 35583-35591.
[http://dx.doi.org/10.18632/oncotarget.14709] [PMID: 28103580]
[28]
Liu, J.; Meng, C.; Liu, S.; Kan, J.; Jin, C. Preparation and characterization of protocatechuic acid grafted chitosan films with antioxidant activity. Food Hydrocoll., 2017, 63, 457-466.
[http://dx.doi.org/10.1016/j.foodhyd.2016.09.035]
[29]
Gallaher, C.M.; Munion, J.; Gallaher, D.D.; Hesslink, R., Jr; Wise, J. Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. J. Nutr., 2000, 130(11), 2753-2759.
[http://dx.doi.org/10.1093/jn/130.11.2753] [PMID: 11053517]
[30]
Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107447] [PMID: 31756363]
[31]
Lee, W.; Song, G.; Bae, H. Matairesinol induces mitochondrial dysfunction and exerts synergistic anticancer effects with 5-fluorouracil in pancreatic cancer cells. Mar. Drugs, 2022, 20(8), 473.
[http://dx.doi.org/10.3390/md20080473] [PMID: 35892941]
[32]
Mahajan, U.M.; Li, Q.; Alnatsha, A.; Maas, J.; Orth, M.; Maier, S.H.; Peterhansl, J.; Regel, I.; Sendler, M.; Wagh, P.R.; Mishra, N.; Xue, Y.; Allawadhi, P.; Beyer, G.; Kühn, J.P.; Marshall, T.; Appel, B.; Lämmerhirt, F.; Belka, C.; Müller, S.; Weiss, F.U.; Lauber, K.; Lerch, M.M.; Mayerle, J. Tumor-specific delivery of 5-fluorouracil–incorporated epidermal growth factor receptor–targeted aptamers as an efficient treatment in pancreatic ductal adenocarcinoma models. Gastroenterology, 2021, 161(3), 996-1010.e1.
[http://dx.doi.org/10.1053/j.gastro.2021.05.055] [PMID: 34097885]
[33]
Nomura, H.; Tsuji, D.; Ueno, S.; Kojima, T.; Fujii, S.; Yano, T.; Daiko, H.; Demachi, K.; Itoh, K.; Kawasaki, T. Relevance of pharmacogenetic polymorphisms with response to docetaxel, cisplatin, and 5-fluorouracil chemotherapy in esophageal cancer. Invest. New Drugs, 2022, 40(2), 420-429.
[http://dx.doi.org/10.1007/s10637-021-01199-y] [PMID: 34792690]
[34]
Mafi, A.; Rezaee, M.; Hedayati, N.; Hogan, S.D.; Reiter, R.J.; Aarabi, M.H.; Asemi, Z. Melatonin and 5-fluorouracil combination chemotherapy: Opportunities and efficacy in cancer therapy. Cell Commun. Signal., 2023, 21(1), 33.
[http://dx.doi.org/10.1186/s12964-023-01047-x] [PMID: 36759799]
[35]
Khan, M.A.; Pandit, J.; Sultana, Y.; Sultana, S.; Ali, A.; Aqil, M.; Chauhan, M. Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: In vitro characterization and in vivo study. Drug Deliv., 2015, 22(6), 795-802.
[http://dx.doi.org/10.3109/10717544.2014.902146] [PMID: 24735246]
[36]
She, W.; Luo, K.; Zhang, C.; Wang, G.; Geng, Y.; Li, L.; He, B.; Gu, Z. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron–doxorubicin conjugates for cancer therapy. Biomaterials, 2013, 34(5), 1613-1623.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.007] [PMID: 23195490]
[37]
Sahu, P.; Kashaw, S.K.; Sau, S.; Kushwah, V.; Jain, S.; Agrawal, R.K.; Iyer, A.K. pH responsive 5-fluorouracil loaded biocompatible nanogels for topical chemotherapy of aggressive melanoma. Colloids Surf. B Biointerfaces, 2019, 174, 232-245.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.018] [PMID: 30465998]
[38]
Hu, W.; Zhang, C.; Fang, Y.; Lou, C. Anticancer properties of 10-hydroxycamptothecin in a murine melanoma pulmonary metastasis model in vitro and in vivo. Toxicol. In Vitro, 2011, 25(2), 513-520.
[http://dx.doi.org/10.1016/j.tiv.2010.11.009] [PMID: 21093576]
[39]
Li, J.; Xu, W.; Li, D.; Liu, T.; Zhang, Y.S.; Ding, J.; Chen, X. Locally deployable nanofiber patch for sequential drug delivery in treatment of primary and advanced orthotopic hepatomas. ACS Nano, 2018, 12(7), 6685-6699.
[http://dx.doi.org/10.1021/acsnano.8b01729] [PMID: 29874035]
[40]
Guo, H.; Li, F.; Xu, W.; Chen, J.; Hou, Y.; Wang, C.; Ding, J.; Chen, X. Mucoadhesive cationic polypeptide nanogel with enhanced penetration for efficient intravesical chemotherapy of bladder cancer. Adv. Sci., 2018, 5(6), 1800004.
[http://dx.doi.org/10.1002/advs.201800004] [PMID: 29938183]
[41]
Guo, H.; Li, F.; Qiu, H.; Liu, J.; Qin, S.; Hou, Y.; Wang, C. Preparation and characterization of chitosan nanoparticles for chemotherapy of melanoma through enhancing tumor penetration. Front. Pharmacol., 2020, 11, 317.
[http://dx.doi.org/10.3389/fphar.2020.00317] [PMID: 32231576]
[42]
Fan, X.; Song, J.; Zhao, Z.; Chen, M.; Tu, J.; Lu, C.; Wu, F.; Zhang, D.; Weng, Q.; Zheng, L.; Xu, M.; Ji, J. Piplartine suppresses proliferation and invasion of hepatocellular carcinoma by LINC01391-modulated Wnt/β-catenin pathway inactivation through ICAT. Cancer Lett., 2019, 460, 119-127.
[http://dx.doi.org/10.1016/j.canlet.2019.06.008] [PMID: 31207322]
[43]
Oliveira, M.S.; Barbosa, M.I.F.; de Souza, T.B.; Moreira, D.R.M.; Martins, F.T.; Villarreal, W.; Machado, R.P.; Doriguetto, A.C.; Soares, M.B.P.; Bezerra, D.P. A novel platinum complex containing a piplartine derivative exhibits enhanced cytotoxicity, causes oxidative stress and triggers apoptotic cell death by ERK/p38 pathway in human acute promyelocytic leukemia HL-60 cells. Redox Biol., 2019, 20, 182-194.
[http://dx.doi.org/10.1016/j.redox.2018.10.006] [PMID: 30359932]
[44]
Fofaria, N.M.; Qhattal, H.S.S.; Liu, X.; Srivastava, S.K. Nanoemulsion formulations for anti-cancer agent piplartine-Characterization, toxicological, pharmacokinetics and efficacy studies. Int. J. Pharm., 2016, 498(1-2), 12-22.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.045] [PMID: 26642946]
[45]
Giacone, D.V. Effect of nanoemulsion modification with chitosan and sodium alginate on the topical delivery and efficacy of the cytotoxic agent piplartine in 2D and 3D skin cancer models. Int J Biol Macromol, 2020, 165(Pt A), 1055-1065.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.167]
[46]
Ji, Z.; Xu, J.; Li, M.; Wang, H.; Xu, B.; Yang, Y.; Hu, Y. The mechanisms of immune-chemotherapy with nanocomplex codelivery of pTRP-2 and adjuvant of paclitaxel against melanoma. Drug Dev. Ind. Pharm., 2021, 47(11), 1744-1752.
[http://dx.doi.org/10.1080/03639045.2022.2045306] [PMID: 35193436]
[47]
Liu, X.; Xu, Y.; Yin, L.; Hou, Y.; Zhao, S. Chitosan-Poly(Acrylic Acid) nanoparticles loaded with R848 and MnCl2 inhibit melanoma via regulating macrophage polarization and dendritic cell maturation. Int. J. Nanomed., 2021, 16, 5675-5692.
[http://dx.doi.org/10.2147/IJN.S318363] [PMID: 34456564]
[48]
He, J.; Duan, S.; Yu, X.; Qian, Z.; Zhou, S.; Zhang, Z.; Huang, X.; Huang, Y.; Su, J.; Lai, C.; Meng, J.; Zhou, N.; Lu, X.; Zhao, Y. Folate-modified chitosan nanoparticles containing the ip-10 gene enhance melanoma-specific cytotoxic CD8+ CD28+ T lymphocyte responses. Theranostics, 2016, 6(5), 752-761.
[http://dx.doi.org/10.7150/thno.14527] [PMID: 27022421]
[49]
Li, X.; Dong, W.; Nalin, A.P.; Wang, Y.; Pan, P.; Xu, B.; Zhang, Y.; Tun, S.; Zhang, J.; Wang, L.S.; He, X.; Caligiuri, M.A.; Yu, J. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. OncoImmunology, 2018, 7(6), e1431085.
[http://dx.doi.org/10.1080/2162402X.2018.1431085] [PMID: 29872557]
[50]
Won, J.E.; Wi, T.I.; Lee, C.M.; Lee, J.H.; Kang, T.H.; Lee, J.W.; Shin, B.C.; Lee, Y.; Park, Y.M.; Han, H.D. NIR irradiation-controlled drug release utilizing injectable hydrogels containing gold-labeled liposomes for the treatment of melanoma cancer. Acta Biomater., 2021, 136, 508-518.
[http://dx.doi.org/10.1016/j.actbio.2021.09.062] [PMID: 34626819]
[51]
Mirzaei, H.; Mirzaei, H.R.; Sahebkar, A.; Salehi, R.; Nahand, J.S.; Karimi, E.; Jaafari, M.R. Boron neutron capture therapy: Moving toward targeted cancer therapy. J. Cancer Res. Ther., 2016, 12(2), 520-525.
[http://dx.doi.org/10.4103/0973-1482.176167] [PMID: 27461603]
[52]
Barth, R.F.; Coderre, J.A.; Vicente, M.G.H.; Blue, T.E. Boron neutron capture therapy of cancer: Current status and future prospects. Clin. Cancer Res., 2005, 11(11), 3987-4002.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0035] [PMID: 15930333]
[53]
Yong, Z.; Song, Z.; Zhou, Y.; Liu, T.; Zhang, Z.; Zhao, Y.; Chen, Y.; Jin, C.; Chen, X.; Lu, J.; Han, R.; Li, P.; Sun, X.; Wang, G.; Shi, G.; Zhu, S. Boron neutron capture therapy for malignant melanoma: First clinical case report in China. Chin. J. Cancer Res., 2016, 28(6), 634-640.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2016.06.10] [PMID: 28174492]
[54]
Wang, L.W.; Liu, Y.W.H.; Chou, F.I.; Jiang, S.H. Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua open pool reactor. Cancer Commun., 2018, 38(1), 37.
[http://dx.doi.org/10.1186/s40880-018-0295-y] [PMID: 29914577]
[55]
Barth, R.F.; Zhang, Z.; Liu, T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun., 2018, 38(1), 36.
[http://dx.doi.org/10.1186/s40880-018-0280-5] [PMID: 29914575]
[56]
Miyatake, S.I.; Wanibuchi, M.; Hu, N.; Ono, K. Boron neutron capture therapy for malignant brain tumors. J. Neurooncol., 2020, 149(1), 1-11.
[http://dx.doi.org/10.1007/s11060-020-03586-6] [PMID: 32676954]
[57]
Takeuchi, I.; Ariyama, M.; Makino, K. Chitosan coating effect on cellular uptake of PLGA nanoparticles for boron neutron capture therapy. J. Oleo Sci., 2019, 68(4), 361-368.
[http://dx.doi.org/10.5650/jos.ess18239] [PMID: 30867387]
[58]
Ichikawa, H.; Watanabe, T.; Tokumitsu, H.; Fukumori, Y. Formulation considerations of gadolinium lipid nanoemulsion for intravenous delivery to tumors in neutron-capture therapy. Curr. Drug Deliv., 2007, 4(2), 131-140.
[http://dx.doi.org/10.2174/156720107780362294] [PMID: 17456032]
[59]
Ichikawa, H.; Uneme, T.; Andoh, T.; Arita, Y.; Fujimoto, T.; Suzuki, M.; Sakurai, Y.; Shinto, H.; Fukasawa, T.; Fujii, F.; Fukumori, Y. Gadolinium-loaded chitosan nanoparticles for neutron-capture therapy: Influence of micrometric properties of the nanoparticles on tumor-killing effect. Appl. Radiat. Isot., 2014, 88, 109-113.
[http://dx.doi.org/10.1016/j.apradiso.2013.12.018] [PMID: 24462286]
[60]
Zhou, J.; Xu, D.; Xie, H.; Tang, J.; Liu, R.; Li, J.; Wang, S.; Chen, X.; Su, J.; Zhou, X.; Xia, K.; He, Q.; Chen, J.; Xiong, W.; Cao, P.; Cao, K. miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1α. Cancer Biol. Ther., 2015, 16(6), 846-855.
[http://dx.doi.org/10.1080/15384047.2015.1030545] [PMID: 25891797]
[61]
Xu, D.; Tan, J.; Zhou, M.; Jiang, B.; Xie, H.; Nie, X.; Xia, K.; Zhou, J. Let-7b and microRNA-199a inhibit the proliferation of B16F10 melanoma cells. Oncol. Lett., 2012, 4(5), 941-946.
[http://dx.doi.org/10.3892/ol.2012.878] [PMID: 23162627]
[62]
Uchino, K.; Ochiya, T.; Takeshita, F. RNAi therapeutics and applications of microRNAs in cancer treatment. Jpn. J. Clin. Oncol., 2013, 43(6), 596-607.
[http://dx.doi.org/10.1093/jjco/hyt052] [PMID: 23592885]
[63]
Liu, C.A.; Chang, C.Y.; Hsueh, K.W.; Su, H.L.; Chiou, T.W.; Lin, S.Z.; Harn, H.J. Migration/invasion of malignant gliomas and implications for therapeutic treatment. Int. J. Mol. Sci., 2018, 19(4), 1115.
[http://dx.doi.org/10.3390/ijms19041115] [PMID: 29642503]
[64]
Alshaer, W.; Zureigat, H.; Al Karaki, A.; Al-Kadash, A.; Gharaibeh, L.; Hatmal, M.M.; Aljabali, A.A.A.; Awidi, A. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur. J. Pharmacol., 2021, 905, 174178.
[http://dx.doi.org/10.1016/j.ejphar.2021.174178] [PMID: 34044011]
[65]
Petrocca, F.; Lieberman, J. Promise and challenge of RNA interference-based therapy for cancer. J. Clin. Oncol., 2011, 29(6), 747-754.
[http://dx.doi.org/10.1200/JCO.2009.27.6287] [PMID: 21079135]
[66]
Rahman, M.A.; Amin, A.R.M.R.; Wang, X.; Zuckerman, J.E.; Choi, C.H.J.; Zhou, B.; Wang, D.; Nannapaneni, S.; Koenig, L.; Chen, Z.; Chen, Z.G.; Yen, Y.; Davis, M.E.; Shin, D.M. Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth. J. Control. Release, 2012, 159(3), 384-392.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.045] [PMID: 22342644]
[67]
Tabernero, J.; Shapiro, G.I.; LoRusso, P.M.; Cervantes, A.; Schwartz, G.K.; Weiss, G.J.; Paz-Ares, L.; Cho, D.C.; Infante, J.R.; Alsina, M.; Gounder, M.M.; Falzone, R.; Harrop, J.; White, A.C.S.; Toudjarska, I.; Bumcrot, D.; Meyers, R.E.; Hinkle, G.; Svrzikapa, N.; Hutabarat, R.M.; Clausen, V.A.; Cehelsky, J.; Nochur, S.V.; Gamba-Vitalo, C.; Vaishnaw, A.K.; Sah, D.W.Y.; Gollob, J.A.; Burris, H.A., III First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov., 2013, 3(4), 406-417.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0429] [PMID: 23358650]
[68]
Nguyen, J.; Szoka, F.C. Nucleic acid delivery: The missing pieces of the puzzle? Acc. Chem. Res., 2012, 45(7), 1153-1162.
[http://dx.doi.org/10.1021/ar3000162] [PMID: 22428908]
[69]
Ragelle, H.; Riva, R.; Vandermeulen, G.; Naeye, B.; Pourcelle, V.; Le Duff, C.S.; D’Haese, C.; Nysten, B.; Braeckmans, K.; De Smedt, S.C.; Jérôme, C.; Préat, V. Chitosan nanoparticles for siRNA delivery: Optimizing formulation to increase stability and efficiency. J. Control. Release, 2014, 176, 54-63.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.026] [PMID: 24389132]
[70]
Kortylewski, M.; Jove, R.; Yu, H. Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev., 2005, 24(2), 315-327.
[http://dx.doi.org/10.1007/s10555-005-1580-1] [PMID: 15986140]
[71]
Xie, T.; Huang, F.J.; Aldape, K.D.; Kang, S.H.; Liu, M.; Gershenwald, J.E.; Xie, K.; Sawaya, R.; Huang, S. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res., 2006, 66(6), 3188-3196.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2674] [PMID: 16540670]
[72]
Labala, S.; Jose, A.; Venuganti, V.V.K. Transcutaneous iontophoretic delivery of STAT3 siRNA using layer-by-layer chitosan coated gold nanoparticles to treat melanoma. Colloids Surf. B Biointerfaces, 2016, 146, 188-197.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.076] [PMID: 27318964]
[73]
Zhuang, L.; Lee, C.S.; Scolyer, R.A.; McCarthy, S.W.; Zhang, X.D.; Thompson, J.F.; Screaton, G.; Hersey, P. Progression in melanoma is associated with decreased expression of death receptors for tumor necrosis factor–related apoptosis-inducing ligand. Hum. Pathol., 2006, 37(10), 1286-1294.
[http://dx.doi.org/10.1016/j.humpath.2006.04.026] [PMID: 16949935]
[74]
Alvizo-Baez, C.A.; Luna-Cruz, I.E.; Vilches-Cisneros, N.; Rodríguez-Padilla, C.; Alcocer-González, J.M. Systemic delivery and activation of the TRAIL gene in lungs, with magnetic nanoparticles of chitosan controlled by an external magnetic field. Int. J. Nanomed., 2016, 11, 6449-6458.
[http://dx.doi.org/10.2147/IJN.S118343] [PMID: 27980403]
[75]
Chen, Y.Z.; Yao, X.L.; Ruan, G.X.; Zhao, Q.Q.; Tang, G.P.; Tabata, Y.; Gao, J.Q. Gene-carried chitosan-linked polyethylenimine induced high gene transfection efficiency on dendritic cells. Biotechnol. Appl. Biochem., 2012, 59(5), 346-352.
[http://dx.doi.org/10.1002/bab.1036] [PMID: 23586911]
[76]
Garg, U.; Chauhan, S.; Nagaich, U.; Jain, N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv. Pharm. Bull., 2019, 9(2), 195-204.
[http://dx.doi.org/10.15171/apb.2019.023] [PMID: 31380245]
[77]
Kim, J.H.; Kim, Y.S.; Kim, S.; Park, J.H.; Kim, K.; Choi, K.; Chung, H.; Jeong, S.Y.; Park, R.W.; Kim, I.S.; Kwon, I.C. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J. Control. Release, 2006, 111(1-2), 228-234.
[http://dx.doi.org/10.1016/j.jconrel.2005.12.013] [PMID: 16458988]
[78]
Bae, K.H.; Moon, C.W.; Lee, Y.; Park, T.G. Intracellular delivery of heparin complexed with chitosan-g-poly(ethylene glycol) for inducing apoptosis. Pharm. Res., 2009, 26(1), 93-100.
[http://dx.doi.org/10.1007/s11095-008-9713-1] [PMID: 18777202]
[79]
Zhou, T.; Xiao, C.; Fan, J.; Chen, S.; Shen, J.; Wu, W.; Zhou, S. A nanogel of on-site tunable pH-response for efficient anticancer drug delivery. Acta Biomater., 2013, 9(1), 4546-4557.
[http://dx.doi.org/10.1016/j.actbio.2012.08.017] [PMID: 22906624]
[80]
Li, S.; Zhang, F.; Yu, Y.; Zhang, Q. A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy. Carbohydr. Polym., 2020, 235, 115983.
[http://dx.doi.org/10.1016/j.carbpol.2020.115983] [PMID: 32122513]
[81]
Sharma, S.; Verma, A.; Pandey, G.; Mittapelly, N.; Mishra, P.R. Investigating the role of pluronic-g-cationic polyelectrolyte as functional stabilizer for nanocrystals: Impact on paclitaxel oral bioavailability and tumor growth. Acta Biomater., 2015, 26, 169-183.
[http://dx.doi.org/10.1016/j.actbio.2015.08.005] [PMID: 26265061]
[82]
Liu, X.; Zhou, S.; Li, X.; Chen, X.; Zhao, X.; Qian, Z.; Zhou, L.; Li, Z.; Wang, Y.; Zhong, Q.; Yi, T.; Li, Z.; He, X.; Wei, Y. Anti-tumor activity of N-trimethyl chitosan-encapsulated camptothecin in a mouse melanoma model. J. Exp. Clin. Cancer Res., 2010, 29(1), 76.
[http://dx.doi.org/10.1186/1756-9966-29-76] [PMID: 20565783]
[83]
Joshi, N.; Saha, R.; Shanmugam, T.; Balakrishnan, B.; More, P.; Banerjee, R. Carboxymethyl-chitosan-tethered lipid vesicles: Hybrid nanoblanket for oral delivery of paclitaxel. Biomacromolecules, 2013, 14(7), 2272-2282.
[http://dx.doi.org/10.1021/bm400406x] [PMID: 23721348]
[84]
Mandala Rayabandla, S.K.; Aithal, K.; Anandam, A.; Shavi, G.; Nayanabhirama, U.; Arumugam, K.; Musmade, P.; Bhat, K.; Bola, S.S.R. Preparation, in vitro characterization, pharmacokinetic, and pharmacodynamic evaluation of chitosan-based plumbagin microspheres in mice bearing B16F1 melanoma. Drug Deliv., 2010, 17(3), 103-113.
[http://dx.doi.org/10.3109/10717540903548447] [PMID: 20100068]
[85]
Venâncio, J.H.; Andrade, L.M.; Esteves, N.L.S.; Brito, L.B.; Valadares, M.C.; Oliveira, G.A.R.; Lima, E.M.; Marreto, R.N.; Gratieri, T.; Taveira, S.F. Topotecan-loaded lipid nanoparticles as a viable tool for the topical treatment of skin cancers. J. Pharm. Pharmacol., 2017, 69(10), 1318-1326.
[http://dx.doi.org/10.1111/jphp.12772] [PMID: 28703281]
[86]
Liu, F.; Feng, L.; Zhang, L.; Zhang, X.; Zhang, N. Synthesis, characterization and antitumor evaluation of CMCS–DTX conjugates as novel delivery platform for docetaxel. Int. J. Pharm., 2013, 451(1-2), 41-49.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.020] [PMID: 23608199]
[87]
Battogtokh, G.; Ko, Y.T. Self-assembled polymeric nanoparticle of PEGylated chitosan–ceramide conjugate for systemic delivery of paclitaxel. J. Drug Target., 2014, 22(9), 813-821.
[http://dx.doi.org/10.3109/1061186X.2014.930469] [PMID: 24964055]
[88]
Loch-Neckel, G.; Santos-Bubniak, L.; Mazzarino, L.; Jacques, A.V.; Moccelin, B.; Santos-Silva, M.C.; Lemos-Senna, E. Orally administered chitosan-coated polycaprolactone nanoparticles containing curcumin attenuate metastatic melanoma in the lungs. J. Pharm. Sci., 2015, 104(10), 3524-3534.
[http://dx.doi.org/10.1002/jps.24548] [PMID: 26085173]
[89]
Liu, F.; Li, M.; Liu, C.; Liu, Y.; Liang, Y.; Wang, F.; Zhang, N. Tumor-specific delivery and therapy by double- targeted DTX-CMCS-PEG-NGR conjugates. Pharm. Res., 2014, 31(2), 475-488.
[http://dx.doi.org/10.1007/s11095-013-1176-3] [PMID: 24043295]
[90]
Ferraz, L.S.; Watashi, C.M.; Colturato-Kido, C.; Pelegrino, M.T.; Paredes-Gamero, E.J.; Weller, R.B.; Seabra, A.B.; Rodrigues, T. Antitumor potential of s-nitrosothiol- containing polymeric nanoparticles against melanoma. Mol. Pharm., 2018, 15(3), 1160-1168.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01001] [PMID: 29378125]
[91]
Battogtokh, G.; Ko, Y.T. Self-assembled chitosan-ceramide nanoparticle for enhanced oral delivery of paclitaxel. Pharm. Res., 2014, 31(11), 3019-3030.
[http://dx.doi.org/10.1007/s11095-014-1395-2] [PMID: 24825757]
[92]
Mazzarino, L.; Otsuka, I.; Halila, S.; Bubniak, L.S.; Mazzucco, S.; Santos-Silva, M.C.; Lemos-Senna, E.; Borsali, R. Xyloglucan-block-poly(ϵ-caprolactone) copolymer nanoparticles coated with chitosan as biocompatible mucoadhesive drug delivery system. Macromol. Biosci., 2014, 14(5), 709-719.
[http://dx.doi.org/10.1002/mabi.201300465] [PMID: 24469965]
[93]
Siddiqui, I.A.; Bharali, D.J.; Nihal, M.; Adhami, V.M.; Khan, N.; Chamcheu, J.C.; Khan, M.I.; Shabana, S.; Mousa, S.A.; Mukhtar, H. Excellent anti-proliferative and pro-apoptotic effects of (−)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine, 2014, 10(8), 1619-1626.
[http://dx.doi.org/10.1016/j.nano.2014.05.007] [PMID: 24965756]
[94]
Xu, M.; Asghar, S.; Dai, S.; Wang, Y.; Feng, S.; Jin, L.; Shao, F.; Xiao, Y. Mesenchymal stem cells-curcumin loaded chitosan nanoparticles hybrid vectors for tumor-tropic therapy. Int. J. Biol. Macromol., 2019, 134, 1002-1012.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.201] [PMID: 31063785]
[95]
Shen, H.; Shi, H.; Xie, M.; Ma, K.; Li, B.; Shen, S.; Wang, X.; Jin, Y. Biodegradable chitosan/alginate BSA-gel-capsules for pH-controlled loading and release of doxorubicin and treatment of pulmonary melanoma. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(32), 3906-3917.
[http://dx.doi.org/10.1039/c3tb20330a] [PMID: 32261218]
[96]
Barone, A.; Mendes, M.; Cabral, C.; Mare, R.; Paolino, D.; Vitorino, C. Hybrid nanostructured films for topical administration of simvastatin as coadjuvant treatment of melanoma. J. Pharm. Sci., 2019, 108(10), 3396-3407.
[http://dx.doi.org/10.1016/j.xphs.2019.06.002] [PMID: 31201905]
[97]
Lee, S.Y.; Koo, J.S.; Yang, M.; Cho, H.J. Application of temporary agglomeration of chitosan-coated nanoparticles for the treatment of lung metastasis of melanoma. J. Colloid Interface Sci., 2019, 544, 266-275.
[http://dx.doi.org/10.1016/j.jcis.2019.02.092] [PMID: 30852352]
[98]
Kim, S.; Liu, Y.; Gaber, M.W.; Bumgardner, J.D.; Haggard, W.O.; Yang, Y. Development of chitosan-ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90B(1), 145-155.
[http://dx.doi.org/10.1002/jbm.b.31266] [PMID: 18985785]
[99]
Ferreira, T.A.; de Carvalho, S.S.M.; Cardoso, B.R.; L Silva, S.M.; Sabino, G.M.A.; B de Lima, A.G.; L Fook, M.V. Ionically crosslinked chitosan membranes used as drug carriers for cancer therapy application. Materials, 2018, 11(10), 2051.
[http://dx.doi.org/10.3390/ma11102051] [PMID: 30347857]
[100]
Stie, M.B.; Thoke, H.S.; Issinger, O.G.; Hochscherf, J.; Guerra, B.; Olsen, L.F. Delivery of proteins encapsulated in chitosan-tripolyphosphate nanoparticles to human skin melanoma cells. Colloids Surf. B Biointerfaces, 2019, 174, 216-223.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.005] [PMID: 30465996]
[101]
Lee, E.H.; Lim, S.J.; Lee, M.K. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma. Carbohydr. Polym., 2019, 224, 115143.
[http://dx.doi.org/10.1016/j.carbpol.2019.115143] [PMID: 31472877]
[102]
Bragta, P.; Sidhu, R.K.; Jyoti, K.; Baldi, A.; Jain, U.K.; Chandra, R.; Madan, J. Intratumoral administration of carboplatin bearing poly (ε-caprolactone) nanoparticles amalgamated with in situ gel tendered augmented drug delivery, cytotoxicity, and apoptosis in melanoma tumor. Colloids Surf. B Biointerfaces, 2018, 166, 339-348.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.009] [PMID: 29627747]
[103]
Yoncheva, K.; Merino, M.; Shenol, A.; Daskalov, N.T.; Petkov, P.S.; Vayssilov, G.N.; Garrido, M.J. Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model. Int. J. Pharm., 2019, 556, 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.070] [PMID: 30529664]
[104]
Zhu, L.F.; Zheng, Y.; Fan, J.; Yao, Y.; Ahmad, Z.; Chang, M.W. A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur. J. Pharm. Sci., 2019, 137, 105002.
[http://dx.doi.org/10.1016/j.ejps.2019.105002] [PMID: 31302215]
[105]
Radmansouri, M.; Bahmani, E.; Sarikhani, E.; Rahmani, K.; Sharifianjazi, F.; Irani, M. Doxorubicin hydrochloride - Loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. Int. J. Biol. Macromol., 2018, 116, 378-384.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.161] [PMID: 29723626]
[106]
Nawaz, A.; Wong, T.W. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate particles: Microwave modulated uptake by skin and melanoma cells. J. Invest. Dermatol., 2018, 138(11), 2412-2422.
[http://dx.doi.org/10.1016/j.jid.2018.04.037] [PMID: 29857069]
[107]
Chen, M.; Quan, G.; Wen, T.; Yang, P.; Qin, W.; Mai, H.; Sun, Y.; Lu, C.; Pan, X.; Wu, C. Cold to hot: Binary cooperative microneedle array-amplified photoimmunotherapy for eliciting antitumor immunity and the abscopal effect. ACS Appl. Mater. Interfaces, 2020, 12(29), 32259-32269.
[http://dx.doi.org/10.1021/acsami.0c05090] [PMID: 32406239]
[108]
Tokumitsu, H.; Ichikawa, H.; Fukumori, Y. Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: Preparation by novel emulsion-droplet coalescence technique and characterization. Pharm. Res., 1999, 16(12), 1830-1835.
[http://dx.doi.org/10.1023/A:1018995124527] [PMID: 10644070]
[109]
Tokumitsu, H.; Hiratsuka, J.; Sakurai, Y.; Kobayashi, T.; Ichikawa, H.; Fukumori, Y. Gadolinium neutron-capture therapy using novel gadopentetic acid–chitosan complex nanoparticles: In vivo growth suppression of experimental melanoma solid tumor. Cancer Lett., 2000, 150(2), 177-182.
[http://dx.doi.org/10.1016/S0304-3835(99)00388-2] [PMID: 10704740]
[110]
Andoh, T.; Nakatani, Y.; Suzuki, M.; Sakurai, Y.; Fujimoto, T.; Ichikawa, H. Influence of the particle size of gadolinium-loaded chitosan nanoparticles on their tumor-killing effect in neutron capture therapy in vitro. Appl. Radiat. Isot., 2020, 164, 109270.
[http://dx.doi.org/10.1016/j.apradiso.2020.109270] [PMID: 32819508]
[111]
Shikata, F.; Tokumitsu, H.; Ichikawa, H.; Fukumori, Y. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur. J. Pharm. Biopharm., 2002, 53(1), 57-63.
[http://dx.doi.org/10.1016/S0939-6411(01)00198-9] [PMID: 11777753]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy