Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

An Overview of Julia-lythgoe Olefination

Author(s): Vijayan Varsha, Sankaran Radhika and Gopinathan Anilkumar*

Volume 21, Issue 2, 2024

Published on: 06 July, 2023

Page: [97 - 126] Pages: 30

DOI: 10.2174/1570179420666230510104114

Price: $65

conference banner
Abstract

Julia-Lythgoe olefination (or simply Julia olefination) is an olefination process between phenyl sulfones and aldehydes (or ketones) to give alkenes after alcohol functionalization and reductive elimination using sodium amalgam or SmI2. It is mainly used to synthesize E-alkenes and is a key step in numerous total syntheses of many natural products. This review exclusively deals with the Julia-Lythgoe olefination and concentrates mainly on the applications of this reaction in natural product synthesis covering literature up to 2021.

Keywords: Julia-lythgoe olefination, sulfones, alkenes, aldehyde, total synthesis, olefin synthesis.

Graphical Abstract
[1]
Wittig, G.; Geissler, G. Zur reaktionsweise des pentaphenyl-phosphors und einiger derivate. Justus Liebigs Ann. Chem., 1953, 580(1), 44-57.
[http://dx.doi.org/10.1002/jlac.19535800107]
[2]
Wittig, G.; Schollkopf, U. About triphenyl-phosphine-methylene as olefin-forming reagents (I. comm. Chem. Ber., 1954, 87(9), 1318-1330.
[http://dx.doi.org/10.1002/cber.19540870919]
[3]
Peterson, D.J. Carbonyl olefination reaction using silyl-substituted organometallic compounds. J. Org. Chem., 1968, 33(2), 780-784.
[http://dx.doi.org/10.1021/jo01266a061]
[4]
Horner, L.; Hoffmann, H.; Wippel, H.G. Organophosphorus compounds, XII. Phosphine oxides as olefination reagents. Chem. Ber., 1958, 91(1), 61-63.
[http://dx.doi.org/10.1002/cber.19580910113]
[5]
Wadsworth, W.S.; Emmons, W.D. The utility of phosphonate carbanions in olefin synthesis. J. Am. Chem. Soc., 1961, 83(7), 1733-1738.
[http://dx.doi.org/10.1021/ja01468a042]
[6]
McMurry, J.E.; Fleming, M.P. New method for the reductive coupling of carbonyls to olefins. Synthesis of. beta.-carotene. J. Am. Chem. Soc., 1974, 96(14), 4708-4709.
[http://dx.doi.org/10.1021/ja00821a076] [PMID: 4850242]
[7]
Julia, M.; Paris, J.M. Syntheses a l’aide de sulfones v(+)- methode de synthese generale de doubles liaisons. Tetrahedron Lett., 1973, 14(49), 4833-4836.
[http://dx.doi.org/10.1016/S0040-4039(01)87348-2]
[8]
Takeda, T.; Tsubouchi, A. The McMurry coupling and related reactions. Org. React., 2013, 82, 1-470.
[9]
Kocienski, P.J.; Lythgoe, B.; Ruston, S. Scope and stereochemistry of an olefin synthesis from β;-hydroxysulphones. J. Chem. Soc., Perkin Trans. 1, 1978, 8(8), 829-834.
[http://dx.doi.org/10.1039/P19780000829]
[10]
Kocienski, P.J.; Lythgoe, B.; Waterhouse, I. The influence of chain-branching on the steric outcome of some olefin-forming reactions. J. Chem. Soc., Perkin Trans. 1, 1980, 1045-1050.
[http://dx.doi.org/10.1039/p19800001045]
[11]
Denmark, S.E. Organic Reactions; Wiley & Sons: New York, 2018, p. 95.
[12]
Baudin, J.B.; Hareau, G.; Julia, S.A.; Ruel, O. A direct synthesis of olefins by reaction of carbonyl compounds with lithio derivatives of 2-[alkyl- or (2'-alkenyl)- or benzyl-sulfonyl]-benzothiazoles. Tetrahedron Lett., 1991, 32(9), 1175-1178.
[http://dx.doi.org/10.1016/S0040-4039(00)92037-9]
[13]
Smith, A.B., III; Brandt, B.M. Total synthesis of (-)-callystatin A. Org. Lett., 2001, 3(11), 1685-1688.
[http://dx.doi.org/10.1021/ol0158922] [PMID: 11405686]
[14]
Blakemore, P.R.; Sephton, S.M.; Ciganek, E. The Julia–Kocienski Olefination. Org. React., 2018, 95, 1.
[15]
Liu, P.; Jacobsen, E.N. Total synthesis of (+)-ambruticin. J. Am. Chem. Soc., 2001, 123(43), 10772-10773.
[http://dx.doi.org/10.1021/ja016893s] [PMID: 11674024]
[16]
Kigoshi, H.; Ojika, M.; Ishigaki, T.; Suenaga, K.; Mutou, T.; Sakakura, A.; Ogawa, T.; Yamada, K. Total synthesis of aplyronine A, a potent antitumor substance of marine origin. J. Am. Chem. Soc., 1994, 116(16), 7443-7444.
[http://dx.doi.org/10.1021/ja00095a072]
[17]
Alonso, D.A.; Nájera, C.; Varea, M. 3,5-Bis(trifluoromethyl)phenyl sulfones in the modified Julia olefination: application to the synthesis of resveratrol. Tetrahedron Lett., 2004, 45(3), 573-577.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.196]
[18]
Blakemore, D.C.; Castro, L.; Churcher, I.; Rees, D.C.; Thomas, A.W.; Wilson, D.M.; Wood, A. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem., 2018, 10(4), 383-394.
[http://dx.doi.org/10.1038/s41557-018-0021-z] [PMID: 29568051]
[19]
Zajc, B.; Kumar, R. Synthesis of fluoroolefins via julia-kocienski olefination. Synthesis, 2010, 2010(11), 1822-1836.
[http://dx.doi.org/10.1055/s-0029-1218789] [PMID: 22544979]
[20]
Moro, A.V.; Cardoso, F.S.P.; Correia, C.R.D. Heck arylation of styrenes with arenediazonium salts: Short, efficient, and stereoselective synthesis of resveratrol, DMU-212, and analogues. Tetrahedron Lett., 2008, 49(39), 5668-5671.
[http://dx.doi.org/10.1016/j.tetlet.2008.07.087]
[21]
de Cássia Da Silveira e Sá, R.; Andrade, L.N.; De Sousa, D.P. Sesquiterpenes from essential oils and anti-inflammatory activity. Nat. Prod. Commun., 2015, 10(10), 1934578X1501001.
[http://dx.doi.org/10.1177/1934578X1501001033] [PMID: 26669122]
[22]
Serra, S. Preparation and use of enantioenriched 2-aryl-propylsulfonylbenzene derivatives as valuable building blocks for the enantioselective synthesis of bisabolane sesquiterpenes. Tetrahedron Lett., 2014, 25(23), 1561-1572.
[http://dx.doi.org/10.1016/j.tetasy.2014.10.016]
[23]
Porta, A.; Chiesa, F.; Quaroni, M.; Persico, M.; Moratti, R.; Zanoni, G.; Vidari, G. A divergent enantioselective synthesis of 9-J 1 -Phytoprostane and 9-A 1 -Phytoprostane methyl ester. Eur. J. Org. Chem., 2014, 2014(10), 2111-2119.
[http://dx.doi.org/10.1002/ejoc.201301703]
[24]
Zhou, X.; Fenical, W. The unique chemistry and biology of the piericidins. J. Antibiot., 2016, 69(8), 582-593.
[http://dx.doi.org/10.1038/ja.2016.71] [PMID: 27301663]
[25]
Schnermann, M.J.; Boger, D.L. Total synthesis of piericidin A1 and B1. J. Am. Chem. Soc., 2005, 127(45), 15704-15705.
[http://dx.doi.org/10.1021/ja055041f] [PMID: 16277503]
[26]
Kikuchi, R.; Fujii, M.; Akita, H. Total synthesis of (+)-piericidin A1 and (-)-piericidin B1. Tetrahedron Asymmetry, 2009, 20(17), 1975-1983.
[http://dx.doi.org/10.1016/j.tetasy.2009.07.044]
[27]
Luparia, M.; Legnani, L.; Porta, A.; Zanoni, G.; Toma, L.; Vidari, G. Enantioselective synthesis and olfactory evaluation of bicyclic α- and γ-ionone derivatives: The 3D arrangement of key molecular features relevant to the violet odor of ionones. J. Org. Chem., 2009, 74(18), 7100-7110.
[http://dx.doi.org/10.1021/jo9014936] [PMID: 19743882]
[28]
Wakamiya, Y.; Ebine, M.; Matsumori, N.; Oishi, T. Total synthesis of amphidinol 3: A general strategy for synthesizing amphidinol analogues and structure–activity relationship study. J. Am. Chem. Soc., 2020, 142(7), 3472-3478.
[http://dx.doi.org/10.1021/jacs.9b11789] [PMID: 31986250]
[29]
de Vicente, J.; Huckins, J.R.; Rychnovsky, S.D. Synthesis of the C31-C67 fragment of amphidinol 3. Angew. Chem. Int. Ed., 2006, 45(43), 7258-7262.
[http://dx.doi.org/10.1002/anie.200602742] [PMID: 17013953]
[30]
Pilz, S.; Zittermann, A.; Trummer, C.; Theiler-Schwetz, V.; Lerchbaum, E.; Keppel, M.H.; Grübler, M.R.; März, W.; Pandis, M. Vitamin D testing and treatment: A narrative review of current evidence. Endocr. Connect., 2019, 8(2), R27-R43.
[http://dx.doi.org/10.1530/EC-18-0432] [PMID: 30650061]
[31]
D’herde, J.; De Clercq, P. Application of the solid-phase Julia-Lythgoe olefination in vitamin D side-chain construction. Molecules, 2006, 11(8), 655-660.
[http://dx.doi.org/10.3390/11080655] [PMID: 17971738]
[32]
Kazmaier, U.; Wesquet, A. Stannylated allylsulfones as versatile new building blocks. Synlett, 2005, 2005(8), 1271-1274.
[http://dx.doi.org/10.1055/s-2005-868478]
[33]
D’herde, J.N.P.; Clercq, P.J.D. Carbon-carbon bond formation on solid support. Application of the classical Julia–Lythgoe olefination. Tetrahedron Lett., 2003, 44, 6657-6659.
[http://dx.doi.org/10.1016/S0040-4039(03)01637-X]
[34]
Milne, G.L.; Dai, Q.; Roberts, L.J., II The isoprostanes—25 years later. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2015, 1851(4), 433-445.
[http://dx.doi.org/10.1016/j.bbalip.2014.10.007] [PMID: 25449649]
[35]
Milne, G.L.; Yin, H.; Hardy, K.D.; Davies, S.S.; Roberts, L.J., II Isoprostane generation and function. Chem. Rev., 2011, 111(10), 5973-5996.
[http://dx.doi.org/10.1021/cr200160h] [PMID: 21848345]
[36]
Miller, E.; Morel, A.; Saso, L.; Saluk, J. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxid. Med. Cell. Longev., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/572491] [PMID: 24868314]
[37]
Putman, A.K.; Contreras, G.A.; Sordillo, L.M. Isoprostanes in veterinary medicine: Beyond a biomarker. Antioxidants, 2021, 10(2), 145-160.
[http://dx.doi.org/10.3390/antiox10020145] [PMID: 33498324]
[38]
Zanoni, G.; Porta, A.; Castronovo, F.; Vidari, G. First total synthesis of JS isoprostane. J. Org. Chem., 2003, 68(15), 6005-6010.
[http://dx.doi.org/10.1021/jo034658h] [PMID: 12868940]
[39]
Kanafani, Z.A.; Perfect, J.R. Antimicrobial resistance: Resistance to antifungal agents: Mechanisms and clinical impact. Clin. Infect. Dis., 2008, 46(1), 120-128.
[http://dx.doi.org/10.1086/524071] [PMID: 18171227]
[40]
Trost, B.M.; Shen, H.C.; Surivet, J.P. An enantioselective biomimetic total synthesis of (-)-. Siccanin. Angew. Chem., 2003, 115(33), 4073-4077.
[http://dx.doi.org/10.1002/ange.200351868]
[41]
Karpiński, T.M. Marine macrolides with antibacterial and/or antifungal activity. Mar. Drugs, 2019, 17(4), 241-266.
[http://dx.doi.org/10.3390/md17040241] [PMID: 31018512]
[42]
Evans, D.A.; Connell, B.T. Synthesis of the antifungal macrolide antibiotic (+)-roxaticin. J. Am. Chem. Soc., 2003, 125(36), 10899-10905.
[http://dx.doi.org/10.1021/ja027638q] [PMID: 12952470]
[43]
Zanoni, G.; Porta, A.; Vidari, G. First total synthesis of A(2) isoprostane. J. Org. Chem., 2002, 67(12), 4346-4351.
[http://dx.doi.org/10.1021/jo025652f] [PMID: 12054973]
[44]
Ortiz, A.; Sansinenea, E. Macrolactin antibiotics: Amazing natural products. Mini Rev. Med. Chem., 2020, 20(7), 584-600.
[http://dx.doi.org/10.2174/1389557519666191205124050] [PMID: 31804166]
[45]
Smith, A.B.; Ott, G.R. Total synthesis of (-)-. Macrolactin A. J. Am. Chem. Soc., 1996, 118(51), 13095-13096.
[http://dx.doi.org/10.1021/ja963543a]
[46]
Bharadwaj, K.K.; Sarkar, T.; Ghosh, A.; Baishya, D.; Rabha, B.; Panda, M.K.; Nelson, B.R.; John, A.B.; Sheikh, H.I.; Dash, B.P.; Edinur, H.A.; Pati, S. Macrolactin A as a novel inhibitory agent for SARS-CoV-2 Mpro: Bioinformatics approach. Appl. Biochem. Biotechnol., 2021, 193(10), 3371-3394.
[http://dx.doi.org/10.1007/s12010-021-03608-7] [PMID: 34212286]
[47]
Marino, J.P.; McClure, M.S.; Holub, D.P.; Comasseto, J.V.; Tucci, F.C. Stereocontrolled synthesis of (-)-macrolactin A. J. Am. Chem. Soc., 2002, 124(8), 1664-1668.
[http://dx.doi.org/10.1021/ja017177t] [PMID: 11853441]
[48]
Gustafson, K.; Roman, M.; Fenical, W. The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J. Am. Chem. Soc., 1989, 111(19), 7519-7524.
[http://dx.doi.org/10.1021/ja00201a036]
[49]
Futaki, K.; Takahashi, M.; Tanabe, K.; Fujieda, A.; Kigoshi, H.; Kita, M. Synthesis and biological activities of aplyronine a analogues toward the development of antitumor protein–protein interaction inducers between actin and tubulin: Conjugation of the C1–C9 macrolactone part and the C24–C34 side chain. ACS Omega, 2019, 4(5), 8598-8613.
[http://dx.doi.org/10.1021/acsomega.9b01099] [PMID: 31459949]
[50]
Yamada, K.; Ojika, M.; Kigoshi, H.; Suenaga, K. Aplyronine A, a potent antitumour macrolide of marine origin, and the congeners aplyronines B–H: Chemistry and biology. Nat. Prod. Rep., 2009, 26(1), 27-43.
[http://dx.doi.org/10.1039/B800263K] [PMID: 19374121]
[51]
Kigoshi, H.; Suenaga, K.; Takagi, M.; Akao, A.; Kanematsu, K.; Kamei, N.; Okugawa, Y.; Yamada, K. Cytotoxicity and actin-depolymerizing activity of aplyronine A, a potent antitumor macrolide of marine origin, and its analogs. Tetrahedron, 2002, 58(6), 1075-1102.
[http://dx.doi.org/10.1016/S0040-4020(01)01206-6]
[52]
Markó, I.E.; Murphy, F.; Kumps, L.; Ates, A.; Touillaux, R.; Craig, D.; Carballares, S.; Dolan, S. Efficient preparation of trisubstituted alkenes using the SmI2 modification of the Julia–Lythgoe olefination of ketones and aldehydes. Tetrahedron, 2001, 57(13), 2609-2619.
[http://dx.doi.org/10.1016/S0040-4020(01)00079-5]
[53]
Ihara, M.; Taniguchi, T.; Tokunaga, Y.; Fukumoto, K. Ring contraction of cyclobutanes and a novel cascade reaction: Application to synthesis of (±)-Anthoplalone and (±)-Lepidozene. ChemInform, 2010, 26(35), 1995.
[54]
Daly, M.; Crowley, L.M.; Larson, P.; Rodriguez, E.; Saucier, E.H.; Fautin, D.G. Phylogenetic relationships among the clownfish-hosting sea anemones. Org. Divers. Evol., 2017, 17, 545-564.
[http://dx.doi.org/10.1007/s13127-017-0326-6]
[55]
Zheng, G.C.; Ichikawa, A.; Ishitsuka, M.O.; Kusumi, T.; Yamamoto, H.; Kakisawa, H. Cytotoxic hydroperoxylepidozenes from the actinia Anthopleura pacifica Uchida. J. Org. Chem., 1990, 55(11), 3677-3679.
[http://dx.doi.org/10.1021/jo00298a060]
[56]
Hanessian, S.; Cantin, L.D.; Andreotti, D. Total synthesis and absolute configuration of (-)-. Anthoplalone. J. Org. Chem., 1999, 64(13), 4893-4900.
[http://dx.doi.org/10.1021/jo990302n] [PMID: 11674567]
[57]
Breit, B. Dithioacetals as an entry to titanium-alkylidene chemistry: A new and efficient carbonyl olefination. Angew. Chem. Int. Ed., 1998, 37(4), 453-456.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980302)37:4<453:AID-ANIE453>3.0.CO;2-M] [PMID: 29711178]
[58]
Takadoi, M.; Katoh, T.; Ishiwata, A.; Terashima, S. Synthetic studies of himbacine, a potent antagonist of the muscarinic M2 subtype receptor 1. Stereoselective total synthesis and antagonistic activity of enantiomeric pairs of himbacine and (2'S,6'R)-diepihimbacine, 4-epihimbacine, and novel himbacine congeners. Tetrahedron, 2002, 58(50), 9903-9923.
[http://dx.doi.org/10.1016/S0040-4020(02)01358-3]
[59]
Chackalamannil, S.; Davies, R.J.; Wang, Y.; Asberom, T.; Doller, D.; Wong, J.; Leone, D.; McPhail, A.T. Total synthesis of (+)-Himbacine and. Himbeline. J. Org. Chem., 1999, 64(6), 1932-1940.
[http://dx.doi.org/10.1021/jo981983+] [PMID: 11674285]
[60]
Hart, D.J.; Li, J.; Wu, W.L.; Kozikowski, A.P. Applications of organosulfur chemistry to organic synthesis: Total Synthesis of (+)-Himbeline and. Himbacine. J. Org. Chem., 1997, 62(15), 5023-5033.
[http://dx.doi.org/10.1021/jo970612a]
[61]
Lebreton, J.; Alphand, V.; Furstoss, R. Chemoenzymatic synthesis of marine brown algae pheromones. Tetrahedron, 1997, 53(1), 145-160.
[http://dx.doi.org/10.1016/S0040-4020(96)00976-3]
[62]
Kramp, P.; Helmchen, G.; Holmes, A.B. Syntheses of enantiomerically pure ent-multifidene and related compounds. J. Chem. Soc. Chem. Commun., 1993, 6(6), 551-552.
[http://dx.doi.org/10.1039/c39930000551]
[63]
Umezawa, T.; Hara, M.; Kinoshita-Terauchi, N.; Matsuda, F. Enantioselective total synthesis of multifidene, a sex pheromone of brown algae. Organics, 2022, 3(3), 187-195.
[http://dx.doi.org/10.3390/org3030015]
[64]
Knight, D.W.; Sibley, A.W. Total synthesis of (-)-slaframine from (2R,3S)-3-hydroxyproline. J. Chem. Soc., Perkin Trans. 1, 1997, (15), 2179-2188.
[http://dx.doi.org/10.1039/a701878i]
[65]
Markó, I.E.; Murphy, F.; Dolan, S. Efficient preparation of trisubstituted alkenes using the Julia-Lythgoe olefination of ketones. On the key-role of SmI2 in the reductive elimination step. Tetrahedron Lett., 1996, 37(12), 2089-2092.
[http://dx.doi.org/10.1016/0040-4039(96)00200-6]
[66]
Keck, G.E.; Savin, K.A.; Weglarz, M.A.; Cressman, E.N.K. Synthetic studies on the rhizoxins. II. An approach to the C10 C26 subunit using “substrate directed” allylstannane additions to aldehydes. Tetrahedron Lett., 1996, 37(19), 3291-3294.
[http://dx.doi.org/10.1016/0040-4039(96)00578-3]
[67]
Keck, G.E.; Savin, K.A.; Weglarz, M.A. Use of samarium diiodide as an alternative to sodium/mercury amalgam in the julia-lythgoe olefination. J. Org. Chem., 1995, 60(10), 3194-3204.
[http://dx.doi.org/10.1021/jo00115a041]
[68]
Kirkland, T.A.; Colucci, J.; Geraci, L.S.; Marx, M.A.; Schneider, M.; Kaelin, D.E., Jr; Martin, S.F. Total synthesis of (+)-ambruticin S. J. Am. Chem. Soc., 2001, 123(49), 12432-12433.
[http://dx.doi.org/10.1021/ja011867f] [PMID: 11734054]
[69]
Vetcher, L.; Menzella, H.G.; Kudo, T.; Motoyama, T.; Katz, L. The antifungal polyketide ambruticin targets the HOG pathway. Antimicrob. Agents Chemother., 2007, 51(10), 3734-3736.
[http://dx.doi.org/10.1128/AAC.00369-07] [PMID: 17698623]
[70]
Kende, A.S.; Mendoza, J.S.; Fujii, Y. Total synthesis of natural (+)-ambruticin. Tetrahedron, 1993, 49(36), 8015-8038.
[http://dx.doi.org/10.1016/S0040-4020(01)88025-X]
[71]
Kihara, T.; Kusakabe, H.; Nakamura, G.; Sakurai, T.; Isono, K. Cytovaricin, a novel antibiotic. J. Antibiot., 1981, 34(8), 1073-1074.
[http://dx.doi.org/10.7164/antibiotics.34.1073] [PMID: 7319923]
[72]
Evans, D.A.; Kaldor, S.W.; Jones, T.K.; Clardy, J.; Stout, T.J. Total synthesis of the macrolide antibiotic cytovaricin. J. Am. Chem. Soc., 1990, 112(19), 7001-7031.
[http://dx.doi.org/10.1021/ja00175a038]
[73]
El-Saber Batiha, G.; Alqahtani, A.; Ilesanmi, O.B.; Saati, A.A.; El-Mleeh, A.; Hetta, H.F.; Magdy Beshbishy, A. Avermectin derivatives, pharmacokinetics, therapeutic and toxic dosages, mechanism of action, and their biological effects. Pharmaceuticals, 2020, 13(8), 196-233.
[http://dx.doi.org/10.3390/ph13080196] [PMID: 32824399]
[74]
White, J.D.; Bolton, G.L. Synthesis of avermectin B1a aglycon. J. Am. Chem. Soc., 1990, 112(4), 1626-1628.
[http://dx.doi.org/10.1021/ja00160a051]
[75]
Dyer, U.C.; Robinson, J.A. An efficient route to triene synthons for putative intermediates in polyether antibiotic biosynthesis. J. Chem. Soc., Perkin Trans. 1, 1988, 1(1), 53-60.
[http://dx.doi.org/10.1039/p19880000053]
[76]
White, J.D.; Theramongkol, P.; Kuroda, C.; Engebrecht, J.R. Enantioselective total synthesis of (-)-monic acid C via carbosulfenylation of a dihydropyran. J. Org. Chem., 1988, 53(25), 5909-5921.
[http://dx.doi.org/10.1021/jo00260a020]
[77]
Takiguchi, Y.; Mishima, H.; Okuda, M.; Terao, M.; Aoki, A.; Fukuda, R. Milbemycins, a new family of macrolide antibiotics: Fermentation, isolation and physico-chemical properties. J. Antibiot., 1980, 33(10), 1120-1127.
[http://dx.doi.org/10.7164/antibiotics.33.1120] [PMID: 7451362]
[78]
Barrett, A.G.M.; Carr, R.A.E.; Attwood, S.V.; Richardson, G.; Walshe, N.D.A. Total synthesis of (+)-milbemycin. β.3. J. Org. Chem., 1986, 51(25), 4840-4856.
[http://dx.doi.org/10.1021/jo00375a017]
[79]
Edwards, M.P.; Ley, S.V.; Lister, S.G.; Palmer, B.D.; Williams, D.J. Total synthesis of the ionophore antibiotic X-14547A (Indanomycin). J. Org. Chem., 1984, 49(19), 3503-3516.
[http://dx.doi.org/10.1021/jo00193a014]
[80]
Narasimhulu, M.; Prasad, S.S.; Appa, R.M.; Lakshmidevi, J.; Venkateswarlu, K. Two simple and alternative approaches for the synthesis of anticancer active goniothalamin. ARKIVOC, 2018, 2018(3), 326-337.
[http://dx.doi.org/10.24820/ark.5550190.p010.461]
[81]
Schaufelberger, D.E.; Chmurny, G.N.; Beutler, J.A.; Koleck, M.P.; Alvarado, A.B.; Schaufelberger, B.W.; Muschik, G.M. Revised structure of bryostatin 3 and isolation of the bryostatin 3 26-ketone from Bugula neritina. J. Org. Chem., 1991, 56(8), 2895-2900.
[http://dx.doi.org/10.1021/jo00008a054]
[82]
Ohmori, K. Evolution of synthetic strategies for highly functionalized natural products: A successful route to bryostatin 3. Bull. Chem. Soc. Jpn., 2004, 77(5), 875-885.
[http://dx.doi.org/10.1246/bcsj.77.875]
[83]
Evans, D.A.; Carter, P.H.; Carreira, E.M.; Prunet, J.A.; Charette, A.B.; Lautens, M. Asymmetric synthesis of bryostatin 2. Angew. Chem. Int. Ed., 1998, 37(17), 2354-2359.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980918)37:17<2354:AID-ANIE2354>3.0.CO;2-9] [PMID: 29710955]
[84]
Ly, C.; Shimizu, A.J.; Vargas, M.V.; Duim, W.C.; Wender, P.A.; Olson, D.E. Bryostatin 1 promotes synaptogenesis and reduces dendritic spine density in cortical cultures through a pkc-dependent mechanism. ACS Chem. Neurosci., 2020, 11(11), 1545-1554.
[http://dx.doi.org/10.1021/acschemneuro.0c00175] [PMID: 32437156]
[85]
Evans, D.A.; Carter, P.H.; Carreira, E.M.; Charette, A.B.; Prunet, J.A.; Lautens, M. Total synthesis of bryostatin 2. J. Am. Chem. Soc., 1999, 121(33), 7540-7552.
[http://dx.doi.org/10.1021/ja990860j]
[86]
Lu, Y.; Woo, S.K.; Krische, M.J. Total synthesis of bryostatin 7 via C-C bond-forming hydrogenation. J. Am. Chem. Soc., 2011, 133(35), 13876-13879.
[http://dx.doi.org/10.1021/ja205673e] [PMID: 21780806]
[87]
Kageyama, M.; Tamura, T.; Nantz, M.H.; Roberts, J.C.; Somfai, P.; Whritenour, D.C.; Masamune, S. Synthesis of bryostatin 7. J. Am. Chem. Soc., 1990, 112(20), 7407-7408.
[http://dx.doi.org/10.1021/ja00176a058]
[88]
Krupa, M. Chodyński, M.; Ostaszewska, A.; Cmoch, P.; Dams, I. A novel convergent synthesis of the potent antiglaucoma agent tafluprost. Molecules, 2017, 22(2), 217-232.
[http://dx.doi.org/10.3390/molecules22020217] [PMID: 28146132]
[89]
Schultz, C. Tafluprost for the reduction of interocular pressure in open angle glaucoma and ocular hypertension. Ophthalmol. Eye Dis., 2011, 3, OED.S4253.
[http://dx.doi.org/10.4137/OED.S4253] [PMID: 23861619]
[90]
Jha, A.; Sarkar, R.; Udayan, U.; Roy, P.K.; Jha, A.; Chaudhary, R.K.P. Bimatoprost in dermatology. Indian Dermatol. Online J., 2018, 9(3), 224-228.
[http://dx.doi.org/10.4103/idoj.IDOJ_62_16] [PMID: 29854658]
[91]
Dams, I. Chodyński, M.; Krupa, M.; Pietraszek, A.; Zezula, M.; Cmoch, P.; Kosińska, M.; Kutner, A. A novel convergent synthesis of the antiglaucoma PGF2α analogue bimatoprost. Chirality, 2013, 25(3), 170-179.
[http://dx.doi.org/10.1002/chir.22123] [PMID: 23381781]
[92]
Denis, P.; Covert, D.; Realini, A. Travoprost in the management of open-angle glaucoma and ocular hypertension. Clin. Ophthalmol., 2007, 1(1), 11-24.
[PMID: 19668462]
[93]
Dams, I. Chodyński, M.; Krupa, M.; Pietraszek, A.; Zezula, M.; Cmoch, P.; Kosińska, M.; Kutner, A. A novel convergent synthesis of the potent antiglaucoma agent travoprost. Tetrahedron, 2013, 69(5), 1634-1648.
[http://dx.doi.org/10.1016/j.tet.2012.11.087]
[94]
Pospíšil, J.; Pospíšil, T.; Markó, I.E. Sulfoxides in Julia-Lythgoe olefination: Efficient and stereoselective preparation of di-, tri-, and tetrasubstituted olefins. Org. Lett., 2005, 7(12), 2373-2376.
[http://dx.doi.org/10.1021/ol050649e] [PMID: 15932201]
[95]
Pospíšil, J.; Pospíšil, T.; Markó, I.E. Sulfoxide-modified julia–lythgoe olefination: Highly stereoselective di-, tri-, and tetrasubstituted double bond formation. Collect. Czech. Chem. Commun., 2005, 70(11), 1953-1969.
[http://dx.doi.org/10.1135/cccc20051953]
[96]
Satoh, T.; Hanaki, N.; Yamada, N.; Asano, T. A sulfoxide version of the julia–lythgoe olefination: A new method for the synthesis of olefins from carbonyl compounds and sulfoxides with carbon–carbon coupling. Tetrahedron, 2000, 56(34), 6223-6234.
[http://dx.doi.org/10.1016/S0040-4020(00)00585-8]
[97]
Ren, R.G.; Li, M.; Si, C.M.; Mao, Z.Y.; Wei, B.G. Studies toward asymmetric synthesis of leiodelide A. Tetrahedron Lett., 2014, 55(50), 6903-6906.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.102]
[98]
Satyanarayana, S.; Reddy, B.V.S.; Narender, R. A concise total synthesis of lyngbic acid, hermitamides A and B. Tetrahedron Lett., 2014, 55(44), 6027-6029.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.125]
[99]
Wu, J.Z.; Wang, Z.; Qiao, C. Synthesis of stagonolide C from Mulzer epoxide. Tetrahedron Lett., 2012, 53(9), 1153-1155.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.102]
[100]
Bernard, A.M.; Piras, P.P.; Frongia, A.; Secci, F. A new synthesis of alkylidenecyclopropanes by the julia-lythgoe-type olefination using sulfones and sulfoxides. Synlett, 2004, 6(6), 1064-1068.
[http://dx.doi.org/10.1055/s-2004-822899]
[101]
Asakura, N.; Usuki, Y.; Iio, H.; Tanaka, T. Synthesis and biological evaluation of γ-fluoro-β;γ-unsaturated acids. J. Fluor. Chem., 2006, 127(6), 800-808.
[http://dx.doi.org/10.1016/j.jfluchem.2006.02.016]
[102]
Samala, R.; Sharma, S.; Basu, M.K.; Mukkanti, K.; Porstmann, F. A new metabolite of Paricalcitol: Stereoselective synthesis of (22Z)-isomer of 1α25-dihydroxy-19-norvitamin D2. Tetrahedron Lett., 2016, 57(12), 1309-1312.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.110]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy