Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

The Fate of 1,8-cineole as a Chemical Penetrant: A Review

Author(s): Ligema Dao, Yu Dong, Lin Song and Chula Sa*

Volume 21, Issue 5, 2024

Published on: 15 June, 2023

Page: [697 - 708] Pages: 12

DOI: 10.2174/1567201820666230509101602

Price: $65

Abstract

The stratum corneum continues to pose the biggest obstacle to transdermal drug delivery. Chemical penetrant, the first generation of transdermal drug delivery system, offers a lot of potential. In order to fully examine the permeation mechanism of 1,8-cineole, a natural monoterpene, this review summarizes the effects of permeation-enhancing medications on drugs that are lipophilic and hydrophilic as well as the toxicity of this substance on the skin and other tissues. For lower lipophilic drugs, 1,8-cineole appears to have a stronger osmotic-enhancing impact. An efficient and secure tactic would be to combine enhancers and dose forms. 1,8-cineole is anticipated to be further developed in the transdermal drug delivery system and even become a candidate drug for brain transport due to its permeability and low toxicity.

Keywords: 1, 8-cineole, transdermal drug delivery, blood-brain barrier, penetration enhancer, skin barrier, toxicity.

Graphical Abstract
[1]
Pham, Q.D.; Björklund, S.; Engblom, J.; Topgaard, D.; Sparr, E. Chemical penetration enhancers in stratum corneum — Relation between molecular effects and barrier function. J. Control. Release, 2016, 232, 175-187.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.030] [PMID: 27108613]
[2]
Kopečná, M.; Macháček, M.; Roh, J.; Vávrová, K. Proline, hydroxyproline, and pyrrolidone carboxylic acid derivatives as highly efficient but reversible transdermal permeation enhancers. Sci. Rep., 2022, 12(1), 19495.
[http://dx.doi.org/10.1038/s41598-022-24108-6] [PMID: 36376455]
[3]
Fox, L.T.; Gerber, M.; Plessis, J.D.; Hamman, J.H. Transdermal drug delivery enhancement by compounds of natural origin. Molecules, 2011, 16(12), 10507-10540.
[http://dx.doi.org/10.3390/molecules161210507]
[4]
Barry, B.W. Lipid-Protein-Partitioning theory of skin penetration enhancement. J. Control. Release, 1991, 15(3), 237-248.
[http://dx.doi.org/10.1016/0168-3659(91)90115-T]
[5]
Aqil, M.; Ahad, A.; Sultana, Y.; Ali, A. Status of terpenes as skin penetration enhancers. Drug Discov. Today, 2007, 12(23-24), 1061-1067.
[http://dx.doi.org/10.1016/j.drudis.2007.09.001] [PMID: 18061886]
[6]
Chograni, H.; Riahi, L.; Dhahri, S.; Ezzine, O.; Chakroun, H.; Messaoud, C. Interspecific variability of 1,8-cineole content, phenolics and bioactivity among nine Eucalyptus taxa growing under the sub-humid bioclimate stage. J. Complement. Integr. Med., 2020, 0(0), 1-11.
[http://dx.doi.org/10.1515/jcim-2019-0159] [PMID: 32229694]
[7]
Tankeu, S.; Vermaak, I.; Kamatou, G.; Viljoen, A. Vibrational spectroscopy as a rapid quality control method for Melaleuca alternifolia cheel (tea tree oil). Phytochem. Anal., 2014, 25(1), 81-88.
[http://dx.doi.org/10.1002/pca.2470] [PMID: 23934710]
[8]
da Silva Bomfim, N.; Kohiyama, C.Y.; Nakasugi, L.P.; Nerilo, S.B.; Mossini, S.A.G.; Romoli, J.C.Z.; Graton Mikcha, J.M.; Abreu Filho, B.A.; Machinski, M. Jr Antifungal and antiaflatoxigenic activity of rosemary essential oil (Rosmarinus officinalis L.) against Aspergillus flavus. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2020, 37(1), 153-161.
[http://dx.doi.org/10.1080/19440049.2019.1678771] [PMID: 31644378]
[9]
Tirawanchai, N.; Kengkoom, K.; Isarangkul, D.; Burana-osot, J.; Kanjanapruthipong, T.; Chantip, S.; Phattanawasin, P.; Sotanaphun, U.; Ampawong, S. A combination extract of kaffir lime, galangal, and lemongrass maintains blood lipid profiles, hepatocytes, and liver mitochondria in rats with nonalcoholic steatohepatitis. Biomed. Pharmacother., 2020, 124, 109843.
[http://dx.doi.org/10.1016/j.biopha.2020.109843] [PMID: 31978768]
[10]
Zhang, Y.; Long, Y.; Yu, S.; Li, D.; Yang, M.; Guan, Y.; Zhang, D.; Wan, J.; Liu, S.; Shi, A.; Li, N.; Peng, W. Natural volatile oils derived from herbal medicines: A promising therapy way for treating depressive disorder. Pharmacol. Res., 2021, 164, 105376.
[http://dx.doi.org/10.1016/j.phrs.2020.105376] [PMID: 33316383]
[11]
Sa, C.; Liu, J.; Dong, Y.; Jiang, L.; Gentana, G.; Wurita, A. Quantification of eucalyptol (1,8-cineole) in rat serum by gas chromatography–mass/mass spectrometry and its application to a rat pharmacokinetic study. Biomed. Chromatogr., 2021, 35(6), e5080.
[http://dx.doi.org/10.1002/bmc.5080] [PMID: 33527438]
[12]
Baroni, A.; Buommino, E.; De Gregorio, V.; Ruocco, E.; Ruocco, V.; Wolf, R. Structure and function of the epidermis related to barrier properties. Clin. Dermatol., 2012, 30(3), 257-262.
[http://dx.doi.org/10.1016/j.clindermatol.2011.08.007] [PMID: 22507037]
[13]
Woo, W.; Xu, C.; Wang, Z. Imaging technologies and transdermal delivery in skin disorders. 1st ed.,; Wiley & Sons: Hoboken, New Jerry, 2019.
[14]
Candi, E.; Schmidt, R.; Melino, G. The cornified envelope: A model of cell death in the skin. Nat. Rev. Mol. Cell Biol., 2005, 6(4), 328-340.
[http://dx.doi.org/10.1038/nrm1619] [PMID: 15803139]
[15]
Wertz, P.W. Lipids and the permeability and antimicrobial barriers of the skin. J. Lipids, 2018, 2018, 1-7.
[http://dx.doi.org/10.1155/2018/5954034] [PMID: 30245886]
[16]
Zhao, X.; Chen, Q.; Lu, T.; Wei, F.; Yang, Y.; Xie, D.; Wang, H.; Tian, M. Chemical composition, antibacterial, anti-inflammatory, and enzyme inhibitory activities of essential oil from Rhynchanthus beesianus rhizome. Molecules, 2020, 26(1), 167.
[http://dx.doi.org/10.3390/molecules26010167] [PMID: 33396533]
[17]
Li, Q.; Zhang, L.L.; Xu, J.G. Antioxidant, DNA damage protective, antibacterial activities and nitrite scavenging ability of essential oil of Amomum kravanh from China. Nat. Prod. Res., 2021, 35(23), 5415-5419.
[http://dx.doi.org/10.1080/14786419.2020.1775225] [PMID: 32662302]
[18]
de Albuquerque Lima, T.; de Queiroz Baptista, N.M.; de Oliveira, A.P.S.; da Silva, P.A.; de Gusmão, N.B.; dos Santos Correia, M.T.; Napoleão, T.H.; da Silva, M.V.; Paiva, P.M.G. Insecticidal activity of a chemotype VI essential oil from Lippia alba leaves collected at Caatinga and the major compound (1,8-cineole) against Nasutitermes corniger and Sitophilus zeamais. Pestic. Biochem. Physiol., 2021, 177, 104901.
[http://dx.doi.org/10.1016/j.pestbp.2021.104901] [PMID: 34301362]
[19]
Limam, H.; Ben Jemaa, M.; Tammar, S.; Ksibi, N.; Khammassi, S.; Jallouli, S.; Del Re, G.; Msaada, K. Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Ind. Crops Prod., 2020, 158, 112964.
[http://dx.doi.org/10.1016/j.indcrop.2020.112964]
[20]
Ndiaye, E.H.B.; Diop, M.B.; Gueye, M.T.; Ndiaye, I.; Diop, S.M.; Fauconnier, M.L.; Lognay, G. Characterization of essential oils and hydrosols from senegalese Eucalyptus camaldulensis Dehnh. J. Essent. Oil Res., 2018, 30(2), 131-141.
[http://dx.doi.org/10.1080/10412905.2017.1420554]
[21]
Zhou, S.; Wei, C.; Zhang, C.; Han, C.; Kuchkarova, N.; Shao, H. Chemical composition, phytotoxic, antimicrobial and insecticidal activity of the essential oils of Dracocephalum integrifolium. Toxins, 2019, 11(10), 598.
[http://dx.doi.org/10.3390/toxins11100598] [PMID: 31614937]
[22]
Aldoghaim, F.; Flematti, G.; Hammer, K. Antimicrobial activity of several cineole-rich western australian Eucalyptus essential oils. Microorganisms, 2018, 6(4), 122.
[http://dx.doi.org/10.3390/microorganisms6040122] [PMID: 30513933]
[23]
Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol., 2019, 229, 29-45.
[http://dx.doi.org/10.1016/j.jep.2018.09.038] [PMID: 30287195]
[24]
Abdullah, F.; Subramanian, P.; Ibrahim, H.; Abdul Malek, S.N.; Lee, G.S.; Hong, S.L. Chemical composition, antifeedant, repellent, and toxicity activities of the rhizomes of galangal, Alpinia galanga against Asian subterranean termites, Coptotermes gestroi and Coptotermes curvignathus (Isoptera: Rhinotermitidae). J. Insect Sci., 2015, 15(1), 7.
[http://dx.doi.org/10.1093/jisesa/ieu175] [PMID: 25688085]
[25]
Juergens, L.J.; Tuleta, I.; Stoeber, M.; Racké, K.; Juergens, U.R. Regulation of monocyte redox balance by 1,8-cineole (eucalyptol) controls oxidative stress and pro-inflammatory responses in vitro: A new option to increase the antioxidant effects of combined respiratory therapy with budesonide and formoterol? Synergy, 2018, 7, 1-9.
[http://dx.doi.org/10.1016/j.synres.2018.05.001]
[26]
Alatawi, K.A.; Ravishankar, D.; Patra, P.H.; Bye, A.P.; Stainer, A.R.; Patel, K.; Widera, D.; Vaiyapuri, S. 1,8-Cineole affects agonists-induced platelet activation, thrombus formation and haemostasis. Cells, 2021, 10(10), 2616.
[http://dx.doi.org/10.3390/cells10102616] [PMID: 34685597]
[27]
Yin, C.; Liu, B.; Wang, P.; Li, X.; Li, Y.; Zheng, X.; Tai, Y.; Wang, C.; Liu, B. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br. J. Pharmacol., 2020, 177(9), 2042-2057.
[http://dx.doi.org/10.1111/bph.14967] [PMID: 31883118]
[28]
Karuppiah, V.; Thirunanasambandham, R.; Thangaraj, G. Anti-quorum sensing and antibiofilm potential of 1,8-cineole derived from Musa paradisiaca against Pseudomonas aeruginosa strain PAO1. World J. Microbiol. Biotechnol., 2021, 37(4), 66.
[http://dx.doi.org/10.1007/s11274-021-03029-y] [PMID: 33740144]
[29]
Wang, Y.; Zhen, D.; Fu, D.; Fu, Y.; Zhang, X.; Gong, G.; Wei, C. 1, 8-cineole attenuates cardiac hypertrophy in heart failure by inhibiting the miR-206-3p/SERP1 pathway. Phytomedicine, 2021, 91, 153672.
[http://dx.doi.org/10.1016/j.phymed.2021.153672] [PMID: 34385094]
[30]
Rodenak-Kladniew, B.; Castro, A.; Stärkel, P.; Galle, M.; Crespo, R. 1,8-cineole promotes G0/G1 cell cycle arrest and oxidative stress-induced senescence in HepG2 cells and sensitizes cells to anti-senescence drugs. Life Sci., 2020, 243, 117271.
[http://dx.doi.org/10.1016/j.lfs.2020.117271] [PMID: 31926243]
[31]
Sobreira Dantas Nóbrega de Figuêiredo, F.R.; Monteiro, A.B.; Alencar de Menezes, I.R.; Sales, V.D.S.; Petícia do Nascimento, E.; Kelly de Souza Rodrigues, C.; Bitu Primo, A.J.; Paulo da Cruz, L.; do Nascimento Amaro, E.; de Araújo Delmondes, G.; Leite de Oliveira Sobreira Nóbrega, J.P.; Pereira Lopes, M.J.; Martins da Costa, J.G.; Bezerra Felipe, C.F.; Kerntopf, M.R. Effects of the Hyptis martiusii Benth. leaf essential oil and 1,8-cineole (eucalyptol) on the central nervous system of mice. Food Chem. Toxicol., 2019, 133, 110802.
[32]
Zhang, Y.; Liu, Y.; Li, Q.; Wang, X.; Zheng, X.; Yang, B.; Wan, B.; Ma, J.; Liu, Z. 1,8-cineole decreases neuropathic pain probably via a mechanism mediating P2X3 receptor in the dorsal root ganglion. Neurochem. Int., 2018, 121, 69-74.
[http://dx.doi.org/10.1016/j.neuint.2018.09.007] [PMID: 30248433]
[33]
Hoseini, S.M.; Rajabiesterabadi, H.; Khalili, M.; Yousefi, M.; Hoseinifar, S.H.; Van Doan, H. Antioxidant and immune responses of common carp (Cyprinus carpio) anesthetized by cineole: Effects of anesthetic concentration. Aquaculture, 2020, 520, 734680.
[http://dx.doi.org/10.1016/j.aquaculture.2019.734680]
[34]
Sampath, S.; Subramani, S.; Janardhanam, S.; Subramani, P.; Yuvaraj, A.; Chellan, R. Bioactive compound 1,8-cineole selectively induces G2/M arrest in A431 cells through the upregulation of the p53 signaling pathway and molecular docking studies. Phytomedicine, 2018, 46, 57-68.
[http://dx.doi.org/10.1016/j.phymed.2018.04.007] [PMID: 30097123]
[35]
Cariri, M.L.; de Melo, A.N.F.; Mizzi, L.; Ritter, A.C.; Tondo, E.; de Souza, E.L.; Valdramidis, V.; Magnani, M. Quantitative assessment of tolerance response to stress after exposure to oregano and rosemary essential oils, carvacrol and 1,8-cineole in salmonella enteritidis 86 and its isogenic deletion mutants ∆dps, ∆rpoS and ∆ompR. Food Res. Int., 2019, 122, 679-687.
[http://dx.doi.org/10.1016/j.foodres.2019.01.046] [PMID: 31229127]
[36]
Pereira-Gonçalves, A.; Ferreira-da-Silva, F.W.; de Holanda-Angelin-Alves, C.M.; Cardoso-Teixeira, A.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H. 1,8-Cineole blocks voltage-gated L-type calcium channels in tracheal smooth muscle. J. Physiol., 2018, 470, 1803-1813.
[37]
Taheri Mirghaed, A.; Fayaz, S.; Hoseini, S.M. Effects of dietary 1,8-cineole supplementation on serum stress and antioxidant markers of common carp (Cyprinus carpio) acutely exposed to ambient ammonia. Aquaculture, 2019, 509, 8-15.
[http://dx.doi.org/10.1016/j.aquaculture.2019.04.071]
[38]
Guillard, E.C.; Tfayli, A.; Laugel, C.; Baillet-Guffroy, A. Molecular interactions of penetration enhancers within ceramides organization: A FTIR approach. Eur. J. Pharm. Sci., 2009, 36(2-3), 192-199.
[http://dx.doi.org/10.1016/j.ejps.2008.10.010] [PMID: 19022378]
[39]
Badhe, Y.; Gupta, R.; Rai, B. Structural and barrier properties of the skin ceramide lipid bilayer: A molecular dynamics simulation study. J. Mol. Model., 2019, 25(5), 140.
[http://dx.doi.org/10.1007/s00894-019-4008-5] [PMID: 31041534]
[40]
Islam, M.R.; Uddin, S.; Chowdhury, M.R.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Insulin transdermal delivery system for diabetes treatment using a biocompatible ionic liquid-based microemulsion. ACS Appl. Mater. Interfaces, 2021, 13(36), 42461-42472.
[http://dx.doi.org/10.1021/acsami.1c11533] [PMID: 34460218]
[41]
Changez, M.; Chander, J.; Dinda, A.K. Transdermal permeation of tetracaine hydrochloride by lecithin microemulsion: In vivo. Colloids Surf. B Biointerfaces, 2006, 48(1), 58-66.
[http://dx.doi.org/10.1016/j.colsurfb.2006.01.007] [PMID: 16497490]
[42]
Changez, M.; Varshney, M.; Chander, J.; Dinda, A.K. Effect of the composition of lecithin/n-propanol/isopropyl myristate/water microemulsions on barrier properties of mice skin for transdermal permeation of tetracaine hydrochloride: In vitro. Colloids Surf. B Biointerfaces, 2006, 50(1), 18-25.
[http://dx.doi.org/10.1016/j.colsurfb.2006.03.018] [PMID: 16690263]
[43]
Limcharoen, B.; Toprangkobsin, P.; Banlunara, W.; Wanichwecharungruang, S.; Richter, H.; Lademann, J.; Patzelt, A. Increasing the percutaneous absorption and follicular penetration of retinal by topical application of proretinal nanoparticles. Eur. J. Pharm. Biopharm., 2019, 139, 93-100.
[http://dx.doi.org/10.1016/j.ejpb.2019.03.014] [PMID: 30878519]
[44]
Finnin, B.C.; Morgan, T.M. Transdermal penetration enhancers: Applications, limitations, and potential. J. Pharm. Sci., 1999, 88(10), 955-958.
[http://dx.doi.org/10.1021/js990154g] [PMID: 10514338]
[45]
Williams, A.C.; Barry, B.W. Terpenes and the lipid-protein-partitioning theory of skin penetration enhancement. Pharm. Res., 1991, 8(1), 17-24.
[http://dx.doi.org/10.1023/A:1015813803205] [PMID: 2014203]
[46]
Yamane, M.A.; Williams, A.C.; Barry, B.W. Terpene penetration enhancers in propylene glycol/water co-solvent systems: Effectiveness and mechanism of action. J. Pharm. Pharmacol., 2011, 47(12A), 978-989.
[http://dx.doi.org/10.1111/j.2042-7158.1995.tb03282.x] [PMID: 8932680]
[47]
Yamane, M.A.; Williams, A.C.; Barry, B.W. Effects of terpenes and oleic acid as skin penetration enhancers towards 5-fluorouracil as assessed with time; permeation, partitioning and differential scanning calorimetry. Int. J. Pharm., 1995, 116(2), 237-251.
[http://dx.doi.org/10.1016/0378-5173(94)00312-S]
[48]
Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M.; Ali, A. Role of novel terpenes in transcutaneous permeation of valsartan: Effectiveness and mechanism of action. Drug Dev. Ind. Pharm., 2011, 37(5), 583-596.
[http://dx.doi.org/10.3109/03639045.2010.532219] [PMID: 21469947]
[49]
Goh, C.F.; Hadgraft, J.; Lane, M.E. Thermal analysis of mammalian stratum corneum using differential scanning calorimetry for advancing skin research and drug delivery. Int. J. Pharm., 2022, 614, 121447.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121447] [PMID: 34998922]
[50]
Narishetty, S.T.K.; Panchagnula, R. Effect of l-menthol and 1,8-cineole on phase behavior and molecular organization of SC lipids and skin permeation of zidovudine. J. Control. Release, 2005, 102(1), 59-70.
[http://dx.doi.org/10.1016/j.jconrel.2004.09.016] [PMID: 15653134]
[51]
Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M.; Ali, A. Interactions between novel terpenes and main components of rat and human skin: Mechanistic view for transdermal delivery of propranolol hydrochloride. Curr. Drug Deliv., 2011, 8(2), 213-224.
[http://dx.doi.org/10.2174/156720111794479907] [PMID: 21235472]
[52]
Cornwell, P.A.; Barry, B.W.; Bouwstra, J.A.; Gooris, G.S. Modes of action of terpene penetration enhancers in human skin; Differential scanning calorimetry, small-angle X-ray diffraction and enhancer uptake studies. Int. J. Pharm., 1996, 127(1), 9-26.
[http://dx.doi.org/10.1016/0378-5173(95)04108-7]
[53]
Khurana, S.; Jain, N.K.; Bedi, P.M.S. Nanoemulsion based gel for transdermal delivery of meloxicam: Physico-chemical, mechanistic investigation. Life Sci., 2013, 92(6-7), 383-392.
[http://dx.doi.org/10.1016/j.lfs.2013.01.005] [PMID: 23353874]
[54]
Babita, K.; Kumar, V.; Rana, V.; Jain, S.; Tiwary, A. Thermotropic and spectroscopic behavior of skin: Relationship with percutaneous permeation enhancement. Curr. Drug Deliv., 2006, 3(1), 95-113.
[http://dx.doi.org/10.2174/156720106775197466] [PMID: 16472099]
[55]
Krishnaiah, Y.S.R.; Satyanarayana, V.; Karthikeyan, R.S. Penetration enhancing effect of menthol on the percutaneous flux of nicardipine hydrochloride through excised rat epidermis from hydroxypropyl cellulose gels. Pharm. Dev. Technol., 2002, 7(3), 305-315.
[http://dx.doi.org/10.1081/PDT-120005727] [PMID: 12229262]
[56]
Anjos, J.; Neto, D.; Alonso, A. Effects of 1,8-cineole on the dynamics of lipids and proteins of stratum corneum. Int. J. Pharm., 2007, 345(1-2), 81-87.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.041] [PMID: 17600646]
[57]
Karande, P.; Jain, A.; Ergun, K.; Kispersky, V.; Mitragotri, S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc. Natl. Acad. Sci., 2005, 102(13), 4688-4693.
[http://dx.doi.org/10.1073/pnas.0501176102] [PMID: 15774584]
[58]
Naik, A.; Pechtold, L.A.R.M.; Potts, R.O.; Guy, R.H. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J. Control. Release, 1995, 37(3), 299-306.
[http://dx.doi.org/10.1016/0168-3659(95)00088-7]
[59]
Ruela, A.L.M.; Perissinato, A.G.; Lino, M.E.S.; Mudrik, P.S.; Pereira, G.R. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz. J. Pharm. Sci., 2016, 52(3), 527-544.
[http://dx.doi.org/10.1590/s1984-82502016000300018]
[60]
Marjukka Suhonen, T.; Bouwstra, J.A.; Urtti, A. Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alterations. J. Control. Release, 1999, 59(2), 149-161.
[http://dx.doi.org/10.1016/S0168-3659(98)00187-4] [PMID: 10332050]
[61]
Vaddi, H.K.; Ho, P.C.; Chan, S.Y. Terpenes in propylene glycol as skin-penetration enhancers: Permeation and partition of haloperidol, fourier transform infrared spectroscopy, and differential scanning calorimetry. J. Pharm. Sci., 2002, 91(7), 1639-1651.
[http://dx.doi.org/10.1002/jps.10160] [PMID: 12115825]
[62]
Zhu, X.; Li, Y.; Xu, F.; Gu, W.; Yan, G.; Dong, J.; Chen, J. Skin electrical resistance measurement of oxygen-containing terpenes as penetration enhancers: Role of stratum corneum lipids. Molecules, 2019, 24(3), 523.
[http://dx.doi.org/10.3390/molecules24030523] [PMID: 30709044]
[63]
Narishetty, S.T.K.; Panchagnula, R. Transdermal delivery of zidovudine: Effect of terpenes and their mechanism of action. J. Control. Release, 2004, 95(3), 367-379.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.022] [PMID: 15023449]
[64]
Jain, A.; Thomas, N.S.; Panchagnula, R. Transdermal drug delivery of imipramine hydrochloride. I. effect of terpenes. J. Control. Release, 2002, 79(1-3), 93-101.
[http://dx.doi.org/10.1016/S0168-3659(01)00524-7] [PMID: 11853921]
[65]
Zhengguang, L.; Jie, H.; Yong, Z.; Jiaojiao, C.; Xingqi, W.; Xiaoqin, C. Study on the transdermal penetration mechanism of ibuprofen nanoemulsions. Drug Dev. Ind. Pharm., 2019, 45(3), 465-473.
[http://dx.doi.org/10.1080/03639045.2018.1546317] [PMID: 30444443]
[66]
Cornwell, P.A.; Barry, B.W. The routes of penetration of ions and 5-fluorouracil across human skin and the mechanisms of action of terpene skin penetration enhancers. Int. J. Pharm., 1993, 94(1-3), 189-194.
[http://dx.doi.org/10.1016/0378-5173(93)90023-9]
[67]
Abd, E.; Benson, H.A.E.; Mohammed, Y.H.; Roberts, M.S.; Grice, J.E. Permeation mechanism of caffeine and naproxen through in vitro human epidermis: Effect of vehicles and penetration enhancers. Skin Pharmacol. Physiol., 2019, 32(3), 132-141.
[http://dx.doi.org/10.1159/000497225] [PMID: 30909278]
[68]
Yuan, X.; Capomacchia, A.C. Physicochemical studies of binary eutectic of ibuprofen and ketoprofen for enhanced transdermal drug delivery. Drug Dev. Ind. Pharm., 2010, 36(10), 1168-1176.
[http://dx.doi.org/10.3109/03639041003695071] [PMID: 20367290]
[69]
Stott, P.; Williams, A.C.; Barry, B.W. Transdermal delivery from eutectic systems: Enhanced permeation of a model drug, ibuprofen. J. Control. Release, 1998, 50(1-3), 297-308.
[http://dx.doi.org/10.1016/S0168-3659(97)00153-3] [PMID: 9685897]
[70]
Subongkot, T.; Duangjit, S.; Rojanarata, T.; Opanasopit, P.; Ngawhirunpat, T. Ultradeformable liposomes with terpenes for delivery of hydrophilic compound. J. Liposome Res., 2012, 22(3), 254-262.
[http://dx.doi.org/10.3109/08982104.2012.690158] [PMID: 22663352]
[71]
Serna-Jiménez, C.E.; del Rio-Sancho, S.; Calatayud-Pascual, M.A.; Balaguer-Fernández, C.; Femenía-Font, A.; López-Castellano, A.; Merino, V. Development of antimigraine transdermal delivery systems of pizotifen malate. Int. J. Pharm., 2015, 492, 223-232.
[72]
Rastogi, R.; Anand, S.; Dinda, A.K.; Koul, V. Investigation on the synergistic effect of a combination of chemical enhancers and modulated iontophoresis for transdermal delivery of insulin. Drug Dev. Ind. Pharm., 2010, 36(8), 993-1004.
[http://dx.doi.org/10.3109/03639041003682012] [PMID: 20334541]
[73]
Femenía-Font, A.; Balaguer-Fernández, C.; Merino, V.; Rodilla, V.; López-Castellano, A. Effect of chemical enhancers on the in vitro percutaneous absorption of sumatriptan succinate. Eur. J. Pharm. Biopharm., 2005, 61(1-2), 50-55.
[http://dx.doi.org/10.1016/j.ejpb.2005.02.014]
[74]
Casey, A.L.; Karpanen, T.J.; Conway, B.R.; Worthington, T.; Nightingale, P.; Waters, R.; Elliott, T.S.J. Enhanced chlorhexidine skin penetration with 1,8-cineole. BMC Infect. Dis., 2017, 17(1), 350.
[http://dx.doi.org/10.1186/s12879-017-2451-4] [PMID: 28514947]
[75]
Ho, S.; Calder, R.J.; Thomas, C.P.; Heard, C.M. In-vitro transcutaneous delivery of tamoxifen and γ-linolenic acid from borage oil containing ethanol and 1,8-cineole. J. Pharm. Pharmacol., 2010, 56(11), 1357-1364.
[http://dx.doi.org/10.1211/0022357044599] [PMID: 15525441]
[76]
Thomas, C.P.; Heard, C.M. In vitro transcutaneous delivery of ketoprofen and essential polyunsaturated fatty acids from a fish oil vehicle incorporating 1,8-cineole. Drug Deliv., 2004, 12(1), 7-14.
[http://dx.doi.org/10.1080/10717540590889565] [PMID: 15801715]
[77]
Furuishi, T.; Kato, Y.; Fukami, T.; Suzuki, T.; Endo, T.; Nagase, H.; Ueda, H.; Tomono, K. Effect of terpenes on the skin permeation of lomerizine dihydrochloride. J. Pharm. Pharm. Sci., 2013, 16(4), 551-563.
[http://dx.doi.org/10.18433/J36890] [PMID: 24210063]
[78]
Heard, C.M.; Kung, D.; Thomas, C.P. Skin penetration enhancement of mefenamic acid by ethanol and 1,8-cineole can be explained by the ‘pull’ effect. Int. J. Pharm., 2006, 321(1-2), 167-170.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.018] [PMID: 16787720]
[79]
Callender, S.P.; Mathews, J.A.; Kobernyk, K.; Wettig, S.D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int. J. Pharm., 2017, 526(1-2), 425-442.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.005] [PMID: 28495500]
[80]
Nastiti, C.; Ponto, T.; Abd, E.; Grice, J.; Benson, H.; Roberts, M. Topical nano and microemulsions for skin delivery. Pharmaceutics, 2017, 9(4), 37.
[http://dx.doi.org/10.3390/pharmaceutics9040037] [PMID: 28934172]
[81]
Carvalho, A.L.M.; Silva, J.A.; Lira, A.A.M.; Almeida, E.D.P.; Nunes, R.S.; Sarmento, V.H.V.; Veras, L.M.C.; de Almeida Leite, J.R.; Leal, L.B.; de Santana, D.P. Third-generation transdermal delivery systems containing zidovudine: Effect of the combination of different chemical enhancers and a microemulsion system. AAPS PharmSciTech, 2018, 19(7), 3219-3227.
[http://dx.doi.org/10.1208/s12249-018-1160-7] [PMID: 30187445]
[82]
Padula, C.; Nicoli, S.; Santi, P. Innovative formulations for the delivery of levothyroxine to the skin. Int. J. Pharm., 2009, 372(1-2), 12-16.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.028] [PMID: 19162148]
[83]
Shi, J.; Cong, W.; Wang, Y.; Liu, Q.; Luo, G. Microemulsion-based patch for transdermal delivery of huperzine A and ligustrazine phosphate in treatment of Alzheimer’s disease. Drug Dev. Ind. Pharm., 2012, 38(6), 752-761.
[http://dx.doi.org/10.3109/03639045.2011.625031] [PMID: 22014311]
[84]
Rehman, K.; Zulfakar, M.H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm., 2014, 40(4), 433-440.
[http://dx.doi.org/10.3109/03639045.2013.828219] [PMID: 23937582]
[85]
Ahad, A.; Aqil, M.; Ali, A. Investigation of antihypertensive activity of carbopol valsartan transdermal gel containing 1,8-cineole. Int. J. Biol. Macromol., 2014, 64, 144-149.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.11.018] [PMID: 24296403]
[86]
Parhi, R. Development and optimization of pluronic® F127 and HPMC based thermosensitive gel for the skin delivery of metoprolol succinate. J. Drug Deliv. Sci. Technol., 2016, 36, 23-33.
[http://dx.doi.org/10.1016/j.jddst.2016.09.004]
[87]
Elgorashi, A.S.; Heard, C.M.; Niazy, E.M.; Noureldin, O.H.; Pugh, W.J. Transdermal delivery enhancement of haloperidol from gel formulations by 1,8-cineole. J. Pharm. Pharmacol., 2010, 60(6), 689-692.
[http://dx.doi.org/10.1211/jpp.60.6.0002] [PMID: 18498703]
[88]
Dong, J.; Zhu, X.; Wu, F.; Yang, B.; Feng, H.; Dong, Y.; Gu, W.; Chen, J. Development of galangal essential oil-based microemulsion gel for transdermal delivery of flurbiprofen: Simultaneous permeability evaluation of flurbiprofen and 1,8-cineole. Drug Dev. Ind. Pharm., 2020, 46(1), 91-100.
[http://dx.doi.org/10.1080/03639045.2019.1706548] [PMID: 31878816]
[89]
Farias, E.A.O.; Dionisio, N.A.; Quelemes, P.V.; Leal, S.H.; Matos, J.M.E.; Filho, E.C.S.; Bechtold, I.H.; Leite, J.R.S.A.; Eiras, C. Development and characterization of multilayer films of polyaniline, titanium dioxide and CTAB for potential antimicrobial applications. Mater. Sci. Eng. C, 2014, 35, 449-454.
[http://dx.doi.org/10.1016/j.msec.2013.11.002] [PMID: 24411400]
[90]
Karki, S.; Kim, H.; Na, S.J.; Shin, D.; Jo, K.; Lee, J. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci., 2016, 11(5), 559-574.
[http://dx.doi.org/10.1016/j.ajps.2016.05.004]
[91]
Parhi, R.; Suresh, P. Transdermal delivery of Diltiazem HCl from matrix film: Effect of penetration enhancers and study of antihypertensive activity in rabbit model. J. Adv. Res., 2016, 7(3), 539-550.
[http://dx.doi.org/10.1016/j.jare.2015.09.001] [PMID: 27222758]
[92]
Parhi, R.; Panchamukhi, T. RSM-based design and optimization of transdermal film of ondansetron HCl. J. Pharm. Innov., 2020, 15(1), 94-109.
[http://dx.doi.org/10.1007/s12247-019-09373-9]
[93]
Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater., 2016, 28(22), 4203-4218.
[http://dx.doi.org/10.1002/adma.201504150] [PMID: 26779680]
[94]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[95]
Mendanha, S.A.; Moura, S.S.; Anjos, J.L.V.; Valadares, M.C.; Alonso, A. Toxicity of terpenes on fibroblast cells compared to their hemolytic potential and increase in erythrocyte membrane fluidity. Toxicol. In Vitro, 2013, 27(1), 323-329.
[http://dx.doi.org/10.1016/j.tiv.2012.08.022] [PMID: 22944593]
[96]
Xu, J.; Hu, Z.Q.; Wang, C.; Yin, Z.Q.; Wei, Q.; Zhou, L.J.; Li, L.; Du, Y.H.; Jia, R.Y.; Li, M.; Fan, Q.J.; Liang, X.X.; He, C.L.; Yin, L.Z. Acute and subacute toxicity study of 1,8-cineole in mice. Int. J. Clin. Exp. Pathol., 2014, 7(4), 1495-1501.
[PMID: 24817945]
[97]
Caldas, G.F.R.; Limeira, M.M.F.; Araújo, A.V.; Albuquerque, G.S.; Silva-Neto, J.C.; Silva, T.G.; Costa-Silva, J.H.; Menezes, I.R.A.; Costa, J.G.M.; Wanderley, A.G. Repeated-doses and reproductive toxicity studies of the monoterpene 1,8-cineole (eucalyptol) in Wistar rats. Food Chem. Toxicol., 2016, 97, 297-306.
[http://dx.doi.org/10.1016/j.fct.2016.09.020] [PMID: 27644596]
[98]
Skálová, L.; Ambrož, M.; Boušová, I.; Zárybnický, T. Hepatotoxicity of monoterpenes and sesquiterpenes. Arch. Toxicol., 2017, 92, 1-13.
[99]
Ciftci, O.; Ozdemir, I.; Tanyildizi, S.; Yildiz, S.; Oguzturk, H. Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo- p -dioxin-induced oxidative stress in rats liver. Toxicol. Ind. Health, 2011, 27(5), 447-453.
[http://dx.doi.org/10.1177/0748233710388452] [PMID: 21245202]
[100]
Abdallah, H.M.I.; Abdel-Rahman, R.F.; El Awdan, S.A.; Allam, R.M.; El-Mosallamy, A.E.M.K.; Selim, M.S.; Mohamed, S.S.; Arbid, M.S.; Farrag, A.R.H. Protective effect of some natural products against chemotherapy-induced toxicity in rats. Heliyon, 2019, 5(5), e01590.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01590] [PMID: 31080906]
[101]
Jiang, Z.; Guo, X.; Zhang, K.; Sekaran, G.; Cao, B.; Zhao, Q.; Zhang, S.; Kirby, G.M.; Zhang, X. The essential oils and eucalyptol from Artemisia vulgaris L. prevent acetaminophen-induced liver injury by activating Nrf2–Keap1 and enhancing APAP clearance through non-toxic metabolic pathway. Front. Pharmacol., 2019, 10, 782.
[http://dx.doi.org/10.3389/fphar.2019.00782] [PMID: 31404264]
[102]
Zoral, M.A.; Ishikawa, Y.; Ohshima, T.; Futami, K.; Endo, M.; Maita, M.; Katagiri, T. Toxicological effects and pharmacokinetics of rosemary (Rosmarinus officinalis) extract in common carp (Cyprinus carpio). Aquaculture, 2018, 495, 955-960.
[http://dx.doi.org/10.1016/j.aquaculture.2018.06.048]
[103]
Pulgar, V.M. Transcytosis to cross the blood brain barrier, New advancements and challenges. Front. Neurosci., 2019, 12, 1019.
[http://dx.doi.org/10.3389/fnins.2018.01019] [PMID: 30686985]
[104]
He, H.; Yao, J.; Zhang, Y.; Chen, Y.; Wang, K.; Lee, R.J.; Yu, B.; Zhang, X. Solid lipid nanoparticles as a drug delivery system to across the blood-brain barrier. Biochem. Biophys. Res. Commun., 2019, 519(2), 385-390.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.017] [PMID: 31519326]
[105]
Satou, T.; Hayakawa, M.; Kasuya, H.; Masuo, Y.; Koike, K. Mouse brain concentrations of α-pinene, limonene, linalool, and 1,8-cineole following inhalation. Flavour Fragrance J., 2017, 32(1), 36-39.
[http://dx.doi.org/10.1002/ffj.3342]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy