Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Mesalamine may be a Plausible Therapeutic Agent for the Management of Diabetic Wounds: A Computational Approach

Author(s): Jayrajsinh Jadeja, Priya Kakasaniya, Jaydip Asodariya, Vidyasrilekha Yele* and Bharat Kumar Reddy Sanapalli*

Volume 21, Issue 10, 2024

Published on: 08 June, 2023

Page: [1779 - 1783] Pages: 5

DOI: 10.2174/1570180820666230427145116

Price: $65

Abstract

Aims: Validation of mesalamine (MS) as a potential therapeutic agent in treating diabetic wound (DW) healing using in silico approach.

Background: Diabetic wound (DW) is a serious consequence of diabetes that frequently results in the amputation of the affected organ. Maggot therapy, pressure off-loading, surgical intervention, glucose control, hyperbaric oxygen therapy, wound debridement, and other treatments are currently available for DW. However, the majority of people do not meet all DW requirements due to significant pathology and the high expense of the solutions.

Objective: To address the issues with current conventional therapy, we reasoned that repurposing existing medication (MS) to a target receptor that plays a significant role in the progression of DW might be advantageous. Mesalamine (MS), also known as Mesalazine or 5- Aminosalicylic acid, is an aminosalicylate anti-inflammatory used to treat inflammatory bowel disease (IBD), ulcerative colitis (UC), inflamed anus or rectum. The complicated pathophysiology of DW, which includes prolonged inflammation, increased infection, decreased cell proliferation, and migration, is a serious issue. As a result, we chose the MMP-9, TNF-α, MurC, ParE, and GSK-3β receptors as a universal target for treating the complex pathogenesis of DW. The use of MS as a therapeutic modulator on MMP-9, TNF-α, MurC, ParE, and GSK-3β receptors was studied in the current hypothetical investigation.

Methods: Computational studies such as molecular docking and MMGBSA were performed by using the Schrödinger suite.

Results: Computational investigations, such as molecular docking and MMGBSA were used to test our theory. It is clear from the in silico methods that MS has a higher binding affinity for the designated receptors. Hence, it is predicted that MS may be a good therapeutic agent to use in the treatment of DW.

Conclusion: As a result of our findings, MS appears to be a unique therapeutic drug for the treatment of DW. However, further studies are highly required to take MS into clinical use.

Keywords: Diabetic wound, mesalamine, mesalazine, 5-amino salicylic acid, molecular docking, binding free energy calculations.

Graphical Abstract
[1]
Prentki, M.; Nolan, C.J. Islet cell failure in type 2 diabetes. J. Clin. Invest., 2006, 116(7), 1802-1812.
[http://dx.doi.org/10.1172/JCI29103] [PMID: 16823478]
[2]
Brussels, B. International Diabetes Federation, 10th ed; IDF Diabetes Atlas, 2021.
[3]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[4]
Alexiadou, K.; Doupis, J. Management of diabetic foot ulcers. Diabetes Ther., 2012, 3(1), 4.
[http://dx.doi.org/10.1007/s13300-012-0004-9] [PMID: 22529027]
[5]
Anselmo, M.I.; Nery, M.; Parisi, M.C.R. The effectiveness of educational practice in diabetic foot: A view from Brazil. Diabetol. Metab. Syndr., 2010, 2(1), 45.
[http://dx.doi.org/10.1186/1758-5996-2-45] [PMID: 20587043]
[6]
Robbins, J.M.; Strauss, G.; Aron, D.; Long, J.; Kuba, J.; Kaplan, Y. Mortality rates and diabetic foot ulcers: Is it time to communicate mortality risk to patients with diabetic foot ulceration? J. Am. Podiatr. Med. Assoc., 2008, 98(6), 489-493.
[http://dx.doi.org/10.7547/0980489] [PMID: 19017860]
[7]
Pinto, A.; Tuttolomondo, A.; Di Raimondo, D.; Fernandez, P.; La Placa, S.; Di Gati, M.; Licata, G. Cardiovascular risk profile and morbidity in subjects affected by type 2 diabetes mellitus with and without diabetic foot. Metabolism, 2008, 57(5), 676-682.
[http://dx.doi.org/10.1016/j.metabol.2008.01.004] [PMID: 18442633]
[8]
Mohammed, T.; Sanapalli, B.K.R.; Momina, S.S.; Jat, R.K.; Paladugu, N.D. Hypothesis validation of rosiglitazone a potential inhibitor against glycogen synthase kinase-3β, for the management of multifaceted pathophysiology of the diabetic wound: An insilico study. Med. Hypotheses, 2020, 144, 109990.
[http://dx.doi.org/10.1016/j.mehy.2020.109990] [PMID: 32592921]
[9]
Serra, R.; Grande, R.; Butrico, L.; Rossi, A.; Settimio, U.F.; Caroleo, B.; Amato, B.; Gallelli, L.; de Franciscis, S. Chronic wound infections: The role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev. Anti Infect. Ther., 2015, 13(5), 605-613.
[http://dx.doi.org/10.1586/14787210.2015.1023291] [PMID: 25746414]
[10]
Ishibashi, M.; Kurokawa, K.; Nishida, S.; Ueno, K.; Matsuo, M.; Sekimizu, K. Isolation of temperature-sensitive mutations in murC of Staphylococcus aureus. FEMS Microbiol. Lett., 2007, 274(2), 204-209.
[http://dx.doi.org/10.1111/j.1574-6968.2007.00829.x] [PMID: 17608695]
[11]
Drlica, K.; Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev., 1997, 61(3), 377-392.
[PMID: 9293187]
[12]
Moss, A.C.; Peppercorn, M.A. The risks and the benefits of mesalazine as a treatment for ulcerative colitis. Expert Opin. Drug Saf., 2007, 6(2), 99-107.
[http://dx.doi.org/10.1517/14740338.6.2.99] [PMID: 17367256]
[13]
Gisbert, J.P.; Gomollón, F.; Maté, J.; Pajares, J.M. Role of 5-aminosalicylic acid (5-ASA) in treatment of inflammatory bowel disease: a systematic review. Dig. Dis. Sci., 2002, 47(3), 471-488.
[http://dx.doi.org/10.1023/A:1017987229718] [PMID: 11911332]
[14]
Collier, P.M.; Neill, S.M.; Copeman, P.W.M. Topical 5-aminosalicylic acid: A treatment for aphthous ulcers. Br. J. Dermatol., 1992, 126(2), 185-188.
[http://dx.doi.org/10.1111/j.1365-2133.1992.tb07818.x] [PMID: 1536785]
[15]
Baumgart, D.C.; Vierziger, K.; Sturm, A.; Wiedenmann, B.; Dignass, A.U. Mesalamine promotes intestinal epithelial wound healing in vitro through a TGF-beta-independent mechanism. Scand. J. Gastroenterol., 2005, 40(8), 958-964.
[http://dx.doi.org/10.1080/00365520510015854] [PMID: 16165710]
[16]
Raju, K.R.S.; Kumar, M.N.S.; Gupta, S.; Naga, S.T.; Shankar, J.K.; Murthy, V.; Madhunapanthula, S.R.V.; Mulukutla, S.; Ambhore, N.S.; Tummala, S.; Vishnuvarthan, V.J.; Azam, A.; Elango, K. 5-Aminosalicylic Acid attenuates allergen-induced airway inflammation and oxidative stress in asthma. Pulm. Pharmacol. Ther., 2014, 29(2), 209-216.
[http://dx.doi.org/10.1016/j.pupt.2014.07.007] [PMID: 25101553]
[17]
Nuti, E.; Cantelmo, A.R.; Gallo, C.; Bruno, A.; Bassani, B.; Camodeca, C.; Tuccinardi, T.; Vera, L.; Orlandini, E.; Nencetti, S.; Stura, E.A.; Martinelli, A.; Dive, V.; Albini, A.; Rossello, A. N-O-Isopropyl sulfonamido-based hydroxamates as matrix metalloproteinase inhibitors: Hit selection and in vivo antiangiogenic activity. J. Med. Chem., 2015, 58(18), 7224-7240.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00367] [PMID: 26263024]
[18]
He, M.M.; Smith, A.S.; Oslob, J.D.; Flanagan, W.M.; Braisted, A.C.; Whitty, A.; Cancilla, M.T.; Wang, J.; Lugovskoy, A.A.; Yoburn, J.C.; Fung, A.D.; Farrington, G.; Eldredge, J.K.; Day, E.S.; Cruz, L.A.; Cachero, T.G.; Miller, S.K.; Friedman, J.E.; Choong, I.C.; Cunningham, B.C. Small-molecule inhibition of TNF-α. Science, 2005, 310(5750), 1022-1025.
[http://dx.doi.org/10.1126/science.1116304] [PMID: 16284179]
[19]
Wang, L.; Shao, X.; Zhong, T.; Wu, Y.; Xu, A.; Sun, X.; Gao, H.; Liu, Y.; Lan, T.; Tong, Y.; Tao, X.; Du, W.; Wang, W.; Chen, Y.; Li, T.; Meng, X.; Deng, H.; Yang, B.; He, Q.; Ying, M.; Rao, Y. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat. Chem. Biol., 2021, 17(5), 567-575.
[http://dx.doi.org/10.1038/s41589-021-00742-5] [PMID: 33664520]
[20]
Lu, J.; Patel, S.; Sharma, N.; Soisson, S.M.; Kishii, R.; Takei, M.; Fukuda, Y.; Lumb, K.J.; Singh, S.B. Structures of kibdelomycin bound to Staphylococcus aureus GyrB and ParE showed a novel U-shaped binding mode. ACS Chem. Biol., 2014, 9(9), 2023-2031.
[http://dx.doi.org/10.1021/cb5001197] [PMID: 24992706]
[21]
Redenti, S.; Marcovich, I.; De Vita, T.; Pérez, C.; De Zorzi, R.; Demitri, N.; Perez, D.I.; Bottegoni, G.; Bisignano, P.; Bissaro, M.; Moro, S.; Martinez, A.; Storici, P.; Spalluto, G.; Cavalli, A.; Federico, S. A triazolotriazine‐based dual GSK‐3β/CK‐1δ ligand as a potential neuroprotective agent presenting two different mechanisms of enzymatic inhibition. ChemMedChem, 2019, 14(3), 310-314.
[http://dx.doi.org/10.1002/cmdc.201800778] [PMID: 30548443]
[22]
Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[23]
Iwaloye, O.; Elekofehinti, O.O.; Momoh, A.I.; Babatomiwa, K.; Ariyo, E.O. In silico molecular studies of natural compounds as possible anti-Alzheimer’s agents: ligand-based design. Netw. Model. Anal. Health Inform. Bioinform., 2020, 9(1), 54.
[http://dx.doi.org/10.1007/s13721-020-00262-7]
[24]
Bell, J.; Cao, Y.; Gunn, J. PrimeX and the Schrödinger computational chemistry suite of programs. In: Crystallography of biological macromolecules; 2nd ed.; , 2012.
[http://dx.doi.org/10.1107/97809553602060000864]
[25]
Greenwood, J.R.; Calkins, D.; Sullivan, A.P.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des., 2010, 24(6-7), 591-604.
[http://dx.doi.org/10.1007/s10822-010-9349-1] [PMID: 20354892]

© 2024 Bentham Science Publishers | Privacy Policy