Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

A Quinquennial Review on Recent Advancements and Developments in Search of Anti-malarial Agents

Author(s): Tejas M. Dhameliya*, Deepika Kathuria*, Tanvi M. Patel, Bhavarth P. Dave, Amit Z. Chaudhari and Drashtiben D. Vekariya

Volume 23, Issue 9, 2023

Published on: 18 May, 2023

Page: [753 - 790] Pages: 38

DOI: 10.2174/1568026623666230427115241

Price: $65

conference banner
Abstract

Malaria has been a major parasitic disease in tropical and subtropical regions and is estimated to kill between one and two million people (mainly children) every year. Novel anti-malarial agents are urgently needed to combat the malarial parasites enduring resistance to the current medications, leading to increased morbidity and mortality. The heterocycles, holding a prominent position in chemistry and found in both natural and synthetic sources, have shown several biological activities including anti-malarial activity. Towards this goal, several research groups have reported the design and development of novel and potential anti-malarial agents like artemisinin, benzimidazole, benzothiazole, chalcone, cyclopeptide, fosmidomycin, furan, indole oxadiazole, 2-oxindoles, peroxides, pyrazole, pyrazolines, pyridines, pyrimidine, pyrrolidine, quinazoline, quinazolinone, quinolone, quinoline, thiazole, triazole and other scaffolds acting against newly emerging anti-malarial targets. The present work reports the complete quinquennial coverage of anti-malarial agents reported during 2016-2020 with a view of providing the merits and demerits of reported anti-malarial scaffolds, structure-activity relationship, along with their in vitro/ in vivo/ in silico profiles to the medicinal chemists working in the field of design and discovery of novel anti-malarial agents.

Keywords: Anti-malarial agents, Malaria, Plasmodium falciparum, Heterocyclic scaffolds, Artemisinin, Resistant malaria.

Graphical Abstract
[1]
Tse, E.G.; Korsik, M.; Todd, M.H. The past, present and future of anti-malarial medicines. Malar. J., 2019, 18(1), 93.
[http://dx.doi.org/10.1186/s12936-019-2724-z] [PMID: 30902052]
[2]
World Health Organization (WHO). World Malaria Report 2021. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (Accessed on: Jun 6, 2022).
[3]
Bray, R.S.; Garnham, P.C.C. The life-cycle of primate malaria parasites. Br. Med. Bull., 1982, 38(2), 117-122.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a071746] [PMID: 7052190]
[4]
Gerald, N.; Mahajan, B.; Kumar, S. Mitosis in the human malaria parasite Plasmodium falciparum. Eukaryot. Cell, 2011, 10(4), 474-482.
[http://dx.doi.org/10.1128/EC.00314-10] [PMID: 21317311]
[5]
Chu, C.S.; White, N.J. Management of relapsing Plasmodium vivax malaria. Expert Rev. Anti Infect. Ther., 2016, 14(10), 885-900.
[http://dx.doi.org/10.1080/14787210.2016.1220304] [PMID: 27530139]
[6]
Maruthi, M.; Ling, L.; Zhou, J.; Ke, H. Dispensable role of mitochondrial fission protein 1 (Fis1) in the erythrocytic development of plasmodium falciparum. MSphere, 2020, 5(5), e00579-e20.
[http://dx.doi.org/10.1128/mSphere.00579-20] [PMID: 32968006]
[7]
Waters, A.P. Epigenetic roulette in blood stream plasmodium: Gambling on sex. PLoS Pathog., 2016, 12(2), e1005353.
[http://dx.doi.org/10.1371/journal.ppat.1005353] [PMID: 26866803]
[8]
Zhou, W.; Wang, H.; Yang, Y.; Chen, Z.S.; Zou, C.; Zhang, J. Chloroquine against malaria, cancers and viral diseases. Drug Discov. Today, 2020, 25(11), 2012-2022.
[http://dx.doi.org/10.1016/j.drudis.2020.09.010] [PMID: 32947043]
[9]
Loo, C.S.N.; Lam, N.S.K.; Yu, D.; Su, X.; Lu, F. Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol. Res., 2017, 117, 192-217.
[http://dx.doi.org/10.1016/j.phrs.2016.11.012] [PMID: 27867026]
[10]
Gaillard, T.; Madamet, M.; Pradines, B. Tetracyclines in malaria. Malar. J., 2015, 14(1), 445.
[http://dx.doi.org/10.1186/s12936-015-0980-0] [PMID: 26555664]
[11]
Singh, L.; Singh, K. Ivermectin: A promising therapeutic for fighting malaria. current status and perspective. J. Med. Chem., 2021, 64(14), 9711-9731.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00498] [PMID: 34242031]
[12]
Pessanha de Carvalho, L.; Kreidenweiss, A.; Held, J. Drug Repurposing: A review of old and new antibiotics for the treatment of malaria: Identifying antibiotics with a fast onset of antiplasmodial action. Molecules, 2021, 26(8), 2304.
[http://dx.doi.org/10.3390/molecules26082304] [PMID: 33921170]
[13]
Kumar, S.; Bhardwaj, T.R.; Prasad, D.N.; Singh, R.K. Drug targets for resistant malaria: Historic to future perspectives. Biomed. Pharmacother., 2018, 104, 8-27.
[http://dx.doi.org/10.1016/j.biopha.2018.05.009] [PMID: 29758416]
[14]
Ross, L.S.; Fidock, D.A. Elucidating mechanisms of drug-resistant plasmodium falciparum. Cell Host Microbe, 2019, 26(1), 35-47.
[http://dx.doi.org/10.1016/j.chom.2019.06.001] [PMID: 31295423]
[15]
Talapko, J.; Škrlec, I. Alebić, T.; Jukić, M.; Včev, A. Malaria: The past and the present. Microorganisms, 2019, 7(6), 179.
[http://dx.doi.org/10.3390/microorganisms7060179] [PMID: 31234443]
[16]
Bhakhar, K.A.; Vaghela, P.V.; Varakala, S.D.; Chudasma, S.J.; Gajjar, N.D.; Nagar, P.R.; Sriram, D.; Dhameliya, T.M. Indole-2-carboxamides as new anti-mycobacterial agents: Design, synthesis, biological evaluation and molecular modeling against mmpL3. ChemistrySelect, 2022, 7(26), e202201813.
[http://dx.doi.org/10.1002/slct.202201813]
[17]
Dhameliya, T.M.; Devani, A.A.; Patel, K.A.; Shah, K.C. Comprehensive coverage on anti-mycobacterial endeavour reported in 2021. ChemistrySelect, 2022, 7(19), e202200921.
[http://dx.doi.org/10.1002/slct.202200921]
[18]
Dhameliya, T.M.; Bhakhar, K.A.; Gajjar, N.D.; Patel, K.A.; Devani, A.A.; Hirani, R.V. Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J. Mol. Struct., 2022, 1248, 131473.
[http://dx.doi.org/10.1016/j.molstruc.2021.131473]
[19]
Dhameliya, T.M.; Chudasma, S.J.; Patel, T.M.; Dave, B.P. A review on synthetic account of 1,2,4-oxadiazoles as anti-infective agents. Mol. Divers., 2022, 26(5), 2967-2980.
[http://dx.doi.org/10.1007/s11030-021-10375-4] [PMID: 34984590]
[20]
Bhakhar, K.A.; Sureja, D.K.; Dhameliya, T.M. Synthetic account of indoles in search of potential anti-mycobacterial agents: A review and future insights. J. Mol. Struct., 2022, 1248, 131522.
[http://dx.doi.org/10.1016/j.molstruc.2021.131522]
[21]
Nagar, P.R.; Gajjar, N.D.; Dhameliya, T.M. In search of SARS CoV-2 replication inhibitors: Virtual screening, molecular dynamics simulations and ADMET analysis. J. Mol. Struct., 2021, 1246, 131190.
[http://dx.doi.org/10.1016/j.molstruc.2021.131190] [PMID: 34334813]
[22]
Dhameliya, T.M.; Nagar, P.R.; Gajjar, N.D. Systematic virtual screening in search of SARS CoV-2 inhibitors against spike glycoprotein: pharmacophore screening, molecular docking, ADMET analysis and MD simulations. Mol. Divers., 2022, 26(5), 2775-2792.
[http://dx.doi.org/10.1007/s11030-022-10394-9] [PMID: 35132518]
[23]
Bhakhar, K.A.; Gajjar, N.D.; Bodiwala, K.B.; Sureja, D.K.; Dhameliya, T.M. Identification of anti-mycobacterial agents against mmpL3: Virtual screening, ADMET analysis and MD simulations. J. Mol. Struct., 2021, 1244, 130941.
[http://dx.doi.org/10.1016/j.molstruc.2021.130941]
[24]
Gajjar, N.D.; Dhameliya, T.M.; Shah, G.B. In search of RdRp and Mpro inhibitors against SARS CoV-2: Molecular docking, molecular dynamic simulations and ADMET analysis. J. Mol. Struct., 2021, 1239, 130488.
[http://dx.doi.org/10.1016/j.molstruc.2021.130488] [PMID: 33903778]
[25]
Dhameliya, T.M.; Patel, K.I.; Tiwari, R.; Vagolu, S.K.; Panda, D.; Sriram, D.; Chakraborti, A.K. Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents. Bioorg. Chem., 2021, 107, 104538.
[http://dx.doi.org/10.1016/j.bioorg.2020.104538] [PMID: 33349456]
[26]
Jadhavar, P.S.; Patel, K.I.; Dhameliya, T.M.; Saha, N.; Vaja, M.D.; Krishna, V.S.; Sriram, D.; Chakraborti, A.K. Benzimidazoquinazolines as new potent anti-TB chemotypes: Design, synthesis, and biological evaluation. Bioorg. Chem., 2020, 99, 103774.
[http://dx.doi.org/10.1016/j.bioorg.2020.103774] [PMID: 32224336]
[27]
Chudasama, S.J.; Shah, B.J.; Patel, K.M.; Dhameliya, T.M. The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. J. Mol. Liq., 2022, 361, 119664.
[http://dx.doi.org/10.1016/j.molliq.2022.119664]
[28]
Kumar, A.; Dhameliya, T.M.; Sharma, K.; Patel, K.A.; Hirani, R.V. Environmentally benign approaches towards the synthesis of quinolines. ChemistrySelect, 2022, 7(22), e202201059.
[http://dx.doi.org/10.1002/slct.202201059]
[29]
Kumar, A.; Dhameliya, T.M.; Sharma, K.; Patel, K.A.; Hirani, R.V.; Bhatt, A.J. Sustainable approaches towards the synthesis of quinoxalines: An update. J. Mol. Struct., 2022, 1259, 132732.
[http://dx.doi.org/10.1016/j.molstruc.2022.132732]
[30]
Dhameliya, T.M.; Nagar, P.R.; Bhakhar, K.A.; Jivani, H.R.; Shah, B.J.; Patel, K.M.; Patel, V.S.; Soni, A.H.; Joshi, L.P.; Gajjar, N.D. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J. Mol. Liq., 2022, 348, 118329.
[http://dx.doi.org/10.1016/j.molliq.2021.118329]
[31]
Kumari, A.; Karnatak, M.; Singh, D.; Shankar, R.; Jat, J.L.; Sharma, S.; Yadav, D.; Shrivastava, R.; Verma, V.P. Current scenario of artemisinin and its analogues for antimalarial activity. Eur. J. Med. Chem., 2019, 163, 804-829.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.007] [PMID: 30579122]
[32]
Sharma, B.; Singh, P.; Singh, A.K.; Awasthi, S.K. Advancement of chimeric hybrid drugs to cure malaria infection: An overview with special emphasis on endoperoxide pharmacophores. Eur. J. Med. Chem., 2021, 219, 113408.
[http://dx.doi.org/10.1016/j.ejmech.2021.113408] [PMID: 33989911]
[33]
Patel, O.P.S.; Beteck, R.M.; Legoabe, L.J. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur. J. Med. Chem., 2021, 213, 113193.
[http://dx.doi.org/10.1016/j.ejmech.2021.113193] [PMID: 33508479]
[34]
Bekono, B.D.; Ntie-Kang, F.; Onguéné, P.A.; Lifongo, L.L.; Sippl, W.; Fester, K.; Owono, L.C.O. The potential of anti-malarial compounds derived from African medicinal plants: A review of pharmacological evaluations from 2013 to 2019. Malar. J., 2020, 19(1), 183.
[http://dx.doi.org/10.1186/s12936-020-03231-7] [PMID: 32423415]
[35]
Qin, H.L.; Zhang, Z.W.; Lekkala, R.; Alsulami, H.; Rakesh, K.P. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur. J. Med. Chem., 2020, 193, 112215.
[http://dx.doi.org/10.1016/j.ejmech.2020.112215] [PMID: 32179331]
[36]
Wani, W.A.; Jameel, E.; Baig, U.; Mumtazuddin, S.; Hun, L.T. Ferroquine and its derivatives: New generation of antimalarial agents. Eur. J. Med. Chem., 2015, 101, 534-551.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.009] [PMID: 26188909]
[37]
Xiao, J.; Sun, Z.; Kong, F.; Gao, F. Current scenario of ferrocene-containing hybrids for antimalarial activity. Eur. J. Med. Chem., 2020, 185, 111791.
[http://dx.doi.org/10.1016/j.ejmech.2019.111791] [PMID: 31669852]
[38]
Kim, S.H.; Semenya, D.; Castagnolo, D. Antimicrobial drugs bearing guanidine moieties: A review. Eur. J. Med. Chem., 2021, 216, 113293.
[http://dx.doi.org/10.1016/j.ejmech.2021.113293] [PMID: 33640673]
[39]
Chauhan, M.; Saxena, A.; Saha, B. An insight in anti-malarial potential of indole scaffold: A review. Eur. J. Med. Chem., 2021, 218, 113400.
[http://dx.doi.org/10.1016/j.ejmech.2021.113400] [PMID: 33823394]
[40]
Pacheco, P.A.F.; Santos, M.M.M. Recent progress in the development of indole-based compounds active against malaria, trypanosomiasis and leishmaniasis. Molecules, 2022, 27(1), 319.
[http://dx.doi.org/10.3390/molecules27010319] [PMID: 35011552]
[41]
C.S., Pinheiro L.; M Feitosa, L.; O Gandi, M.; F Silveira, F.; Boechat, N. The development of novel compounds against malaria: Quinolines, triazolpyridines, pyrazolopyridines and pyrazolopyrimidines. Molecules, 2019, 24(22), 4095.
[http://dx.doi.org/10.3390/molecules24224095] [PMID: 31766184]
[42]
Irfan, R.; Mousavi, S.; Alazmi, M.; Saleem, R.S.Z. A comprehensive review of aminochalcones. Molecules, 2020, 25(22), 5381.
[http://dx.doi.org/10.3390/molecules25225381] [PMID: 33213087]
[43]
Narwal, S.; Kumar, S.; Verma, P.K. Synthesis and therapeutic potential of quinoline derivatives. Res. Chem. Intermed., 2017, 43(5), 2765-2798.
[http://dx.doi.org/10.1007/s11164-016-2794-2]
[44]
Jones, R.A.; Panda, S.S.; Hall, C.D. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur. J. Med. Chem., 2015, 97, 335-355.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.002] [PMID: 25683799]
[45]
Hu, Y.Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.061] [PMID: 28800458]
[46]
Nqoro, X.; Tobeka, N.; Aderibigbe, B. Quinoline-based hybrid compounds with antimalarial activity. Molecules, 2017, 22(12), 2268.
[http://dx.doi.org/10.3390/molecules22122268] [PMID: 29257067]
[47]
Fonte, M.; Tassi, N.; Gomes, P.; Teixeira, C. Acridine-based antimalarials—from the very first synthetic antimalarial to recent developments. Molecules, 2021, 26(3), 600.
[http://dx.doi.org/10.3390/molecules26030600] [PMID: 33498868]
[48]
Kucharski, D.J.; Jaszczak, M.K. Boratyński, P.J. A review of modifications of quinoline antimalarials: mefloquine and (hydroxy)chloroquine. Molecules, 2022, 27(3), 1003.
[http://dx.doi.org/10.3390/molecules27031003] [PMID: 35164267]
[49]
Joshi, M.C.; Egan, T.J. Quinoline containing side-chain antimalarial analogs: Recent advances and therapeutic application. Curr. Top. Med. Chem., 2020, 20(8), 617-697.
[http://dx.doi.org/10.2174/1568026620666200127141550] [PMID: 31985377]
[50]
Mushtaque, M. Shahjahan, Reemergence of chloroquine (CQ) analogs as multi-targeting antimalarial agents: A review. Eur. J. Med. Chem., 2015, 90, 280-295.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.022] [PMID: 25461328]
[51]
Patel, O.P.S.; Beteck, R.M.; Legoabe, L.J. Antimalarial application of quinones: A recent update. Eur. J. Med. Chem., 2021, 210, 113084.
[http://dx.doi.org/10.1016/j.ejmech.2020.113084] [PMID: 33333397]
[52]
Birkholtz, L.M.; Coetzer, T.L.; Mancama, D.; Leroy, D.; Alano, P. Discovering new transmission-blocking antimalarial compounds: Challenges and opportunities. Trends Parasitol., 2016, 32(9), 669-681.
[http://dx.doi.org/10.1016/j.pt.2016.04.017] [PMID: 27209388]
[53]
Scarim, C.B.; Jornada, D.H.; Machado, M.G.M.; Ferreira, C.M.R.; dos Santos, J.L.; Chung, M.C. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur. J. Med. Chem., 2019, 162, 378-395.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.013] [PMID: 30453246]
[54]
Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[55]
Norman, A.R.; Norcott, P.; McErlean, C.S.P. Overview of the synthesis of carbazoloquinone natural products. Tetrahedron Lett., 2016, 57(36), 4001-4008.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.092]
[56]
Giannis, A.; Mousavizadeh, F. On artemisinin, cyclopamine, d-isocitric acid, hyperforin, epigenetics, sialic acid, and more. Synlett, 2019, 30(12), 1401-1418.
[http://dx.doi.org/10.1055/s-0037-1611775]
[57]
Kumar, V.; Van Staden, J. A review of swertia chirayita (Gentianaceae) as a traditional medicinal plant. Front. Pharmacol., 2016, 6, 308.
[http://dx.doi.org/10.3389/fphar.2015.00308] [PMID: 26793105]
[58]
Fernández-Álvaro, E.; Hong, W.D.; Nixon, G.L.; O’Neill, P.M.; Calderón, F. Antimalarial chemotherapy: Natural product inspired development of preclinical and clinical candidates with diverse mechanisms of action. J. Med. Chem., 2016, 59(12), 5587-5603.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01485] [PMID: 26791529]
[59]
Tajuddeen, N.; Van Heerden, F.R. Antiplasmodial natural products: An update. Malar. J., 2019, 18(1), 404.
[http://dx.doi.org/10.1186/s12936-019-3026-1] [PMID: 31805944]
[60]
Njogu, P.M.; Guantai, E.M.; Pavadai, E.; Chibale, K. Computer-aided drug discovery approaches against the tropical infectious diseases malaria, tuberculosis, trypanosomiasis, and leishmaniasis. ACS Infect. Dis., 2016, 2(1), 8-31.
[http://dx.doi.org/10.1021/acsinfecdis.5b00093] [PMID: 27622945]
[61]
Ojha, P.K.; Kumar, V.; Roy, J.; Roy, K. Recent advances in quantitative structure–activity relationship models of antimalarial drugs. Expert Opin. Drug Discov., 2021, 16(6), 659-695.
[http://dx.doi.org/10.1080/17460441.2021.1866535] [PMID: 33356651]
[62]
Lee, S.M.; Kim, M.S.; Hayat, F.; Shin, D. Recent advances in the discovery of novel antiprotozoal agents. Molecules, 2019, 24(21), 3886.
[http://dx.doi.org/10.3390/molecules24213886] [PMID: 31661934]
[63]
Zuma, N.H.; Smit, F.J.; de Kock, C.; Combrinck, J.; Smith, P.J.; N’Da, D.D. Synthesis and biological evaluation of a series of non-hemiacetal ester derivatives of artemisinin. Eur. J. Med. Chem., 2016, 122, 635-646.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.027] [PMID: 27448920]
[64]
de Lange, C.; Coertzen, D.; Smit, F.J.; Wentzel, J.F.; Wong, H.N.; Birkholtz, L.M.; Haynes, R.K.; N’Da, D.D. Synthesis, in vitro antimalarial activities and cytotoxicities of amino-artemisinin-ferrocene derivatives. Bioorg. Med. Chem. Lett., 2018, 28(3), 289-292.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.057] [PMID: 29317166]
[65]
de Lange, C.; Coertzen, D.; Smit, F.J.; Wentzel, J.F.; Wong, H.N.; Birkholtz, L.M.; Haynes, R.K.; N’Da, D.D. Synthesis, antimalarial activities and cytotoxicities of amino-artemisinin-1,2-disubstituted ferrocene hybrids. Bioorg. Med. Chem. Lett., 2018, 28(19), 3161-3163.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.037] [PMID: 30174153]
[66]
Fröhlich, T.; Reiter, C.; Ibrahim, M.M.; Beutel, J.; Hutterer, C.; Zeitträger, I.; Bahsi, H.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Efferth, T.; Marschall, M.; Tsogoeva, S.B. Synthesis of novel hybrids of quinazoline and artemisinin with high activities against Plasmodium falciparum, human cytomegalovirus, and leukemia cells. ACS Omega, 2017, 2(6), 2422-2431.
[http://dx.doi.org/10.1021/acsomega.7b00310] [PMID: 30023664]
[67]
Fröhlich, T.; Reiter, C.; Saeed, M.E.M.; Hutterer, C.; Hahn, F.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Marschall, M.; Efferth, T.; Tsogoeva, S.B. Synthesis of thymoquinone–artemisinin hybrids: New potent antileukemia, antiviral, and antimalarial agents. ACS Med. Chem. Lett., 2018, 9(6), 534-539.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00412] [PMID: 29937978]
[68]
Çapcı Karagöz, A.; Reiter, C.; Seo, E.J.; Gruber, L.; Hahn, F.; Leidenberger, M.; Klein, V.; Hampel, F.; Friedrich, O.; Marschall, M.; Kappes, B.; Efferth, T.; Tsogoeva, S.B. Access to new highly potent antileukemia, antiviral and antimalarial agents viahybridization of natural products (homo)egonol, thymoquinone and artemisinin. Bioorg. Med. Chem., 2018, 26(12), 3610-3618.
[http://dx.doi.org/10.1016/j.bmc.2018.05.041] [PMID: 29887512]
[69]
Fröhlich, T.; Kiss, A.; Wölfling, J.; Mernyák, E.; Kulmány, Á.E.; Minorics, R.; Zupkó, I.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Hahn, F.; Marschall, M.; Schneider, G.; Tsogoeva, S.B. Synthesis of artemisinin–estrogen hybrids highly active against hcmv, p. falciparum, and cervical and breast cancer. ACS Med. Chem. Lett., 2018, 9(11), 1128-1133.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00381] [PMID: 30429957]
[70]
Fröhlich, T.; Hahn, F.; Belmudes, L.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Couté, Y.; Marschall, M.; Tsogoeva, S.B. Synthesis of artemisinin-derived dimers, trimers and dendrimers: Investigation of their antimalarial and antiviral activities including putative mechanisms of action. Chemistry, 2018, 24(32), 8103-8113.
[http://dx.doi.org/10.1002/chem.201800729] [PMID: 29570874]
[71]
Wu, Y.; Parapini, S.; Williams, I.; Misiano, P.; Wong, H.; Taramelli, D.; Basilico, N.; Haynes, R. Facile preparation of N-Glycosylated 10-Piperazinyl artemisinin derivatives and evaluation of their antimalarial and cytotoxic activities. Molecules, 2018, 23(7), 1713.
[http://dx.doi.org/10.3390/molecules23071713] [PMID: 30011856]
[72]
Sharma, K.; Shrivastava, A.; Mehra, R.N.; Deora, G.S.; Alam, M.M.; Zaman, M.S.; Akhter, M. Synthesis of novel benzimidazole acrylonitriles for inhibition of Plasmodium falciparum growth by dual target inhibition. Arch. Pharm., 2018, 351(1), 1700251.
[http://dx.doi.org/10.1002/ardp.201700251] [PMID: 29227011]
[73]
Romero, J.A.; Acosta, M.E.; Gamboa, N.D.; Mijares, M.R.; De Sanctis, J.B.; Llovera, L.J.; Charris, J.E. Synthesis, antimalarial, antiproliferative, and apoptotic activities of benzimidazole-5-carboxamide derivatives. Med. Chem. Res., 2019, 28(1), 13-27.
[http://dx.doi.org/10.1007/s00044-018-2258-x]
[74]
Attram, H.D.; Wittlin, S.; Chibale, K. Incorporation of an intramolecular hydrogen bonding motif in the side chain of antimalarial benzimidazoles. MedChemComm, 2019, 10(3), 450-455.
[http://dx.doi.org/10.1039/C8MD00608C] [PMID: 31015908]
[75]
Mueller, R.; Reddy, V.; Nchinda, A.T.; Mebrahtu, F.; Taylor, D.; Lawrence, N.; Tanner, L.; Barnabe, M.; Eyermann, C.J.; Zou, B.; Kondreddi, R.R.; Lakshminarayana, S.B.; Rottmann, M.; Street, L.J.; Chibale, K. Lerisetron analogues with antimalarial properties: Synthesis, structure–activity relationship studies, and biological assessment. ACS Omega, 2020, 5(12), 6967-6982.
[http://dx.doi.org/10.1021/acsomega.0c00327] [PMID: 32258933]
[76]
Baartzes, N.; Stringer, T.; Seldon, R.; Warner, D.F.; Taylor, D.; Wittlin, S.; Chibale, K.; Smith, G.S. Bioisosteric ferrocenyl aminoquinoline-benzimidazole hybrids: Antimicrobial evaluation and mechanistic insights. Eur. J. Med. Chem., 2019, 180, 121-133.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.069] [PMID: 31301563]
[77]
Bhavsar, Z.A.; Acharya, P.T.; Jethava, D.J.; Patel, D.B.; Vasava, M.S.; Rajani, D.P.; Pithawala, E.; Patel, H.D. Microwave assisted synthesis, biological activities, and in silico investigation of some benzimidazole derivatives. J. Heterocycl. Chem., 2020, 57(12), 4215-4238.
[http://dx.doi.org/10.1002/jhet.4129]
[78]
Bhagat, S.; Arfeen, M.; Adane, L.; Singh, S.; Singh, P.P.; Chakraborti, A.K.; Bharatam, P.V. Guanylthiourea derivatives as potential antimalarial agents: Synthesis, in vivo and molecular modelling studies. Eur. J. Med. Chem., 2017, 135, 339-348.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.022] [PMID: 28460309]
[79]
Thakkar, S.S.; Thakor, P.; Ray, A.; Doshi, H.; Thakkar, V.R. Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities. Bioorg. Med. Chem., 2017, 25(20), 5396-5406.
[http://dx.doi.org/10.1016/j.bmc.2017.07.057] [PMID: 28789907]
[80]
Alborz, M.; Jarrahpour, A.; Pournejati, R.; Karbalaei-Heidari, H.R.; Sinou, V.; Latour, C.; Brunel, J.M.; Sharghi, H.; Aberi, M.; Turos, E.; Wojtas, L. Synthesis and biological evaluation of some novel diastereoselective benzothiazole β-lactam conjugates. Eur. J. Med. Chem., 2018, 143, 283-291.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.053] [PMID: 29197733]
[81]
Smit, F.J.; Bezuidenhout, J.J.; Bezuidenhout, C.C.; N’Da, D.D. Synthesis and in vitro biological activities of ferrocenyl–chalcone amides. Med. Chem. Res., 2016, 25(4), 568-584.
[http://dx.doi.org/10.1007/s00044-016-1509-y]
[82]
Fagundez, C.; Sellanes, D.; Peña, S.; Scarone, L.; Aguiar, A.C.C.; de Souza, J.O.; Guido, R.V.C.; Stewart, L.; Yardley, V.; Ottilie, S.; Winzeler, E.A.; Gamo, F.J.; Sanz, L.M.; Serra, G.L. Synthesis, profiling, and in vivo evaluation of cyclopeptides containing n -methyl amino acids as antiplasmodial agents. ACS Med. Chem. Lett., 2019, 10(1), 137-141.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00543] [PMID: 30655961]
[83]
Bérubé, C.; Borgia, A.; Gagnon, D.; Mukherjee, A.; Richard, D.; Voyer, N. Total synthesis and antimalarial activity of dominicin, a cyclic octapeptide from a marine sponge. J. Nat. Prod., 2020, 83(6), 1778-1783.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00936] [PMID: 32484670]
[84]
Adeyemi, C.M. Faridoon; Isaacs, M.; Mnkandhla, D.; Hoppe, H.C.; Krause, R.W.M.; Kaye, P.T. Synthesis and antimalarial activity of N-benzylated (N-arylcarbamoyl)alkylphosphonic acid derivatives. Bioorg. Med. Chem., 2016, 24(23), 6131-6138.
[http://dx.doi.org/10.1016/j.bmc.2016.04.021] [PMID: 27773366]
[85]
Courtens, C.; Risseeuw, M.; Caljon, G.; Cos, P.; Van Calenbergh, S. Acyloxybenzyl and alkoxyalkyl prodrugs of a fosmidomycin surrogate as antimalarial and antitubercular agents. ACS Med. Chem. Lett., 2018, 9(10), 986-989.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00223] [PMID: 30344904]
[86]
Courtens, C.; Risseeuw, M.; Caljon, G.; Maes, L.; Martin, A.; Van Calenbergh, S. Amino acid based prodrugs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorg. Med. Chem., 2019, 27(5), 729-747.
[http://dx.doi.org/10.1016/j.bmc.2019.01.016] [PMID: 30692024]
[87]
Courtens, C.; Risseeuw, M.; Caljon, G.; Cos, P.; Martin, A.; Van Calenbergh, S. Phosphonodiamidate prodrugs of N-alkoxy analogs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorg. Med. Chem. Lett., 2019, 29(9), 1051-1053.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.008] [PMID: 30857749]
[88]
Courtens, C.; Risseeuw, M.; Caljon, G.; Maes, L.; Cos, P.; Martin, A.; Van Calenbergh, S. Double prodrugs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorg. Med. Chem. Lett., 2019, 29(10), 1232-1235.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.009] [PMID: 30879839]
[89]
Palla, D.; Antoniou, A.I.; Baltas, M.; Menendez, C.; Grellier, P.; Mouray, E.; Athanassopoulos, C.M. Synthesis and antiplasmodial activity of novel fosmidomycin derivatives and conjugates with artemisinin and aminochloroquinoline. Molecules, 2020, 25(20), 4858.
[http://dx.doi.org/10.3390/molecules25204858] [PMID: 33096817]
[90]
Vallone, A.; D’Alessandro, S.; Brogi, S.; Brindisi, M.; Chemi, G.; Alfano, G.; Lamponi, S.; Lee, S.G.; Jez, J.M.; Koolen, K.J.M.; Dechering, K.J.; Saponara, S.; Fusi, F.; Gorelli, B.; Taramelli, D.; Parapini, S.; Caldelari, R.; Campiani, G.; Gemma, S.; Butini, S. Antimalarial agents against both sexual and asexual parasites stages: structure-activity relationships and biological studies of the Malaria Box compound 1-[5-(4-bromo-2-chlorophenyl)furan-2-yl]-N-[(piperidin-4-yl)methyl]methanamine (MMV019918) and analogues. Eur. J. Med. Chem., 2018, 150, 698-718.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.024] [PMID: 29571157]
[91]
Alnabulsi, S.; Santina, E.; Russo, I.; Hussein, B.; Kadirvel, M.; Chadwick, A.; Bichenkova, E.V.; Bryce, R.A.; Nolan, K.; Demonacos, C.; Stratford, I.J.; Freeman, S. Non-symmetrical furan-amidines as novel leads for the treatment of cancer and malaria. Eur. J. Med. Chem., 2016, 111, 33-45.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.022] [PMID: 26854376]
[92]
Krake, S.H.; Martinez, P.D.G.; McLaren, J.; Ryan, E.; Chen, G.; White, K.; Charman, S.A.; Campbell, S.; Willis, P.; Dias, L.C. Novel inhibitors of Plasmodium falciparum based on 2,5-disubstituted furans. Eur. J. Med. Chem., 2017, 126, 929-936.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.024] [PMID: 28002775]
[93]
Sauer, B.; Skinner-Adams, T.S.; Bouchut, A.; Chua, M.J.; Pierrot, C.; Erdmann, F.; Robaa, D.; Schmidt, M.; Khalife, J.; Andrews, K.T.; Sippl, W. Synthesis, biological characterisation and structure activity relationships of aromatic bisamidines active against Plasmodium falciparum. Eur. J. Med. Chem., 2017, 127, 22-40.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.041] [PMID: 28038325]
[94]
Luthra, T.; Nayak, A.K.; Bose, S.; Chakrabarti, S.; Gupta, A.; Sen, S. Indole based antimalarial compounds targeting the melatonin pathway: Their design, synthesis and biological evaluation. Eur. J. Med. Chem., 2019, 168, 11-27.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.019] [PMID: 30798050]
[95]
Paciaroni, N.G.; Perry, D.L., II; Norwood, V.M., IV; Murillo-Solano, C.; Collins, J.; Tenneti, S.; Chakrabarti, D.; Huigens, R.W., III Re-engineering of yohimbine’s biological activity through ring distortion: Identification and structure–activity relationships of a new class of antiplasmodial agents. ACS Infect. Dis., 2020, 6(2), 159-167.
[http://dx.doi.org/10.1021/acsinfecdis.9b00380] [PMID: 31913597]
[96]
Ghavami, M.; Merino, E.F.; Yao, Z.K.; Elahi, R.; Simpson, M.E.; Fernández-Murga, M.L.; Butler, J.H.; Casasanta, M.A.; Krai, P.M.; Totrov, M.M.; Slade, D.J.; Carlier, P.R.; Cassera, M.B. Biological studies and target engagement of the 2- C -Methyl- D -Erythritol 4-phosphate cytidylyltransferase (IspD)-targeting antimalarial agent (1 R, 3 S)-MMV008138 and analogs. ACS Infect. Dis., 2018, 4(4), 549-559.
[http://dx.doi.org/10.1021/acsinfecdis.7b00159] [PMID: 29072835]
[97]
Svogie, A.L.; Isaacs, M.; Hoppe, H.C.; Khanye, S.D.; Veale, C.G.L. Indolyl-3-ethanone-α-thioethers: A promising new class of non-toxic antimalarial agents. Eur. J. Med. Chem., 2016, 114, 79-88.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.056] [PMID: 26974377]
[98]
dos Santos Filho, J.M. de Queiroz e Silva, D.M.A.; Macedo, T.S.; Teixeira, H.M.P.; Moreira, D.R.M.; Challal, S.; Wolfender, J.L.; Queiroz, E.F.; Soares, M.B.P. Conjugation of N -acylhydrazone and 1,2,4-oxadiazole leads to the identification of active antimalarial agents. Bioorg. Med. Chem., 2016, 24(22), 5693-5701.
[http://dx.doi.org/10.1016/j.bmc.2016.09.013] [PMID: 27667552]
[99]
Verma, G.; Khan, M.F.; Mohan Nainwal, L.; Ishaq, M.; Akhter, M.; Bakht, A.; Anwer, T.; Afrin, F.; Islamuddin, M.; Husain, I.; Alam, M.M.; Shaquiquzzaman, M. Targeting malaria and leishmaniasis: Synthesis and pharmacological evaluation of novel pyrazole-1,3,4-oxadiazole hybrids. Part II. Bioorg. Chem., 2019, 89, 102986.
[http://dx.doi.org/10.1016/j.bioorg.2019.102986] [PMID: 31146198]
[100]
Parikh, P.H.; Timaniya, J.B.; Patel, M.J.; Patel, K.P. Design, synthesis, and characterization of novel substituted 1,2,4-oxadiazole and their biological broadcast. Med. Chem. Res., 2020, 29(3), 538-548.
[http://dx.doi.org/10.1007/s00044-020-02505-8]
[101]
Thakur, R.K.; Joshi, P.; Upadhyaya, K.; Singh, K.; Sharma, G.; Shukla, S.K.; Tripathi, R.; Tripathi, R.P. Synthesis of isatin based N1-alkylated 3-β-C-glycoconjugated-oxopropylidene oxindoles as potent antiplasmodial agents. Eur. J. Med. Chem., 2019, 162, 448-454.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.008] [PMID: 30469040]
[102]
Butler, N.M.; Hendra, R.; Bremner, J.B.; Willis, A.C.; Lucantoni, L.; Avery, V.M.; Keller, P.A. Cascade reactions of indigo with oxiranes and aziridines: efficient access to dihydropyrazinodiindoles and spiro-oxazocinodiindoles. Org. Biomol. Chem., 2018, 16(33), 6006-6016.
[http://dx.doi.org/10.1039/C8OB00865E] [PMID: 30083677]
[103]
Tiwari, M.K.; Coghi, P.; Agrawal, P.; Shyamlal, B.R.K.; J., Yang L.; Yadav, L.; Peng, Y.; Sharma, R.; Yadav, D.K.; Sahal, D.; Kam Wai Wong, V.; Chaudhary, S. Design, synthesis, structure-activity relationship and docking studies of novel functionalized arylvinyl-1,2,4-trioxanes as potent antiplasmodial as well as anticancer agents. ChemMedChem, 2020, 15(13), 1216-1228.
[http://dx.doi.org/10.1002/cmdc.202000045] [PMID: 32392362]
[104]
Gupta, A.K.; Varshney, K.; Kumar, V.; Srivastava, K.; Pant, A.B.; Puri, S.K.; Saxena, A.K. Design, synthesis, and biological evaluation of novel 1,2,4-trioxanes as potential antimalarial agents. Arch. Pharm., 2017, 350(3-4), 1600335.
[http://dx.doi.org/10.1002/ardp.201600335] [PMID: 28207169]
[105]
Rudrapal, M.; Washmin Banu, Z.; Chetia, D. Newer series of trioxane derivatives as potent antimalarial agents. Med. Chem. Res., 2018, 27(2), 653-668.
[http://dx.doi.org/10.1007/s00044-017-2090-8]
[106]
Ismail, H.M.; Barton, V.E.; Panchana, M.; Charoensutthivarakul, S.; Biagini, G.A.; Ward, S.A.; O’Neill, P.M. A click chemistry-based proteomic approach reveals that 1,2,4-trioxolane and artemisinin antimalarials share a common protein alkylation profile. Angew. Chem. Int. Ed., 2016, 55(22), 6401-6405.
[http://dx.doi.org/10.1002/anie.201512062] [PMID: 27089538]
[107]
Karad, S.C.; Purohit, V.B.; Avalani, J.R.; Sapariya, N.H.; Raval, D.K. Design, synthesis, and characterization of a fluoro substituted novel pyrazole nucleus clubbed with 1,3,4-oxadiazole scaffolds and their biological applications. RSC Advances, 2016, 6(47), 41532-41541.
[http://dx.doi.org/10.1039/C6RA01349J]
[108]
Kumar, P.; Kadyan, K.; Duhan, M.; Sindhu, J.; Singh, V.; Saharan, B.S. Design, synthesis, conformational and molecular docking study of some novel acyl hydrazone based molecular hybrids as antimalarial and antimicrobial agents. Chem. Cent. J., 2017, 11(1), 115.
[http://dx.doi.org/10.1186/s13065-017-0344-7] [PMID: 29138944]
[109]
Bhatt, J.D.; Patel, T.S.; Chudasama, C.J.; Patel, K.D. Microwave-assisted synthesis of novel pyrazole clubbed polyhydroquinolines in an ionic-liquid and their biological perspective. ChemistrySelect, 2018, 3(13), 3632-3640.
[http://dx.doi.org/10.1002/slct.201702285]
[110]
Prasad, P.; Kalola, A.G.; Patel, M.P. Microwave assisted one-pot synthetic route to imidazo[1,2- a]pyrimidine derivatives of imidazo/triazole clubbed pyrazole and their pharmacological screening. New J. Chem., 2018, 42(15), 12666-12676.
[http://dx.doi.org/10.1039/C8NJ00670A]
[111]
Kumar, G.; Tanwar, O.; Kumar, J.; Akhter, M.; Sharma, S.; Pillai, C.R.; Alam, M.M.; Zama, M.S. Pyrazole-pyrazoline as promising novel antimalarial agents: A mechanistic study. Eur. J. Med. Chem., 2018, 149, 139-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.082] [PMID: 29499486]
[112]
Bekhit, A.A.; Saudi, M.N.; Hassan, A.M.M.; Fahmy, S.M.; Ibrahim, T.M.; Ghareeb, D.; El-Seidy, A.M.; Nasralla, S.N.; Bekhit, A.E.D.A. Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents. Eur. J. Med. Chem., 2019, 163, 353-366.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.067] [PMID: 30530172]
[113]
Sapariya, N.H.; Vaghasiya, B.K.; Thummar, R.P.; Kamani, R.D.; Patel, K.H.; Thakor, P.; Thakkar, S.S.; Ray, A.; Raval, D.K. Synthesis, characterization, in silicomolecular docking study and biological evaluation of a 5-(phenylthio) pyrazole based polyhydroquinoline core moiety. New J. Chem., 2017, 41(19), 10686-10694.
[http://dx.doi.org/10.1039/C7NJ01962A]
[114]
Verma, G.; Chashoo, G.; Ali, A.; Khan, M.F.; Akhtar, W.; Ali, I.; Akhtar, M.; Alam, M.M.; Shaquiquzzaman, M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg. Chem., 2018, 77, 106-124.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.007] [PMID: 29353728]
[115]
Mishra, V.K.; Mishra, M.; Kashaw, V.; Kashaw, S.K. Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents. Bioorg. Med. Chem., 2017, 25(6), 1949-1962.
[http://dx.doi.org/10.1016/j.bmc.2017.02.025] [PMID: 28237557]
[116]
Pandey, A.K.; Sharma, S.; Pandey, M.; Alam, M.M.; Shaquiquzzaman, M.; Akhter, M. 4, 5-Dihydrooxazole-pyrazoline hybrids: Synthesis and their evaluation as potential antimalarial agents. Eur. J. Med. Chem., 2016, 123, 476-486.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.055] [PMID: 27494165]
[117]
Marquise, N.; Chevallier, F.; Nassar, E.; Frédérich, M.; Ledoux, A.; Halauko, Y.S.; Ivashkevich, O.A.; Matulis, V.E.; Roisnel, T.; Dorcet, V.; Mongin, F. Substituted azafluorenones: Access from dihalogeno diaryl ketones by palladium-catalyzed auto-tandem processes and evaluation of their antibacterial, antifungal, antimalarial and antiproliferative activities. Tetrahedron, 2016, 72(6), 825-836.
[http://dx.doi.org/10.1016/j.tet.2015.12.050]
[118]
Barbosa, C.S.; Guimarães, D.S.M.; Gonçalves, A.M.M.N.; Barbosa, M.C.S.; Alves e Costa, M.L.; Nascimento Júnior, C.S.; Guimarães, L.; Ribeiro-Viana, R.M.; dos Santos, F.V.; Alves de Brito, C.F.; de Pilla Varotti, F.; Ribeiro Viana, G.H. Target-guided synthesis and antiplasmodial evaluation of a new fluorinated 3-alkylpyridine marine alkaloid analog. ACS Omega, 2017, 2(11), 8264-8272.
[http://dx.doi.org/10.1021/acsomega.7b01302] [PMID: 30023579]
[119]
Patel, P.R.; Sun, W.; Kim, M.; Huang, X.; Sanderson, P.E.; Tanaka, T.Q.; McKew, J.C.; Simeonov, A.; Williamson, K.C.; Zheng, W.; Huang, W. In vitro evaluation of imidazo[4,5 -c]quinolin-2-ones as gametocytocidal antimalarial agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2907-2911.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.045] [PMID: 27156776]
[120]
Bassanini, I.; Parapini, S.; Basilico, N.; Sparatore, A. Novel hydrophilic riminophenazines as potent antiprotozoal agents. ChemMedChem, 2019, 14(22), 1940-1949.
[http://dx.doi.org/10.1002/cmdc.201900522] [PMID: 31658408]
[121]
Nizi, E.; Sferrazza, A.; Fabbrini, D.; Nardi, V.; Andreini, M.; Graziani, R.; Gennari, N.; Bresciani, A.; Paonessa, G.; Harper, S. Peptidomimetic nitrile inhibitors of malarial protease falcipain-2 with high selectivity against human cathepsins. Bioorg. Med. Chem. Lett., 2018, 28(9), 1540-1544.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.069] [PMID: 29615344]
[122]
Akladios, F.N.; Andrew, S.D.; Boog, S.J.; de Kock, C.; Haynes, R.K.; Parkinson, C.J. The evaluation of metal co-ordinating bis-thiosemicarbazones as potential anti-malarial agents. Med. Chem., 2019, 15(1), 51-58.
[http://dx.doi.org/10.2174/1573406414666180525132204] [PMID: 29804537]
[123]
Vekariya, M.K.; Vekariya, R.H.; Patel, K.D.; Raval, N.P.; Shah, P.U.; Rajani, D.P.; Shah, N.K. Pyrimidine-pyrazole hybrids as morpholinopyrimidine-based pyrazole carboxamides: Synthesis, characterisation, docking, ADMET study and biological evaluation. ChemistrySelect, 2018, 3(24), 6998-7008.
[http://dx.doi.org/10.1002/slct.201801011]
[124]
Vekariya, M.K.; Patel, D.B.; Pandya, P.A.; Vekariya, R.H.; Shah, P.U.; Rajani, D.P.; Shah, N.K. Novel N-thioamide analogues of pyrazolylpyrimidine based piperazine: Design, synthesis, characterization, in-silico molecular docking study and biological evaluation. J. Mol. Struct., 2019, 1175, 551-565.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.018]
[125]
Kokkonda, S.; Deng, X.; White, K.L.; Coteron, J.M.; Marco, M.; de las Heras, L.; White, J.; El Mazouni, F.; Tomchick, D.R.; Manjalanagara, K.; Rudra, K.R.; Chen, G.; Morizzi, J.; Ryan, E.; Kaminsky, W.; Leroy, D.; Martínez-Martínez, M.S.; Jimenez-Diaz, M.B.; Bazaga, S.F.; Angulo-Barturen, I.; Waterson, D.; Burrows, J.N.; Matthews, D.; Charman, S.A.; Phillips, M.A.; Rathod, P.K. Tetrahydro-2-naphthyl and 2-indanyl triazolopyrimidines targeting Plasmodium falciparum dihydroorotate dehydrogenase display potent and selective antimalarial activity. J. Med. Chem., 2016, 59(11), 5416-5431.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00275] [PMID: 27127993]
[126]
Chen, W.; Huang, Z.; Wang, W.; Mao, F.; Guan, L.; Tang, Y.; Jiang, H.; Li, J.; Huang, J.; Jiang, L.; Zhu, J. Discovery of new antimalarial agents: Second-generation dual inhibitors against FP-2 and PfDHFR viafragments assembely. Bioorg. Med. Chem., 2017, 25(24), 6467-6478.
[http://dx.doi.org/10.1016/j.bmc.2017.10.017] [PMID: 29111368]
[127]
Mundra, S.; Thakur, V.; Bello, A.M.; Rathore, S.; Asad, M.; Wei, L.; Yang, J.; Chakka, S.K.; Mahesh, R.; Malhotra, P.; Mohmmed, A.; Kotra, L.P. A novel class of Plasmodial ClpP protease inhibitors as potential antimalarial agents. Bioorg. Med. Chem., 2017, 25(20), 5662-5677.
[http://dx.doi.org/10.1016/j.bmc.2017.08.049] [PMID: 28917450]
[128]
Oruma, U.S.; Ukoha, P.O.; Rhyman, L.; Elzagheid, M.I.; Obasi, L.N.; Ramasami, P.; Jurkschat, K. Synthesis, characterization, antimicrobial screening, and computational studies of a tripodal schiff base containing pyrimidine unit. J. Heterocycl. Chem., 2018, 55(5), 1119-1129.
[http://dx.doi.org/10.1002/jhet.3142]
[129]
Tripathi, M.; Taylor, D.; Khan, S.I.; Tekwani, B.L.; Ponnan, P.; Das, U.S.; Velpandian, T.; Rawat, D.S. Hybridization of fluoro-amodiaquine (FAQ) with pyrimidines: Synthesis and antimalarial efficacy of FAQ–pyrimidines. ACS Med. Chem. Lett., 2019, 10(5), 714-719.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00496] [PMID: 31097988]
[130]
Chen, W.; Yao, X.; Huang, Z.; Mao, F.; Guan, L.; Tang, Y.; Jiang, H.; Li, J.; Huang, J.; Jiang, L.; Zhu, J. Novel dual inhibitors against FP-2 and PfDHFR as potential antimalarial agents: Design, synthesis and biological evaluation. Chin. Chem. Lett., 2019, 30(1), 250-254.
[http://dx.doi.org/10.1016/j.cclet.2017.11.041]
[131]
Rathwa, S.; Bhoi, M.; Borad, M.; Patel, K.; Rajani, D.; Rajani, S.; Patel, H. Microwave assisted synthesis, biological characterization and docking studies of pyrimidine derivatives. Curr. Microw. Chem., 2016, 3(3), 178-186.
[http://dx.doi.org/10.2174/2213335602666150728205457]
[132]
Bacherikov, V.A.; Chittiboyina, A.G.; Avery, M.A. Design, synthesis, and biological evaluation of peptidomimetic N -Substituted Cbz-4-Hyp-Hpa-amides as novel inhibitors of Plasmodium falciparum. Chem. Biodivers., 2017, 14(8), e1700037.
[http://dx.doi.org/10.1002/cbdv.201700037] [PMID: 28498611]
[133]
Meyers, M.J.; Liu, J.; Xu, J.; Leng, F.; Guan, J.; Liu, Z.; McNitt, S.A.; Qin, L.; Dai, L.; Ma, H.; Adah, D.; Zhao, S.; Li, X.; Polino, A.J.; Nasamu, A.S.; Goldberg, D.E.; Liu, X.; Lu, Y.; Tu, Z.; Chen, X.; Tortorella, M.D. 4-Aryl pyrrolidines as a novel class of orally efficacious antimalarial agents. Part 1: Evaluation of 4-Aryl-N-benzylpyrrolidine-3-carboxamides. J. Med. Chem., 2019, 62(7), 3503-3512.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01972] [PMID: 30856324]
[134]
Meyers, M.J.; Liu, J.; Liu, Z.; Ma, H.; Dai, L.; Adah, D.; Zhao, S.; Li, X.; Liu, X.; Lu, Y.; Huang, Y.; Tu, Z.; Chen, X.; Tortorella, M.D. 4-Aryl pyrrolidines as novel orally efficacious antimalarial agents. Part 2: 2-Aryl-N-(4-arylpyrrolidin-3-yl)acetamides. ACS Med. Chem. Lett., 2019, 10(6), 966-971.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00123] [PMID: 31223456]
[135]
Gilson, P.R.; Tan, C.; Jarman, K.E.; Lowes, K.N.; Curtis, J.M.; Nguyen, W.; Di Rago, A.E.; Bullen, H.E.; Prinz, B.; Duffy, S.; Baell, J.B.; Hutton, C.A.; Jousset Subroux, H.; Crabb, B.S.; Avery, V.M.; Cowman, A.F.; Sleebs, B.E. Optimization of 2-Anilino 4-amino substituted quinazolines into potent antimalarial agents with oral in vivo activity. J. Med. Chem., 2017, 60(3), 1171-1188.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01673] [PMID: 28080063]
[136]
Soumyanarayanan, U.; Ramanujulu, P.M.; Mustafa, N.; Haider, S.; Fang Nee, A.H.; Tong, J.X.; Tan, K.S.W.; Chng, W.J.; Dymock, B.W. Discovery of a potent histone deacetylase (HDAC) 3/6 selective dual inhibitor. Eur. J. Med. Chem., 2019, 184, 111755.
[http://dx.doi.org/10.1016/j.ejmech.2019.111755] [PMID: 31627059]
[137]
Rasina, D.; Otikovs, M.; Leitans, J.; Recacha, R.; Borysov, O.V.; Kanepe-Lapsa, I.; Domraceva, I.; Pantelejevs, T.; Tars, K.; Blackman, M.J.; Jaudzems, K.; Jirgensons, A. Fragment-based discovery of 2-aminoquinazolin-4(3 H)-ones as novel class nonpeptidomimetic inhibitors of the plasmepsins I, II, and IV. J. Med. Chem., 2016, 59(1), 374-387.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01558] [PMID: 26670264]
[138]
Mphahlele, M.; Khoza, T.; Mabeta, P. Novel 2,3-Dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones: Synthesis and biological evaluation. Molecules, 2016, 22(1), 55.
[http://dx.doi.org/10.3390/molecules22010055] [PMID: 28042842]
[139]
Neelarapu, R.; Maignan, J.R.; Lichorowic, C.L.; Monastyrskyi, A.; Mutka, T.S.; LaCrue, A.N.; Blake, L.D.; Casandra, D.; Mashkouri, S.; Burrows, J.N.; Willis, P.A.; Kyle, D.E.; Manetsch, R. Design and synthesis of orally bioavailable piperazine substituted 4(1 H)-quinolones with potent antimalarial activity: Structure–activity and structure–property relationship studies. J. Med. Chem., 2018, 61(4), 1450-1473.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00738] [PMID: 29215279]
[140]
Maignan, J.R.; Lichorowic, C.L.; Giarrusso, J.; Blake, L.D.; Casandra, D.; Mutka, T.S.; LaCrue, A.N.; Burrows, J.N.; Willis, P.A.; Kyle, D.E.; Manetsch, R. ICI 56,780 Optimization: Structure–activity relationship studies of 7-(2-Phenoxyethoxy)-4(1 H)-quinolones with antimalarial activity. J. Med. Chem., 2016, 59(14), 6943-6960.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00759] [PMID: 27291102]
[141]
Floyd, D.M.; Stein, P.; Wang, Z.; Liu, J.; Castro, S.; Clark, J.A.; Connelly, M.; Zhu, F.; Holbrook, G.; Matheny, A.; Sigal, M.S.; Min, J.; Dhinakaran, R.; Krishnan, S.; Bashyum, S.; Knapp, S.; Guy, R.K. Hit-to-lead studies for the antimalarial tetrahydroisoquinolone carboxanilides. J. Med. Chem., 2016, 59(17), 7950-7962.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00752] [PMID: 27505686]
[142]
Foley, M.; Tilley, L. Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79(1), 55-87.
[http://dx.doi.org/10.1016/S0163-7258(98)00012-6] [PMID: 9719345]
[143]
Karad, S.C.; Purohit, V.B.; Thakor, P.; Thakkar, V.R.; Raval, D.K. Novel morpholinoquinoline nucleus clubbed with pyrazoline scaffolds: Synthesis, antibacterial, antitubercular and antimalarial activities. Eur. J. Med. Chem., 2016, 112, 270-279.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.016] [PMID: 26900659]
[144]
Umamatheswari, S.; Sankar, C. Synthesis, identification and in vitro biological evaluation of some novel quinoline incorporated 1,3-thiazinan-4-one derivatives. Bioorg. Med. Chem. Lett., 2017, 27(3), 695-699.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.038] [PMID: 28065567]
[145]
Radini, I.; Elsheikh, T.; El-Telbani, E.; Khidre, R. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents. Molecules, 2016, 21(7), 909.
[http://dx.doi.org/10.3390/molecules21070909] [PMID: 27428939]
[146]
Terzić, N.; Konstantinović, J.; Tot, M.; Burojević, J.; Djurković- Djaković, O.; Srbljanović, J.; Štajner, T.; Verbić, T.; Zlatović, M.; Machado, M.; Albuquerque, I.S.; Prudêncio, M.; Sciotti, R.J.; Pecic, S.; D’Alessandro, S.; Taramelli, D.; Šolaja, B.A. Reinvestigating old pharmacophores: Are 4-aminoquinolines and tetraoxanes potential two-stage antimalarials? J. Med. Chem., 2016, 59(1), 264-281.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01374] [PMID: 26640981]
[147]
Singh, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. 4-Aminoquinoline-ferrocenyl-chalcone conjugates: Synthesis and anti-plasmodial evaluation. Eur. J. Med. Chem., 2017, 125, 269-277.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.044] [PMID: 27688182]
[148]
Gayam, V.; Ravi, S. Cinnamoylated chloroquine analogues: A new structural class of antimalarial agents. Eur. J. Med. Chem., 2017, 135, 382-391.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.063] [PMID: 28460312]
[149]
Insuasty, D.; Robledo, S.M.; Vélez, I.D.; Cuervo, P.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J.; Abonia, R. A Schmidt rearrangement-mediated synthesis of novel tetrahydro-benzo[1,4]] diazepin-5-ones as potential anticancer and antiprotozoal agents. Eur. J. Med. Chem., 2017, 141, 567-583.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.024] [PMID: 29102177]
[150]
Yeo, S.J.; Liu, D.X.; Kim, H.S.; Park, H. Anti-malarial effect of novel chloroquine derivatives as agents for the treatment of malaria. Malar. J., 2017, 16(1), 80.
[http://dx.doi.org/10.1186/s12936-017-1725-z] [PMID: 28212631]
[151]
Jardosh, H.H.; Vala, N.D.; Patel, M.P. Library design, synthesis and biological exploration of novel 3,4'-bicarbostyril derivatives as potent antimicrobial, antitubercular and antimalarial agents. Med. Chem. Res., 2017, 26(5), 881-899.
[http://dx.doi.org/10.1007/s00044-017-1797-x]
[152]
Zishiri, V.K.; Joshi, M.C.; Hunter, R.; Chibale, K.; Smith, P.J.; Summers, R.L.; Martin, R.E.; Egan, T.J. Quinoline antimalarials containing a dibemethin group are active against chloroquinone-resistant Plasmodium falciparum and inhibit chloroquine transport viathe P. falciparum chloroquine-resistance transporter (PfCRT). J. Med. Chem., 2011, 54(19), 6956-6968.
[http://dx.doi.org/10.1021/jm2009698] [PMID: 21875063]
[153]
Zishiri, V.K.; Hunter, R.; Smith, P.J.; Taylor, D.; Summers, R.; Kirk, K.; Martin, R.E.; Egan, T.J. A series of structurally simple chloroquine chemosensitizing dibemethin derivatives that inhibit chloroquine transport by PfCRT. Eur. J. Med. Chem., 2011, 46(5), 1729-1742.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.026] [PMID: 21396749]
[154]
Joshi, M.C.; Okombo, J.; Nsumiwa, S.; Taylor, D.; Wiesner, L.; Hunter, R.; Chibale, K.; Egan, T.J. 4-Aminoquinoline antimalarials containing a benzylmethylpyridylmethylamine group are active against drug resistant Plasmodium falciparum and exhibit oral ac-tivity in mice. J. Med. Chem., 2017, 60(24), 10245-10256.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01537]
[155]
Jain, M.; Reddy, C.V.R.P.; Halder, M.; Singh, S.; Kumar, R.; Wasudeo, S.G.; Singh, P.P.; Khan, S.I.; Jacob, M.R.; Tekwani, B.L.; Jain, R. Synthesis and biological evaluation of 8-quinolinamines and their amino acid conjugates as broad-spectrum anti-infectives. ACS Omega, 2018, 3(3), 3060-3075.
[http://dx.doi.org/10.1021/acsomega.7b02047] [PMID: 30023858]
[156]
Romero, J.A.; Acosta, M.E.; Gamboa, N.D.; Mijares, M.R.; De Sanctis, J.B.; Charris, J.E. Optimization of antimalarial, and anticancer activities of (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate. Bioorg. Med. Chem., 2018, 26(4), 815-823.
[http://dx.doi.org/10.1016/j.bmc.2017.12.022] [PMID: 29398445]
[157]
Valverde, E.A.; Romero, A.H.; Acosta, M.E.; Gamboa, N.; Henriques, G.; Rodrigues, J.R.; Ciangherotti, C.; López, S.E. Synthesis, β-hematin inhibition studies and antimalarial evaluation of new dehydroxy isoquine derivatives against Plasmodium berghei: A promising antimalarial agent. Eur. J. Med. Chem., 2018, 148, 498-506.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.051] [PMID: 29126722]
[158]
Charris, J.E.; Monasterios, M.C.; Acosta, M.E.; Rodríguez, M.A.; Gamboa, N.D.; Martínez, G.P.; Rojas, H.R.; Mijares, M.R.; De Sanctis, J.B. Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyrazoline hybrids. A dual action. Med. Chem. Res., 2019, 28(11), 2050-2066.
[http://dx.doi.org/10.1007/s00044-019-02435-0]
[159]
Yvette, O.M.; Malan, S.F.; Taylor, D.; Kapp, E.; Joubert, J. Adamantane amine-linked chloroquinoline derivatives as chloroquine resistance modulating agents in Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2018, 28(8), 1287-1291.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.026] [PMID: 29559277]
[160]
Miranda, D.; Capela, R.; Albuquerque, I.S.; Meireles, P.; Paiva, I.; Nogueira, F.; Amewu, R.; Gut, J.; Rosenthal, P.J.; Oliveira, R.; Mota, M.M.; Moreira, R.; Marti, F.; Prudêncio, M.; O’Neill, P.M.; Lopes, F. Novel endoperoxide-based transmission-blocking antimalarials with liver- and blood-schizontocidal activities. ACS Med. Chem. Lett., 2014, 5(2), 108-112.
[http://dx.doi.org/10.1021/ml4002985] [PMID: 24900781]
[161]
Capela, R.; Magalhães, J.; Miranda, D.; Machado, M.; Sanches-Vaz, M.; Albuquerque, I.S.; Sharma, M.; Gut, J.; Rosenthal, P.J.; Frade, R.; Perry, M.J.; Moreira, R.; Prudêncio, M.; Lopes, F. Endoperoxide-8-aminoquinoline hybrids as dual-stage antimalarial agents with enhanced metabolic stability. Eur. J. Med. Chem., 2018, 149, 69-78.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.048] [PMID: 29499488]
[162]
Aboelnaga, A. EL-Sayed, T.H. Click synthesis of new 7-chloroquinoline derivatives by using ultrasound irradiation and evaluation of their biological activity. Green Chem. Lett. Rev., 2018, 11(3), 254-263.
[http://dx.doi.org/10.1080/17518253.2018.1473505]
[163]
Kumar, S.; Saini, A.; Gut, J.; Rosenthal, P.J.; Raj, R.; Kumar, V. 4-Aminoquinoline-chalcone/- N -acetylpyrazoline conjugates: Synthesis and antiplasmodial evaluation. Eur. J. Med. Chem., 2017, 138, 993-1001.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.041] [PMID: 28756265]
[164]
Okanya, P.W.; Mohr, K.I.; Gerth, K.; Jansen, R.; Müller, R. Marinoquinolines A-F, pyrroloquinolines from Ohtaekwangia kribbensis (Bacteroidetes). J. Nat. Prod., 2011, 74(4), 603-608.
[http://dx.doi.org/10.1021/np100625a] [PMID: 21456549]
[165]
Van Baelen, G.; Hostyn, S.; Dhooghe, L.; Tapolcsányi, P.; Mátyus, P.; Lemière, G.; Dommisse, R.; Kaiser, M.; Brun, R.; Cos, P.; Maes, L.; Hajós, G.; Riedl, Z.; Nagy, I.; Maes, B.U.W.; Pieters, L. Structure–activity relationship of antiparasitic and cytotoxic indoloquinoline alkaloids, and their tricyclic and bicyclic analogues. Bioorg. Med. Chem., 2009, 17(20), 7209-7217.
[http://dx.doi.org/10.1016/j.bmc.2009.08.057] [PMID: 19781948]
[166]
Choi, E.J.; Nam, S.J.; Paul, L.; Beatty, D.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Previously uncultured marine bacteria linked to novel alkaloid production. Chem. Biol., 2015, 22(9), 1270-1279.
[http://dx.doi.org/10.1016/j.chembiol.2015.07.014] [PMID: 26299672]
[167]
Aguiar, A.C.C.; Panciera, M. Simão dos, S.E.F.; Singh, M.K.; Garcia, M.L.; de Souza, G.E.; Nakabashi, M.; Costa, J.L.; Garcia, C.R.S.; Oliva, G.; Correia, C.R.D.; Guido, R.V.C. Discovery of marinoquinolines as potent and fast-acting Plasmodium falciparum inhibitors with in vivo activity. J. Med. Chem., 2018, 61(13), 5547-5568.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00143] [PMID: 29879353]
[168]
Bhagat, S.; Arfeen, M.; Das, G.; Ramkumar, M.; Khan, S.I.; Tekwani, B.L.; Bharatam, P.V. Design, synthesis and biological evaluation of 4-aminoquinoline-guanylthiourea derivatives as antimalarial agents. Bioorg. Chem., 2019, 91, 103094.
[http://dx.doi.org/10.1016/j.bioorg.2019.103094] [PMID: 31376783]
[169]
da Silva, R.M.R.J.; Gandi, M.O.; Mendonça, J.S.; Carvalho, A.S.; Coutinho, J.P.; Aguiar, A.C.C.; Krettli, A.U.; Boechat, N. New hybrid trifluoromethylquinolines as antiplasmodium agents. Bioorg. Med. Chem., 2019, 27(6), 1002-1008.
[http://dx.doi.org/10.1016/j.bmc.2019.01.044] [PMID: 30737133]
[170]
Boechat, N.; Carvalho, R.C.C.; Ferreira, M.L.G.; Coutinho, J.P.; Sa, P.M.; Seito, L.N.; Rosas, E.C.; Krettli, A.U.; Bastos, M.M.; Pinheiro, L.C.S. Antimalarial and anti-inflammatory activities of new chloroquine and primaquine hybrids: Targeting the blockade of malaria parasite transmission. Bioorg. Med. Chem., 2020, 28(24), 115832.
[http://dx.doi.org/10.1016/j.bmc.2020.115832] [PMID: 33166927]
[171]
Patel, D.B.; Patel, K.D.; Prajapati, N.P.; Patel, K.R.; Rajani, D.P.; Rajani, S.D.; Shah, N.S.; Zala, D.D.; Patel, H.D. Design, synthesis, and biological and in silico study of fluorine-containing quinoline hybrid thiosemicarbazide analogues. J. Heterocycl. Chem., 2019, 56(8), 2235-2252.
[http://dx.doi.org/10.1002/jhet.3617]
[172]
Pavić, K.; Rubinić, B.; Rajić, Z.; Fontinha, D.; Prudêncio, M.; Uzelac, L.; Kralj, M.; Held, J.; Zorc, B. Primaquine homodimers as potential antiplasmodial and anticancer agents. Bioorg. Med. Chem. Lett., 2019, 29(19), 126614.
[http://dx.doi.org/10.1016/j.bmcl.2019.08.018] [PMID: 31431364]
[173]
Hameed, A.; Masood, S.; Hameed, A.; Ahmed, E.; Sharif, A.; Abdullah, M.I. Anti-malarial, cytotoxicity and molecular docking studies of quinolinyl chalcones as potential anti-malarial agent. J. Comput. Aided Mol. Des., 2019, 33(7), 677-688.
[http://dx.doi.org/10.1007/s10822-019-00210-2] [PMID: 31270655]
[174]
Aguiar, L.; Machado, M.; Sanches-Vaz, M.; Prudêncio, M.; Vale, N.; Gomes, P. Coupling the cell-penetrating peptides transportan and transportan 10 to primaquine enhances its activity against liver-stage malaria parasites. MedChemComm, 2019, 10(2), 221-226.
[http://dx.doi.org/10.1039/C8MD00447A] [PMID: 30881610]
[175]
Rossier, J.; Nasiri Sovari, S.; Pavic, A.; Vojnovic, S.; Stringer, T.; Bättig, S.; Smith, G.S.; Nikodinovic-Runic, J.; Zobi, F. Antiplasmodial activity and in vivo bio-distribution of chloroquine molecules released with a 4-(4-Ethynylphenyl)-triazole moiety from organometallo-cobalamins. Molecules, 2019, 24(12), 2310.
[http://dx.doi.org/10.3390/molecules24122310] [PMID: 31234469]
[176]
Minić A.; Van de Walle, T.; Van Hecke, K.; Combrinck, J.; Smith, P.J.; Chibale, K.; D’hooghe, M. Design and synthesis of novel ferrocene-quinoline conjugates and evaluation of their electrochemical and antiplasmodium properties. Eur. J. Med. Chem., 2020, 187, 111963.
[http://dx.doi.org/10.1016/j.ejmech.2019.111963] [PMID: 31865015]
[177]
Rani, A.; Kumar, S.; Legac, J.; Adeniyi, A.A.; Awolade, P.; Singh, P.; Rosenthal, P.J.; Kumar, V. Design, synthesis, heme binding and density functional theory studies of isoindoline-dione-4-aminoquinolines as potential antiplasmodials. Future Med. Chem., 2020, 12(3), 193-205.
[http://dx.doi.org/10.4155/fmc-2019-0260] [PMID: 31802710]
[178]
Kalita, J.; Chetia, D.; Rudrapal, M. Design, synthesis, antimalarial activity and docking study of 7-chloro-4- (2-(substituted benzylidene)hydrazineyl)quinolines. Med. Chem., 2020, 16(7), 928-937.
[http://dx.doi.org/10.2174/1573406415666190806154722] [PMID: 31385774]
[179]
Liebman, K.M.; Burgess, S.J.; Gunsaru, B.; Kelly, J.X.; Li, Y.; Morrill, W.; Liebman, M.C.; Peyton, D.H. Unsymmetrical bisquinolines with high potency against P. falciparum malaria. Molecules, 2020, 25(9), 2251.
[http://dx.doi.org/10.3390/molecules25092251] [PMID: 32397659]
[180]
Roberts, B.F.; Zheng, Y.; Cleaveleand, J.; Lee, S.; Lee, E.; Ayong, L.; Yuan, Y.; Chakrabarti, D. 4-Nitro styrylquinoline is an antimalarial inhibiting multiple stages of Plasmodium falciparum asexual life cycle. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(1), 120-129.
[http://dx.doi.org/10.1016/j.ijpddr.2017.02.002] [PMID: 28285258]
[181]
Huang, G.; Murillo Solano, C.; Melendez, J.; Shaw, J.; Collins, J.; Banks, R.; Arshadi, A.K.; Boonhok, R.; Min, H.; Miao, J.; Chakrabarti, D.; Yuan, Y. Synthesis, structure–activity relationship, and antimalarial efficacy of 6-chloro-2-arylvinylquinolines. J. Med. Chem., 2020, 63(20), 11756-11785.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00858] [PMID: 32959656]
[182]
Carneiro, P.F.; Pinto, M.C.R.F.; Marra, R.K.F.; da Silva, F.C.; Resende, J.A.L.C.; Rocha e Silva, L.F.; Alves, H.G.; Barbosa, G.S.; de Vasconcellos, M.C.; Lima, E.S.; Pohlit, A.M.; Ferreira, V.F. Synthesis and antimalarial activity of quinones and structurally-related oxirane derivatives. Eur. J. Med. Chem., 2016, 108, 134-140.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.020] [PMID: 26638044]
[183]
Brandão, G.C.; Rocha Missias, F.C.; Arantes, L.M.; Soares, L.F.; Roy, K.K.; Doerksen, R.J.; Braga de Oliveira, A.; Pereira, G.R. Antimalarial naphthoquinones. Synthesis viaclick chemistry, in vitro activity, docking to Pf DHODH and SAR of lapachol-based compounds. Eur. J. Med. Chem., 2018, 145, 191-205.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.051] [PMID: 29324340]
[184]
Johnson-Ajinwo, O.R.; Ullah, I.; Mbye, H.; Richardson, A.; Horrocks, P.; Li, W.W. The synthesis and evaluation of thymoquinone analogues as anti-ovarian cancer and antimalarial agents. Bioorg. Med. Chem. Lett., 2018, 28(7), 1219-1222.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.051] [PMID: 29519737]
[185]
Ahenkorah, S.; Coertzen, D.; Tong, J.X.; Fridianto, K.; Wittlin, S.; Birkholtz, L.M.; Tan, K.S.W.; Lam, Y.; Go, M.L.; Haynes, R.K. Antimalarial N1, N3 -Dialkyldioxonaphthoimidazoliums: Synthesis, biological activity, and structure–activity relationships. ACS Med. Chem. Lett., 2020, 11(1), 49-55.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00457] [PMID: 31938463]
[186]
Vekariya, R.H.; Patel, K.D.; Vekariya, M.K.; Prajapati, N.P.; Rajani, D.P.; Rajani, S.D.; Patel, H.D. Microwave-assisted green synthesis of new imidazo[2,1-b]thiazole derivatives and their antimicrobial, antimalarial, and antitubercular activities. Res. Chem. Intermed., 2017, 43(11), 6207-6231.
[http://dx.doi.org/10.1007/s11164-017-2985-5]
[187]
Sujatha, K.; Ommi, N.B.; Mudiraj, A.; Babu, P.P.; Vedula, R.R. Synthesis of thiazolyl hydrazonothiazolamines and 1,3,4-thiadiazinyl hydrazonothiazolamines as a class of antimalarial agents. Arch. Pharm., 2019, 352(12), 1900079.
[http://dx.doi.org/10.1002/ardp.201900079] [PMID: 31602690]
[188]
Prajapati, N.P.; Patel, K.D.; Vekariya, R.H.; Patel, H.D.; Rajani, D.P. Thiazole fused thiosemicarbazones: Microwave-assisted synthesis, biological evaluation and molecular docking study. J. Mol. Struct., 2019, 1179, 401-410.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.025]
[189]
Jadav, S.S.; Badavath, V.N.; Ganesan, R.; Ganta, N.M.; Besson, D.; Jayaprakash, V. Biological evaluation of 2-aminothiazole hybrid as antimalarial and antitrypanosomal agents: Design and synthesis. Antiinfect. Agents, 2020, 18(2), 101-108.
[http://dx.doi.org/10.2174/2211352516666181016122537]
[190]
Guimarães, D.S.M.; de Sousa, L.L.S.; do Nascimento, S.B.; Silva, L.R.; de Miranda, M.N.R.; de Almeida, H.G.; de Souza, R.V.; Maluf, S.E.C.; Budu, A.; Marinho, J.A.; Abramo, C.; Carmona, A.K.; da Silva, M.G.; da Silva, G.R.; Kemmer, V.M.; Butera, A.P.; Ribeiro-Viana, R.M.; Gazarini, M.L.; Júnior, C.S.N.; Guimarães, L.; dos Santos, F.V.; de Castro, W.V.; Viana, G.H.R.; de Brito, C.F.A.; de Pilla, V.F. Improvement of antimalarial activity of a 3-alkylpiridine alkaloid analog by replacing the pyridine ring to a thiazole-containing heterocycle: Mode of action, mutagenicity profile, and Caco-2 cell-based permeability. Eur. J. Pharm. Sci., 2019, 138, 105015.
[http://dx.doi.org/10.1016/j.ejps.2019.105015] [PMID: 31344442]
[191]
Zhou, C.H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem., 2012, 19(2), 239-280.
[http://dx.doi.org/10.2174/092986712803414213] [PMID: 22320301]
[192]
Devender, N.; Gunjan, S.; Chhabra, S.; Singh, K.; Pasam, V.R.; Shukla, S.K.; Sharma, A.; Jaiswal, S.; Singh, S.K.; Kumar, Y.; Lal, J.; Trivedi, A.K.; Tripathi, R.; Tripathi, R.P. Identification of β-Amino alcohol grafted 1,4,5 trisubstituted 1,2,3-triazoles as potent antimalarial agents. Eur. J. Med. Chem., 2016, 109, 187-198.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.038] [PMID: 26774925]
[193]
Thakkar, S.S.; Thakor, P.; Doshi, H.; Ray, A. 1,2,4-Triazole and 1,3,4-oxadiazole analogues: Synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities. Bioorg. Med. Chem., 2017, 25(15), 4064-4075.
[http://dx.doi.org/10.1016/j.bmc.2017.05.054] [PMID: 28634040]
[194]
Jarrahpour, A.; Aye, M.; Rad, J.A.; Yousefinejad, S.; Sinou, V.; Latour, C.; Brunel, J.M.; Turos, E. Design, synthesis, activity evaluation and QSAR studies of novel antimalarial 1,2,3-triazolo-β-lactam derivatives. J. Indian Chem. Soc., 2018, 15(6), 1311-1326.
[http://dx.doi.org/10.1007/s13738-018-1330-2]
[195]
Chopra, R.; Chibale, K.; Singh, K. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. Eur. J. Med. Chem., 2018, 148, 39-53.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.021] [PMID: 29454189]
[196]
Yadav, N.; Agarwal, D.; Kumar, S.; Dixit, A.K.; Gupta, R.D.; Awasthi, S.K. In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs. Eur. J. Med. Chem., 2018, 145, 735-745.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.017] [PMID: 29366931]
[197]
Thakur, R.K.; Joshi, P.; Baranwal, P.; Sharma, G.; Shukla, S.K.; Tripathi, R.; Tripathi, R.P. Synthesis and antiplasmodial activity of glyco-conjugate hybrids of phenylhydrazono-indolinones and glycosylated 1,2,3-triazolyl-methyl-indoline-2,3-diones. Eur. J. Med. Chem., 2018, 155, 764-771.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.042] [PMID: 29940466]
[198]
Mabasa, T.F.; Awe, B.; Laming, D.; Kinfe, H.H. Design, synthesis and antiplasmodial evaluation of sulfoximine-triazole hybrids as potential antimalarial prototypes. Med. Chem., 2019, 15(6), 685-692.
[http://dx.doi.org/10.2174/1573406415666190206232308] [PMID: 30727905]
[199]
Kaushik, C.P.; Pahwa, A. Convenient synthesis, antimalarial and antimicrobial potential of thioethereal 1,4-disubstituted 1,2,3-triazoles with ester functionality. Med. Chem. Res., 2018, 27(2), 458-469.
[http://dx.doi.org/10.1007/s00044-017-2072-x]
[200]
Porta, E.O.J.; Bofill Verdaguer, I.; Perez, C.; Banchio, C.; Ferreira de Azevedo, M.; Katzin, A.M.; Labadie, G.R. Repositioning Salirasib as a new antimalarial agent. MedChemComm, 2019, 10(9), 1599-1605.
[http://dx.doi.org/10.1039/C9MD00298G] [PMID: 31803400]
[201]
Uddin, A.; Singh, V.; Irfan, I.; Mohammad, T.; Singh Hada, R.; Imtaiyaz Hassan, M.; Abid, M.; Singh, S. Identification and structure–activity relationship (SAR) studies of carvacrol derivatives as potential anti-malarial against Plasmodium falciparum falcipain-2 protease. Bioorg. Chem., 2020, 103, 104142.
[http://dx.doi.org/10.1016/j.bioorg.2020.104142] [PMID: 32763521]
[202]
Karpina, V.R.; Kovalenko, S.S.; Kovalenko, S.M.; Drushlyak, O.G.; Bunyatyan, N.D.; Georgiyants, V.A.; Ivanov, V.V.; Langer, T.; Maes, L. A novel series of [1,2,4]Triazolo[4,3-a]Pyridine sulfonamides as potential antimalarial agents: In silicostudies, synthesis and in vitro evaluation. Molecules, 2020, 25(19), 4485.
[http://dx.doi.org/10.3390/molecules25194485] [PMID: 33007887]
[203]
Singh, V.; Hada, R.S.; Uddin, A.; Aneja, B.; Abid, M.; Pandey, K.C.; Singh, S. Inhibition of hemoglobin degrading protease falcipain-2 as a mechanism for anti-malarial activity of triazole-amino acid hybrids. Curr. Top. Med. Chem., 2020, 20(5), 377-389.
[http://dx.doi.org/10.2174/1568026620666200130162347] [PMID: 32000644]
[204]
Ezeokonkwo, M.A.; Okafor, S.N.; Ogbonna, O.N.; Onoabedje, E.A.; Ibeanu, F.N.; Godwin-Nwakwasi, E.U.; Ezema, B.E. New antimalarial agents derived from nonlinear phenoxazine ring system. Med. Chem. Res., 2020, 29(1), 63-74.
[http://dx.doi.org/10.1007/s00044-019-02459-6]
[205]
Bouchut, A.; Rotili, D.; Pierrot, C.; Valente, S.; Lafitte, S.; Schultz, J.; Hoglund, U.; Mazzone, R.; Lucidi, A.; Fabrizi, G.; Pechalrieu, D.; Arimondo, P.B.; Skinner-Adams, T.S.; Chua, M.J.; Andrews, K.T.; Mai, A.; Khalife, J. Identification of novel quinazoline derivatives as potent antiplasmodial agents. Eur. J. Med. Chem., 2019, 161, 277-291.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.041] [PMID: 30366254]
[206]
Pobsuk, N.; Suphakun, P.; Hannongbua, S.; Nantasenamat, C.; Choowongkomon, K.; Gleeson, M.P. Synthesis, Plasmodium falciparum inhibitory activity, cytotoxicity and solubility of N2, N4 -Disubstituted Quinazoline-2,4-diamines. Med. Chem., 2019, 15(6), 693-704.
[http://dx.doi.org/10.2174/1573406415666181219100307] [PMID: 30569870]
[207]
Boudhar, A.; Ng, X.W.; Loh, C.Y.; Chia, W.N.; Tan, Z.M.; Nosten, F.; Dymock, B.W.; Tan, K.S.W. Overcoming chloroquine resistance in malaria: Design, synthesis and structure–activity relationships of novel chemoreversal agents. Eur. J. Med. Chem., 2016, 119, 231-249.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.058] [PMID: 27173385]
[208]
Chaker, A.; Najahi, E.; Chatriant, O.; Valentin, A.; Téné, N.; Treilhou, M.; Chabchoub, F.; Nepveu, F. New 3-substituted-2,1-benzisoxazoles: Synthesis and antimicrobial activities. Arab. J. Chem., 2017, 10, S2464-S2470.
[http://dx.doi.org/10.1016/j.arabjc.2013.09.011]
[209]
Abosede, O.O.; Vyas, N.A.; Singh, S.B.; Kumbhar, A.S.; Kate, A.; Kumbhar, A.A.; Khan, A.; Erxleben, A.; Smith, P.; de Kock, C.; Hoffmann, F.; Obaleye, J.A. Copper(II) mixed-ligand polypyridyl complexes with doxycycline – structures and biological evaluation. Dalton Trans., 2016, 45(7), 3003-3012.
[http://dx.doi.org/10.1039/C5DT04405G] [PMID: 26758215]
[210]
Taghavi-Moghadam, S.; Kwong, C.D.; Secrist, J.A., III; Khan, S.I.; Clark, A.M. The synthesis and biological evaluation of alkyl and benzyl naphthyridinium analogs of eupolauridine as potential antimicrobial and cytotoxic agents. Bioorg. Med. Chem., 2016, 24(23), 6119-6130.
[http://dx.doi.org/10.1016/j.bmc.2016.02.028] [PMID: 27769668]
[211]
Sharma, N.; Mohanakrishnan, D.; Shard, A.; Sharma, A.; Sinha, A.K.; Sahal, D. Hydroxylated di- and tri-styrylbenzenes, a new class of antiplasmodial agents: Discovery and mechanism of action. RSC Advances, 2016, 6(55), 49348-49357.
[http://dx.doi.org/10.1039/C6RA06059E]
[212]
Carrasco, M.P.; Machado, M.; Gonçalves, L.; Sharma, M.; Gut, J.; Lukens, A.K.; Wirth, D.F.; André, V.; Duarte, M.T.; Guedes, R.C.; dos Santos, D.J.V.A.; Rosenthal, P.J.; Mazitschek, R.; Prudêncio, M.; Moreira, R. Probing the azaaurone scaffold against the hepatic and erythrocytic stages of malaria parasites. ChemMedChem, 2016, 11(19), 2194-2204.
[http://dx.doi.org/10.1002/cmdc.201600327] [PMID: 27538856]
[213]
Kato, N.; Comer, E.; Sakata-Kato, T.; Sharma, A.; Sharma, M.; Maetani, M.; Bastien, J.; Brancucci, N.M.; Bittker, J.A.; Corey, V.; Clarke, D.; Derbyshire, E.R.; Dornan, G.L.; Duffy, S.; Eckley, S.; Itoe, M.A.; Koolen, K.M.J.; Lewis, T.A.; Lui, P.S.; Lukens, A.K.; Lund, E.; March, S.; Meibalan, E.; Meier, B.C.; McPhail, J.A.; Mitasev, B.; Moss, E.L.; Sayes, M.; Van Gessel, Y.; Wawer, M.J.; Yoshinaga, T.; Zeeman, A.M.; Avery, V.M.; Bhatia, S.N.; Burke, J.E.; Catteruccia, F.; Clardy, J.C.; Clemons, P.A.; Dechering, K.J.; Duvall, J.R.; Foley, M.A.; Gusovsky, F.; Kocken, C.H.M.; Marti, M.; Morningstar, M.L.; Munoz, B.; Neafsey, D.E.; Sharma, A.; Winzeler, E.A.; Wirth, D.F.; Scherer, C.A.; Schreiber, S.L. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 2016, 538(7625), 344-349.
[http://dx.doi.org/10.1038/nature19804] [PMID: 27602946]
[214]
Chan, S.T.S.; Nani, R.R.; Schauer, E.A.; Martin, G.E.; Williamson, R.T.; Saurí, J.; Buevich, A.V.; Schafer, W.A.; Joyce, L.A.; Goey, A.K.L.; Figg, W.D.; Ransom, T.T.; Henrich, C.J.; McKee, T.C.; Moser, A.; MacDonald, S.A.; Khan, S.; McMahon, J.B.; Schnermann, M.J.; Gustafson, K.R. Characterization and synthesis of eudistidine c, a bioactive marine alkaloid with an intriguing molecular scaffold. J. Org. Chem., 2016, 81(22), 10631-10640.
[http://dx.doi.org/10.1021/acs.joc.6b02380] [PMID: 27934476]
[215]
Ghosh, C.; Chaubey, S.; Tatu, U.; Haldar, J. Aryl-alkyl-lysines: Small molecular membrane-active antiplasmodial agents. MedChemComm, 2017, 8(2), 434-439.
[http://dx.doi.org/10.1039/C6MD00589F] [PMID: 30108761]
[216]
Gopinath, P.; Yadav, R.K.; Shukla, P.K.; Srivastava, K.; Puri, S.K.; Muraleedharan, K.M. Broad spectrum anti-infective properties of benzisothiazolones and the parallels in their anti-bacterial and anti-fungal effects. Bioorg. Med. Chem. Lett., 2017, 27(5), 1291-1295.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.027] [PMID: 28159413]
[217]
Li, J.; Seupel, R.; Feineis, D.; Mudogo, V.; Kaiser, M.; Brun, R.; Brünnert, D.; Chatterjee, M.; Seo, E.J.; Efferth, T.; Bringmann, G. Dioncophyllines C 2, D 2, and F and related naphthylisoquinoline alkaloids from the congolese liana ancistrocladus ileboensis with potent activities against Plasmodium falciparum and against multiple myeloma and leukemia cell lines. J. Nat. Prod., 2017, 80(2), 443-458.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00967] [PMID: 28121440]
[218]
Pieroni, M.; Azzali, E.; Basilico, N.; Parapini, S.; Zolkiewski, M.; Beato, C.; Annunziato, G.; Bruno, A.; Vacondio, F.; Costantino, G. Accepting the invitation to open innovation in malaria drug discovery: Synthesis, biological evaluation, and investigation on the structure–activity relationships of benzo[b]thiophene-2-carboxamides as antimalarial agents. J. Med. Chem., 2017, 60(5), 1959-1970.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01685] [PMID: 28128956]
[219]
Daub, M.E.; Prudhomme, J.; Ben Mamoun, C.; Le Roch, K.G.; Vanderwal, C.D. Antimalarial properties of simplified kalihinol analogues. ACS Med. Chem. Lett., 2017, 8(3), 355-360.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00013] [PMID: 28337330]
[220]
Rad, J.A.; Jarrahpour, A.; Latour, C.; Sinou, V.; Brunel, J.M.; Zgou, H.; Mabkhot, Y.; Hadda, T.B.; Turos, E. Synthesis and antimicrobial/antimalarial activities of novel naphthalimido trans-β-lactam derivatives. Med. Chem. Res., 2017, 26(10), 2235-2242.
[http://dx.doi.org/10.1007/s00044-017-1920-z]
[221]
Zhang, Y.K.; Plattner, J.J.; Easom, E.E.; Jacobs, R.T.; Guo, D.; Freund, Y.R.; Berry, P.; Ciaravino, V.; Erve, J.C.L.; Rosenthal, P.J.; Campo, B.; Gamo, F.J.; Sanz, L.M.; Cao, J. Benzoxaborole antimalarial agents. Part 5. lead optimization of novel amide pyrazinyloxy benzoxaboroles and identification of a preclinical candidate. J. Med. Chem., 2017, 60(13), 5889-5908.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00621] [PMID: 28635296]
[222]
Maetani, M.; Zoller, J.; Melillo, B.; Verho, O.; Kato, N.; Pu, J.; Comer, E.; Schreiber, S.L. Synthesis of a bicyclic azetidine with in vivo antimalarial activity enabled by stereospecific, directed C(sp3)–H arylation. J. Am. Chem. Soc., 2017, 139(32), 11300-11306.
[http://dx.doi.org/10.1021/jacs.7b06994] [PMID: 28732448]
[223]
Pingaew, R.; Sinthupoom, N.; Mandi, P.; Prachayasittikul, V.; Cherdtrakulkiat, R.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and in silico study of bis-thiourea derivatives as anticancer, antimalarial and antimicrobial agents. Med. Chem. Res., 2017, 26(12), 3136-3148.
[http://dx.doi.org/10.1007/s00044-017-2008-5]
[224]
Stenzel, K.; Chua, M.J.; Duffy, S.; Antonova-Koch, Y.; Meister, S.; Hamacher, A.; Kassack, M.U.; Winzeler, E.; Avery, V.M.; Kurz, T.; Andrews, K.T.; Hansen, F.K. Design and synthesis of terephthalic acid-based histone deacetylase inhibitors with dual-stage anti-Plasmodium activity. ChemMedChem, 2017, 12(19), 1627-1636.
[http://dx.doi.org/10.1002/cmdc.201700360] [PMID: 28812327]
[225]
Weidner, T.; Lucantoni, L.; Nasereddin, A.; Preu, L.; Jones, P.G.; Dzikowski, R.; Avery, V.M.; Kunick, C. Antiplasmodial dihetarylthioethers target the coenzyme A synthesis pathway in Plasmodium falciparum erythrocytic stages. Malar. J., 2017, 16(1), 192.
[http://dx.doi.org/10.1186/s12936-017-1839-3] [PMID: 28502250]
[226]
Previti, S.; Ettari, R.; Cosconati, S.; Amendola, G.; Chouchene, K.; Wagner, A.; Hellmich, U.A.; Ulrich, K.; Krauth-Siegel, R.L.; Wich, P.R.; Schmid, I.; Schirmeister, T.; Gut, J.; Rosenthal, P.J.; Grasso, S.; Zappalà, M. Development of novel peptide-based michael acceptors targeting rhodesain and falcipain-2 for the treatment of neglected tropical diseases (NTDs). J. Med. Chem., 2017, 60(16), 6911-6923.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00405] [PMID: 28763614]
[227]
Špaček, P.; Keough, D.T.; Chavchich, M.; Dračínský, M.; Janeba, Z.; Naesens, L.; Edstein, M.D.; Guddat, L.W.; Hocková, D. Synthesis and evaluation of asymmetric acyclic nucleoside bisphosphonates as inhibitors of Plasmodium falciparum and human hypoxanthine–guanine–(xanthine) phosphoribosyltransferase. J. Med. Chem., 2017, 60(17), 7539-7554.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00926] [PMID: 28813147]
[228]
Abla, N.; Bashyam, S.; Charman, S.A.; Greco, B.; Hewitt, P.; Jiménez-Díaz, M.B.; Katneni, K.; Kubas, H.; Picard, D.; Sambandan, Y.; Sanz, L.; Smith, D.; Wang, T.; Willis, P.; Wittlin, S.; Spangenberg, T. Long-lasting and fast-acting in vivo efficacious antiplasmodial azepanylcarbazole amino alcohol. ACS Med. Chem. Lett., 2017, 8(12), 1304-1308.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00391] [PMID: 29259752]
[229]
Cargnin, S.T.; Staudt, A.F.; Medeiros, P.; de Medeiros, S.S.D. de Azevedo dos, S.A.P.; Zanchi, F.B.; Gosmann, G.; Puyet, A.; Garcia Teles, C.B.; Gnoatto, S.B. Semisynthesis, cytotoxicity, antimalarial evaluation and structure-activity relationship of two series of triterpene derivatives. Bioorg. Med. Chem. Lett., 2018, 28(3), 265-272.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.060] [PMID: 29326018]
[230]
Saxena, A.; Upadhyay, H.C.; Cheema, H.S.; Srivastava, S.K.; Darokar, M.P.; Bawankule, D.U. Antimalarial activity of phytol derivatives: In vitro and in vivo study. Med. Chem. Res., 2018, 27(5), 1345-1354.
[http://dx.doi.org/10.1007/s00044-017-2132-2]
[231]
Alencar, N.; Sola, I.; Linares, M.; Juárez-Jiménez, J.; Pont, C.; Viayna, A.; Vílchez, D.; Sampedro, C.; Abad, P.; Pérez-Benavente, S.; Lameira, J.; Bautista, J.M.; Muñoz-Torrero, D.; Luque, F.J. First homology model of Plasmodium falciparum glucose-6-phosphate dehydrogenase: Discovery of selective substrate analog-based inhibitors as novel antimalarial agents. Eur. J. Med. Chem., 2018, 146, 108-122.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.044] [PMID: 29407943]
[232]
Majeed, M.; Nagabhushanam, K.; Bani, S.; Choudhury, A.K. Highly oxygenated 11-Keto-β-boswellic acid analogues and their anti-inflammatory potential. ChemistrySelect, 2018, 3(11), 3087-3091.
[http://dx.doi.org/10.1002/slct.201800094]
[233]
Xu, L.; Li, W.; Diao, Y.; Sun, H.; Li, H.; Zhu, L.; Zhou, H.; Zhao, Z. Synthesis, design, and structure–activity relationship of the pyrimidone derivatives as novel selective inhibitors of plasmodium falciparum dihydroorotate dehydrogenase. Molecules, 2018, 23(6), 1254.
[http://dx.doi.org/10.3390/molecules23061254] [PMID: 29794978]
[234]
Karagöz, A.Ç.; Leidenberger, M.; Hahn, F.; Hampel, F.; Friedrich, O.; Marschall, M.; Kappes, B.; Tsogoeva, S.B. Synthesis of new betulinic acid/betulin-derived dimers and hybrids with potent antimalarial and antiviral activities. Bioorg. Med. Chem., 2019, 27(1), 110-115.
[http://dx.doi.org/10.1016/j.bmc.2018.11.018] [PMID: 30503412]
[235]
D’Alessandro, S.; Alfano, G.; Di Cerbo, L.; Brogi, S.; Chemi, G.; Relitti, N.; Brindisi, M.; Lamponi, S.; Novellino, E.; Campiani, G.; Gemma, S.; Basilico, N.; Taramelli, D.; Baratto, M.C.; Pogni, R.; Butini, S. Bridged bicyclic 2,3-dioxabicyclo[3.3.1]nonanes as antiplasmodial agents: Synthesis, structure-activity relationships and studies on their biomimetic reaction with Fe(II). Bioorg. Chem., 2019, 89, 103020.
[http://dx.doi.org/10.1016/j.bioorg.2019.103020] [PMID: 31185392]
[236]
Zhan, W.; Visone, J.; Ouellette, T.; Harris, J.C.; Wang, R.; Zhang, H.; Singh, P.K.; Ginn, J.; Sukenick, G.; Wong, T.T.; Okoro, J.I.; Scales, R.M.; Tumwebaze, P.K.; Rosenthal, P.J.; Kafsack, B.F.C.; Cooper, R.A.; Meinke, P.T.; Kirkman, L.A.; Lin, G. Improvement of asparagine ethylenediamines as anti-malarial plasmodium -selective proteasome inhibitors. J. Med. Chem., 2019, 62(13), 6137-6145.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00363] [PMID: 31177777]
[237]
Du, Y.; Valenciano, A.L.; Dai, Y.; Zheng, Y.; Zhang, F.; Zhang, Y.; Clement, J.; Goetz, M.; Kingston, D.G.I.; Cassera, M.B. Anibamine and its analogues: Potent antiplasmodial agents from Aniba citrifolia. J. Nat. Prod., 2020, 83(3), 569-577.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00724] [PMID: 31577436]
[238]
Bassanini, I.; Parapini, S.; Galli, C.; Vaiana, N.; Pancotti, A.; Basilico, N.; Taramelli, D.; Romeo, S. Discovery and pharmacophore mapping of a low-nanomolar inhibitor of P. falciparum growth. ChemMedChem, 2019, 14(23), 1982-1994.
[http://dx.doi.org/10.1002/cmdc.201900526] [PMID: 31665565]
[239]
Hayashi, Y.; Fukasawa, W.; Hirose, T.; Iwatsuki, M.; Hokari, R.; Ishiyama, A.; Kanaida, M.; Nonaka, K.; Také, A.; Otoguro, K. O̅mura, S.; Shiomi, K.; Sunazuka, T. Kozupeptins, antimalarial agents produced by Paracamarosporium species: Isolation, structural elucidation, total synthesis, and bioactivity. Org. Lett., 2019, 21(7), 2180-2184.
[http://dx.doi.org/10.1021/acs.orglett.9b00483] [PMID: 30859827]
[240]
Salomon, E.; Schmitt, M.; Mouray, E.; McEwen, A.G.; Bounaadja, L.; Torchy, M.; Poussin-Courmontagne, P.; Alavi, S.; Tarnus, C.; Cavarelli, J.; Florent, I.; Albrecht, S. Aminobenzosuberone derivatives as PfA-M1 inhibitors: Molecular recognition and antiplasmodial evaluation. Bioorg. Chem., 2020, 98, 103750.
[http://dx.doi.org/10.1016/j.bioorg.2020.103750] [PMID: 32182520]
[241]
Akkachairin, B.; Rodphon, W.; Reamtong, O.; Mungthin, M.; Tummatorn, J.; Thongsornkleeb, C.; Ruchirawat, S. Synthesis of neocryptolepines and carbocycle-fused quinolines and evaluation of their anticancer and antiplasmodial activities. Bioorg. Chem., 2020, 98, 103732.
[http://dx.doi.org/10.1016/j.bioorg.2020.103732] [PMID: 32171989]
[242]
Belay, C.; Steinman, N.Y.; Campos, L.M.; Dzikowski, R.; Golenser, J.; Domb, A.J. Asymmetric trisalkylamine cyclopropenium derivatives with antimicrobial activity. Bioorg. Chem., 2020, 102, 104069.
[http://dx.doi.org/10.1016/j.bioorg.2020.104069] [PMID: 32683179]
[243]
Noreljaleel, A.E.M.; Wilhelm, A.; Bonnet, S.L.; van der Westhuizen, J.H. Synthesis and bioactivity of reduced chalcones containing sulfonamide side chains. J. Nat. Prod., 2018, 81(1), 41-48.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00570] [PMID: 29309141]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy