Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Thiazole, Isatin and Phthalimide Derivatives Tested in vivo against Cancer Models: A Literature Review of the Last Six Years

Author(s): Aline Ferreira Pinto, Janine Siqueira Nunes, José Eduardo Severino Martins, Amanda Calazans Leal, Carla Cauanny Vieira Costa Silva, Anderson José Firmino Santos da Silva, Daiane Santiago da Cruz Olímpio, Elineide Tayse Noberto da Silva, Thiers Araújo Campos and Ana Cristina Lima Leite*

Volume 31, Issue 20, 2024

Published on: 10 July, 2023

Page: [2991 - 3032] Pages: 42

DOI: 10.2174/0929867330666230426154055

Price: $65

conference banner
Abstract

Background: Cancer is a disease characterized by the abnormal multiplication of cells and is the second leading cause of death in the world. The search for new effective and safe anticancer compounds is ongoing due to factors such as low selectivity, high toxicity, and multidrug resistance. Thus, heterocyclic compounds derived from isatin, thiazole and phthalimide that have achieved promising in vitro anticancer activity have been tested in vivo and in clinical trials.

Objective: This review focused on the compilation of promising data from thiazole, isatin, and phthalimide derivatives, reported in the literature between 2015 and 2022, with in vivo anticancer activity and clinical trials.

Methods: A bibliographic search was carried out in the PUBMED, MEDLINE, ELSEVIER, and CAPES PERIODIC databases, selecting relevant works for each pharmacophoric group with in vivo antitumor activity in the last 6 years.

Results: In our study, 68 articles that fit the scope were selected and critically analyzed. These articles were organized considering the type of antitumor activity and their year of publication. Some compounds reported here demonstrated potent antitumor activity against several tumor types.

Conclusion: This review allowed us to highlight works that reported promising structures for the treatment of various cancer types and also demonstrated that the privileged structures thiazole, isatin and phthalimide are important in the design of new syntheses and molecular optimization of compounds with antitumor activity.

Keywords: Thiazole, isatin, phthalimide, cancer, animal model, in vivo, clinical trial.

[1]
Feng, Y.; Panwar, N.; Tng, D.J.H.; Tjin, S.C.; Wang, K.; Yong, K.T. The application of mesoporous silica nanoparticle family in cancer theranostics. Coord. Chem. Rev., 2016, 319, 86-109.
[http://dx.doi.org/10.1016/j.ccr.2016.04.019]
[2]
Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[3]
Coleman, W.B. Neoplasia. Molecular Pathology: The Molecular Basis of Human Disease; Coleman, W.; Tsongalis, G., Eds.; Academic Express, 2018, pp. 71-97.
[http://dx.doi.org/10.1016/B978-0-12-802761-5.00004-3]
[4]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[6]
Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X. Rethinking cancer nanotheranostics. Nat. Rev. Mater., 2017, 2(7), 17024.
[http://dx.doi.org/10.1038/natrevmats.2017.24] [PMID: 29075517]
[7]
Braegelman, A.S.; Webber, M.J. Integrating stimuli-responsive properties in host-guest supramolecular drug delivery systems. Theranostics, 2019, 9(11), 3017-3040.
[http://dx.doi.org/10.7150/thno.31913] [PMID: 31244940]
[8]
Labbozzetta, M.; Raimondi, M.V.; Poma, P.; Notarbartolo, M.; Barraja, P.; Montalbano, A. Novel insights on [1,2]oxazolo[5,4-e]isoindoles on multidrug resistant acute myeloid leukemia cell line. Drug Dev. Res., 2022, 83(6), 1331-1341.
[http://dx.doi.org/10.1002/ddr.21962]
[9]
Liang, T.; Sun, X.; Li, W.; Hou, G.; Gao, F. 1,2,3-triazole-containing compounds as anti-lung cancer agents: Current developments, mechanisms of action, and structure-activity relationship. Front. Pharmacol., 2021, 12, 661173.
[http://dx.doi.org/10.3389/fphar.2021.661173] [PMID: 34177578]
[10]
Barreca, M.; Ingarra, A.M.; Raimondi, M.V.; Spanò, V.; De Franco, M.; Menilli, L.; Gandin, V.; Miolo, G.; Barraja, P.; Montalbano, A. Insight on pyrimido[5,4-g]indolizine and pyrimido[4,5-c]pyrrolo[1,2-a]azepine systems as promising photosensitizers on malignant cells. Eur. J. Med. Chem., 2022, 237, 114399.
[http://dx.doi.org/10.1016/j.ejmech.2022.114399] [PMID: 35468516]
[11]
Spanò, V.; Pennati, M.; Parrino, B.; Carbone, A.; Montalbano, A.; Cilibrasi, V.; Zuco, V.; Lopergolo, A.; Cominetti, D.; Diana, P.; Cirrincione, G.; Barraja, P.; Zaffaroni, N. Preclinical activity of new [1,2]Oxazolo[5,4- e]isoindole derivatives in diffuse malignant peritoneal mesothelioma. J. Med. Chem., 2016, 59(15), 7223-7238.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00777] [PMID: 27428868]
[12]
Barreca, M.; Spanò, V.; Rocca, R.; Bivacqua, R.; Abel, A.C.; Maruca, A.; Montalbano, A.; Raimondi, M.V.; Tarantelli, C.; Gaudio, E.; Cascione, L.; Rinaldi, A.; Bai, R.; Steinmetz, M.O.; Prota, A.E.; Alcaro, S.; Hamel, E.; Bertoni, F.; Barraja, P. Development of [1,2]oxazoloisoindoles tubulin polymerization inhibitors: Further chemical modifications and potential therapeutic effects against lymphomas. Eur. J. Med. Chem., 2022, 243, 114744.
[http://dx.doi.org/10.1016/j.ejmech.2022.114744] [PMID: 36242921]
[13]
Macan, A.M.; Harej, A.; Cazin, I.; Klobučar, M.; Stepanić, V.; Pavelić, K.; Pavelić, S.K.; Schols, D.; Snoeck, R.; Andrei, G.; Raić-Malić, S. Antitumor and antiviral activities of 4-substituted 1,2,3-triazolyl-2,3-dibenzyl-L-ascorbic acid derivatives. Eur. J. Med. Chem., 2019, 184, 111739.
[http://dx.doi.org/10.1016/j.ejmech.2019.111739] [PMID: 31586832]
[14]
Barreca, M.; Ingarra, A.M.; Raimondi, M.V.; Spanò, V.; Piccionello, A.P.; De Franco, M.; Menilli, L.; Gandin, V.; Miolo, G.; Barraja, P.; Montalbano, A. New tricyclic systems as photosensitizers towards triple negative breast cancer cells. Arch. Pharm. Res., 2022, 45(11), 806-821.
[http://dx.doi.org/10.1007/s12272-022-01414-1] [PMID: 36399284]
[15]
Hou, Y.; Shang, C.; Wang, H.; Yun, J. Isatin-azole hybrids and their anticancer activities. Arch. Pharm., 2020, 353(1), 1900272.
[http://dx.doi.org/10.1002/ardp.201900272] [PMID: 31691360]
[16]
Al-Wabli, R.I.; Almomen, A.A.; Almutairi, M.S.; Keeton, A.B.; Piazza, G.A.; Attia, M.I. New isatin-indole conjugates: Synthesis, characterization, and a plausible mechanism of their in vitro antiproliferative activity. Drug Des. Devel. Ther., 2020, 14, 483-495.
[http://dx.doi.org/10.2147/DDDT.S227862] [PMID: 32099332]
[17]
Abdel-Sattar, N.E.A.; El-Naggar, A.M.; Abdel-Mottaleb, M.S.A. Novel thiazole derivatives of medicinal potential: synthesis and modeling. J. Chem., 2017, 2017(d), 1-11.
[http://dx.doi.org/10.1155/2017/4102796]
[18]
Murugan, B.; Krishnan, U.M. Chemoresponsive smart mesoporous silica systems - An emerging paradigm for cancer therapy. Int. J. Pharm., 2018, 553(1-2), 310-326.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.026] [PMID: 30316004]
[19]
Pawar, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Synthetic and medicinal perspective of fused-thiazoles as anticancer agents. Anticancer. Agents Med. Chem., 2021, 21(11), 1379-1402.
[http://dx.doi.org/10.2174/1871520620666200728133017] [PMID: 32723259]
[20]
Ali, S.H.; Sayed, A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun., 2021, 51(5), 670-700.
[http://dx.doi.org/10.1080/00397911.2020.1854787]
[21]
Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem., 2016, 16(26), 2841-2862.
[http://dx.doi.org/10.2174/1568026616666160506130731] [PMID: 27150376]
[22]
Borcea, A.M.; Ionuț, I.; Crișan, O.; Oniga, O. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules, 2021, 26(3), 624.
[http://dx.doi.org/10.3390/molecules26030624]
[23]
Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, •••, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015]
[24]
Petrou, A.; Fesatidou, M.; Geronikaki, A. Thiazole Ring—a biologically active scaffold. Molecules, 2021, •••, 3166-3241.
[http://dx.doi.org/10.3390/molecules26113166]
[25]
Gümüş, M.; Yakan, M.; Koca, İ. Recent advances of thiazole hybrids in biological applications. Future Med. Chem., 2019, 11(15), 1979-1998.
[http://dx.doi.org/10.4155/fmc-2018-0196] [PMID: 31517529]
[26]
Sbenati, R.M.; Semreen, M.H.; Semreen, A.M.; Shehata, M.K.; Alsaghir, F.M.; El-Gamal, M.I. Evaluation of imidazo[2,1-b]thiazole-based anticancer agents in one decade (2011-2020): Current status and future prospects. Bioorg. Med. Chem., 2021, 29, 115897.
[http://dx.doi.org/10.1016/j.bmc.2020.115897] [PMID: 33316752]
[27]
Ayati, A.; Emami, S.; Moghimi, S.; Foroumadi, A. Thiazole in the targeted anticancer drug discovery. Future Med. Chem., 2019, 11(15), 1929-1952.
[http://dx.doi.org/10.4155/fmc-2018-0416] [PMID: 31313595]
[28]
Irfan, A.; Batool, F.; Zahra Naqvi, S.A.; Islam, A.; Osman, S.M.; Nocentini, A.; Alissa, S.A.; Supuran, C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 265-279.
[http://dx.doi.org/10.1080/14756366.2019.1698036] [PMID: 31790602]
[29]
Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem., 2020, 188, 112016.
[http://dx.doi.org/10.1016/j.ejmech.2019.112016] [PMID: 31926469]
[30]
Sharma, D.; Sharma, V.; Sharma, A.; Goyal, R.; Tonk, R.K.; Thakur, V.K.; Sharma, P.C. Green chemistry approaches for thiazole containing compounds as a potential scaffold for cancer therapy. Sustain. Chem. Pharm., 2021, 23, 100496.
[http://dx.doi.org/10.1016/j.scp.2021.100496]
[31]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[32]
Guerrero-Pepinosa, N.Y.; Cardona-Trujillo, M.C.; Garzón-Castaño, S.C.; Veloza, L.A.; Sepúlveda-Arias, J.C. Antiproliferative activity of thiazole and oxazole derivatives: A systematic review of in vitro and in vivo studies. Biomed. Pharmacother., 2021, 138, 111495.
[http://dx.doi.org/10.1016/j.biopha.2021.111495] [PMID: 33765586]
[33]
Ferraz de Paiva, R.E.; Vieira, E.G.; Rodrigues da Silva, D.; Wegermann, C.A.; Costa Ferreira, A.M. Anticancer compounds based on isatin-derivatives: Strategies to ameliorate selectivity and efficiency. Front. Mol. Biosci., 2021, 7, 627272.
[http://dx.doi.org/10.3389/fmolb.2020.627272]
[34]
Nath, R.; Pathania, S.; Grover, G.; Akhtar, M.J. Isatin containing heterocycles for different biological activities: Analysis of structure activity relationship. J. Mol. Struct., 2020, 1222, 128900.
[http://dx.doi.org/10.1016/j.molstruc.2020.128900]
[35]
Zhang, Y.Z.; Du, H.Z.; Liu, H.L.; He, Q.S.; Xu, Z. Isatin dimers and their biological activities. Arch. Pharm., 2020, 353(3), 1900299.
[http://dx.doi.org/10.1002/ardp.201900299] [PMID: 31985855]
[36]
Ding, Z.; Zhou, M.; Zeng, C. Recent advances in isatin hybrids as potential anticancer agents. Arch. Pharm., 2020, 353(3), 1900367.
[http://dx.doi.org/10.1002/ardp.201900367] [PMID: 31960987]
[37]
Das, S. Beyond conventional construction of the phthalimide core: A review. New J. Chem., 2021, 45(44), 20519-20536.
[http://dx.doi.org/10.1039/D1NJ03924E]
[38]
Almeida, M.L.; Oliveira, M.C.V.A.; Pitta, I.R.; Pitta, M.G.R. Advances in synthesis and medicinal applications of compounds derived from phthalimide. Curr. Org. Synth., 2020, 17(4), 252-270.
[http://dx.doi.org/10.2174/1570179417666200325124712] [PMID: 32209046]
[39]
Rouf, A.; Tanyeli, C. Bioactive thiazole and benzothiazole derivatives. Eur. J. Med. Chem., 2015, 97(1), 911-927.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.058] [PMID: 25455640]
[40]
de Santana, T.I.; Barbosa, M.O.; Gomes, P.A.T.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem., 2018, 144, 874-886.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.040] [PMID: 29329071]
[41]
Mirza, S.; Asma Naqvi, S.; Mohammed Khan, K.; Salar, U.; Choudhary, M.I. Facile synthesis of novel substituted aryl-thiazole (SAT) analogs via one-pot multi-component reaction as potent cytotoxic agents against cancer cell lines. Bioorg. Chem., 2017, 70, 133-143.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.003] [PMID: 28038777]
[42]
Evren, A.E.; Yurttas, L.; Ekselli, B.; Akalin-Ciftci, G. Synthesis and biological evaluation of 5-methyl-4-phenyl thiazole derivatives as anticancer agents. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(8), 820-828.
[http://dx.doi.org/10.1080/10426507.2018.1550642]
[43]
Meleddu, R.; Distinto, S.; Corona, A.; Maccioni, E.; Arridu, A.; Melis, C.; Bianco, G.; Matyus, P.; Cottiglia, F.; Sanna, A.; De Logu, A. Exploring the thiazole scaffold for the identification of new agents for the treatment of fluconazole resistant Candida. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1672-1677.
[http://dx.doi.org/10.3109/14756366.2015.1113171] [PMID: 26745285]
[44]
Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and moe docking. Molecules, 2019, 24(9), 1741.
[http://dx.doi.org/10.3390/molecules24091741] [PMID: 31060260]
[45]
Álvarez, G.; Varela, J.; Cruces, E.; Fernández, M.; Gabay, M.; Leal, S.M.; Escobar, P.; Sanabria, L.; Serna, E.; Torres, S.; Figueredo Thiel, S.J.; Yaluff, G.; Vera de Bilbao, N.I.; Cerecetto, H.; González, M. Identification of a new amide-containing thiazole as a drug candidate for treatment of Chagas’ disease. Antimicrob. Agents Chemother., 2015, 59(3), 1398-1404.
[http://dx.doi.org/10.1128/AAC.03814-14] [PMID: 25512408]
[46]
Jin, Q.; Fu, Z.; Guan, L. Syntheses of Benzo[d]Thiazol-2(3H)-. one derivatives and their antidepressant and anticonvulsant effects. Mar. Drugs, 2019, 2, 1-10.
[47]
Maghraby, M.T.E.; Abou-Ghadir, O.M.F.; Abdel-Moty, S.G.; Ali, A.Y.; Salem, O.I.A. Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes. Bioorg. Med. Chem., 2020, 28(7), 115403.
[http://dx.doi.org/10.1016/j.bmc.2020.115403] [PMID: 32127262]
[48]
Sowjanya, C.; Seetaram, S.S.; Gomathi, S.; Ashok Babu, K. Synthesis, chemistry and anti-hypertensive activity of some new thiazole-thiadiazole derivatives. Int. J. Adv. Res. Med. Pharm. Sci., 2016, 1(1), 6-10.
[49]
Sinha, S.; Sravanthi, T.V.; Yuvaraj, S.; Manju, S.L.; Doble, M. 2-Amino-4-aryl thiazole: A promising scaffold identified as a potent 5-LOX inhibitor. RSC Advances, 2016, 6(23), 19271-19279.
[http://dx.doi.org/10.1039/C5RA28187C]
[50]
Mishra, C.B.; Kumari, S.; Tiwari, M. Thiazole: A promising heterocycle for the development of potent CNS active agents. Eur. J. Med. Chem., 2015, 92, 1-34.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.031] [PMID: 25544146]
[51]
Ghaemmaghami, S.; May, B.C.H.; Renslo, A.R.; Prusiner, S.B. Discovery of 2-aminothiazoles as potent antiprion compounds. J. Virol., 2010, 84(7), 3408-3412.
[http://dx.doi.org/10.1128/JVI.02145-09] [PMID: 20032192]
[52]
Pereira, A.S.A.; Silveira, G.O.; Amaral, M.S.; Almeida, S.M.V.; Oliveira, J.F.; Lima, M.C.A.; Verjovski-Almeida, S. in vitro activity of aryl-thiazole derivatives against Schistosoma mansoni schistosomula and adult worms. PLoS One, 2019, 14(11), e0225425.
[http://dx.doi.org/10.1371/journal.pone.0225425] [PMID: 31765429]
[53]
Amr, A.E.G.E.; Sabrry, N.M.; Abdalla, M.M.; Abdel-Wahab, B.F. Synthesis, antiarrhythmic and anticoagulant activities of novel thiazolo derivatives from methyl 2-(thiazol-2-ylcarbamoyl)acetate. Eur. J. Med. Chem., 2009, 44(2), 725-735.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.004] [PMID: 18579260]
[54]
Moraski, G.C.; Deboosère, N.; Marshall, K.L.; Weaver, H.A.; Vandeputte, A.; Hastings, C.; Woolhiser, L.; Lenaerts, A.J.; Brodin, P.; Miller, M.J. Intracellular and in vivo evaluation of imidazo[2,1-b]thiazole-5-carboxamide anti-tuberculosis compounds. PLoS One, 2020, 15(1), e0227224.
[http://dx.doi.org/10.1371/journal.pone.0227224] [PMID: 31905374]
[55]
Pawar, C.D.; Sarkate, A.P.; Karnik, K.S.; Bahekar, S.S.; Pansare, D.N.; Shelke, R.N.; Jawale, C.S.; Shinde, D.B. Synthesis and antimicrobial evaluation of novel ethyl 2-(2-(4-substituted)acetamido)-4-subtituted-thiazole-5-carboxylate derivatives. Bioorg. Med. Chem. Lett., 2016, 26(15), 3525-3528.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.030] [PMID: 27324976]
[56]
Xie, X.X.; Li, H.; Wang, J.; Mao, S.; Xin, M.H.; Lu, S.M.; Mei, Q.B.; Zhang, S.Q. Synthesis and anticancer effects evaluation of 1-alkyl-3-(6-(2-methoxy-3-sulfonylaminopyridin-5-yl)benzo[d]thiazol-2-yl)urea as anticancer agents with low toxicity. Bioorg. Med. Chem., 2015, 23(19), 6477-6485.
[http://dx.doi.org/10.1016/j.bmc.2015.08.013] [PMID: 26321603]
[57]
Zablotskaya, A.; Segal, I.; Geronikaki, A.; Kazachonokh, G.; Popelis, Y.; Shestakova, I.; Nikolajeva, V.; Eze, D. Synthesis and biological evaluation of lipid-like 5-(2-hydroxyethyl)-4-methyl-1,3-thiazole derivatives as potential anticancer and antimicrobial agents. MedChemComm, 2015, 6(8), 1464-1470.
[http://dx.doi.org/10.1039/C5MD00140D]
[58]
Qin, J.; Ji, J.; Deng, R.; Tang, J.; Yang, F.; Feng, G.K.; Chen, W.D.; Wu, X.Q.; Qian, X.J.; Ding, K.; Zhu, X.F. DC120, a novel AKT inhibitor, preferentially suppresses nasopharyngeal carcinoma cancer stem-like cells by downregulating Sox2. Oncotarget, 2015, 6(9), 6944-6958.
[http://dx.doi.org/10.18632/oncotarget.3128] [PMID: 25749514]
[59]
Reddy, V.G.; Reddy, T.S.; Jadala, C.; Reddy, M.S.; Sultana, F.; Akunuri, R.; Bhargava, S.K.; Wlodkowic, D.; Srihari, P.; Kamal, A. Pyrazolo-benzothiazole hybrids: Synthesis, anticancer properties and evaluation of antiangiogenic activity using in vitro VEGFR-2 kinase and in vitro transgenic zebrafish model. Eur. J. Med. Chem., 2019, 182, 111609.
[http://dx.doi.org/10.1016/j.ejmech.2019.111609] [PMID: 31445229]
[60]
Bayomi, S.M.; El-Kashef, H.A.; El-Ashmawy, M.B.; Nasr, M.N.A.; El-Sherbeny, M.A.; Abdel-Aziz, N.I.; El-Sayed, M.A.A.; Suddek, G.M.; El-Messery, S.M.; Ghaly, M.A. Synthesis and biological evaluation of new curcumin analogues as antioxidant and antitumor agents: Molecular modeling study. Eur. J. Med. Chem., 2015, 101, 584-594.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.014] [PMID: 26197162]
[61]
Mohammed, Y.H.E.; Malojirao, V.H.; Thirusangu, P.; Al-Ghorbani, M.; Prabhakar, B.T.; Khanum, S.A. The Novel 4-Phenyl-2-Phenoxyacetamide Thiazoles modulates the tumor hypoxia leading to the crackdown of neoangiogenesis and evoking the cell death. Eur. J. Med. Chem., 2018, 143, 1826-1839.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.082] [PMID: 29133037]
[62]
Abd Elhameed, A.A.; El-Gohary, N.S.; El-Bendary, E.R.; Shaaban, M.I.; Bayomi, S.M. Synthesis and biological screening of new thiazolo[4,5-d]pyrimidine and dithiazolo[3,2-a:5′,4′-e]pyrimidinone derivatives as antimicrobial, antiquorum-sensing and antitumor agents. Bioorg. Chem., 2018, 81, 299-310.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.013] [PMID: 30172111]
[63]
Prashanth, T.; Avin, B.R.V.; Thirusangu, P.; Ranganatha, V.L.; Prabhakar, B.T.; Sharath Chandra, J.N.N.; Khanum, S.A. Synthesis of coumarin analogs appended with quinoline and thiazole moiety and their apoptogenic role against murine ascitic carcinoma. Biomed. Pharmacother., 2019, 112, 108707.
[http://dx.doi.org/10.1016/j.biopha.2019.108707] [PMID: 30970513]
[64]
Wang, F.; Yang, Z.; Liu, Y.; Ma, L.; Wu, Y.; He, L.; Shao, M.; Yu, K.; Wu, W.; Pu, Y.; Nie, C.; Chen, L. Synthesis and biological evaluation of diarylthiazole derivatives as antimitotic and antivascular agents with potent antitumor activity. Bioorg. Med. Chem., 2015, 23(13), 3337-3350.
[http://dx.doi.org/10.1016/j.bmc.2015.04.055] [PMID: 25937236]
[65]
Thamkachy, R.; Kumar, R.; Rajasekharan, K.N.; Sengupta, S. ERK mediated upregulation of death receptor 5 overcomes the lack of p53 functionality in the diaminothiazole DAT1 induced apoptosis in colon cancer models: efficiency of DAT1 in Ras-Raf mutated cells. Mol. Cancer, 2016, 15(1), 22.
[http://dx.doi.org/10.1186/s12943-016-0505-7] [PMID: 26956619]
[66]
Rajasekharan, K.N.; Nair, K.P.; Jenardanan, G.C. Studies on the Synthesis of 5-Acyl-2,4-diaminothiazoles from Amidinothioureas. Synthesis, 1986, 1986(5), 353-355.
[http://dx.doi.org/10.1055/s-1986-31634]
[67]
Wang, Y.J.; Patel, B.A.; Anreddy, N.; Zhang, Y.K.; Zhang, G.N.; Alqahtani, S.; Singh, S.; Shukla, S.; Kaddoumi, A.; Ambudkar, S.V.; Talele, T.T.; Chen, Z.S. Thiazole-valine peptidomimetic (TTT-28) antagonizes multidrug resistance in vitro and in vivo by selectively inhibiting the efflux activity of ABCB1. Sci. Rep., 2017, 7(1), 42106.
[http://dx.doi.org/10.1038/srep42106] [PMID: 28181548]
[68]
Wang, B.; Zhang, W.; Liu, X.; Zou, F.; Wang, J.; Liu, Q.; Wang, A.; Hu, Z.; Chen, Y.; Qi, S.; Jiang, Z.; Chen, C.; Hu, C.; Wang, L.; Wang, W.; Liu, Q.; Liu, J. Discovery of (E)-N-(4-methyl-5-(3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl)thiazol-2-yl)-2-(4-methylpiperazin-1-yl)acetamide (IHMT-TRK-284) as a novel orally available type II TRK kinase inhibitor capable of overcoming multiple resistant mutants. Eur. J. Med. Chem., 2020, 207, 112744.
[http://dx.doi.org/10.1016/j.ejmech.2020.112744] [PMID: 32949955]
[69]
Hu, C-M.; Zhu, J.; Guo, X.E.; Chen, W.; Qiu, X-L.; Ngo, B.; Chien, R.; Wang, Y.V.; Tsai, C.Y.; Wu, G.; Kim, Y.; Lopez, R.; Chamberlin, A.R.; Lee, E.Y-H.P.; Lee, W-H. Novel small molecules disrupting Hec1/Nek2 interaction ablate tumor progression by triggering Nek2 degradation through a death-trap mechanism. Oncogene, 2015, 34(10), 1220-1230.
[http://dx.doi.org/10.1038/onc.2014.67] [PMID: 24662830]
[70]
Hu, X.; Li, S.; He, Y.; Ai, P.; Wu, S.; Su, Y.; Li, X.; Cai, L.; Peng, X. Antitumor and antimetastatic activities of a novel benzothiazole-2-thiol derivative in a murine model of breast cancer. Oncotarget, 2017, 8(7), 11887-11895.
[http://dx.doi.org/10.18632/oncotarget.14431] [PMID: 28060755]
[71]
Wang, Z.; Shi, X.H.; Wang, J.; Zhou, T.; Xu, Y.Z.; Huang, T.T.; Li, Y.F.; Zhao, Y.L.; Yang, L.; Yang, S.Y.; Yu, L.T.; Wei, Y.Q. Synthesis, structure-activity relationships and preliminary antitumor evaluation of benzothiazole-2-thiol derivatives as novel apoptosis inducers. Bioorg. Med. Chem. Lett., 2011, 21(4), 1097-1101.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.124] [PMID: 21262571]
[72]
Liu, J.H.; Chen, C.; Li, Z.Y.; Zou, Z.M.; Gao, D.C.; Zhang, X.; Kuang, X.W.; Sun, Z.H.; Zheng, W.J.; Zhou, P.; Sun, S.R. The MyD88 inhibitor TJ-M2010-2 suppresses proliferation, migration and invasion of breast cancer cells by regulating MyD88/GSK-3β and MyD88/NF-κB signalling pathways. Exp. Cell Res., 2020, 394(2), 112157.
[http://dx.doi.org/10.1016/j.yexcr.2020.112157] [PMID: 32610185]
[73]
Jiang, F.; Zhou, P.; Chen, J.; Wang, Y.; Cao, B.; Yan, J. 2- aminothiazole derivative, preparation method, and use USE. Patent EP2682390A1, 2012.
[74]
Zhao, L.; Han, X.; Lu, J.; McEachern, D.; Wang, S. A highly potent PROTAC androgen receptor (AR) degrader ARD-61 effectively inhibits AR-positive breast cancer cell growth in vitro and tumor growth in vivo. Neoplasia, 2020, 22(10), 522-532.
[http://dx.doi.org/10.1016/j.neo.2020.07.002] [PMID: 32928363]
[75]
Kregel, S.; Wang, C.; Han, X.; Xiao, L.; Fernandez-Salas, E.; Bawa, P.; McCollum, B.L.; Wilder-Romans, K.; Apel, I.J.; Cao, X.; Speers, C.; Wang, S.; Chinnaiyan, A.M. Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. Neoplasia, 2020, 22(2), 111-119.
[http://dx.doi.org/10.1016/j.neo.2019.12.003] [PMID: 31931431]
[76]
Xu, Q.; Liu, C.; Zang, J.; Gao, S.; Chou, C.J.; Zhang, Y. Discovery of a novel hybrid of vorinostat and riluzole as a potent antitumor agent. Front. Cell Dev. Biol., 2020, 8, 454.
[http://dx.doi.org/10.3389/fcell.2020.00454] [PMID: 32760715]
[77]
Qin, M.; Meng, Y.; Yang, H.; Liu, L.; Zhang, H.; Wang, S.; Liu, C.; Wu, X.; Wu, D.; Tian, Y.; Hou, Y.; Zhao, Y.; Liu, Y.; Xu, C.; Wang, L. Discovery of 4-arylindolines containing a thiazole moiety as potential antitumor agents inhibiting the programmed cell death-1/programmed cell death-ligand 1 interaction. J. Med. Chem., 2021, 64(9), 5519-5534.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01958] [PMID: 33938739]
[78]
Ewida, M.A.; Ewida, H.A.; Ahmed, M.S.; Allam, H.A.; ElBagary, R.I.; George, R.F.; Georgey, H.H.; El-Subbagh, H.I. 3-Methyl-imidazo[2,1-b]thiazole derivatives as a new class of antifolates: Synthesis, in vitro/in vivo bio-evaluation and molecular modeling simulations. Bioorg. Chem., 2021, 115, 105205.
[http://dx.doi.org/10.1016/j.bioorg.2021.105205] [PMID: 34329992]
[79]
Chuang, S.H.; Lee, Y.S.E.; Huang, L.Y.L.; Chen, C.K.; Lai, C.L.; Lin, Y.H.; Yang, J.Y.; Yang, S.C.; Chang, L.H.; Chen, C.H.; Liu, C.W.; Lin, H.S.; Lee, Y.R.; Huang, K.P.; Fu, K.C.; Jen, H.M.; Lai, J.Y.; Jian, P.S.; Wang, Y.C.; Hsueh, W.Y.; Tsai, P.Y.; Hong, W.H.; Chang, C.C.; Wu, D.Z.C.; Wu, J.; Chen, M.H.; Yu, K.M.; Chern, C.Y.; Chang, J.M.; Lau, J.Y.N.; Huang, J.J. Discovery of T-1101 tosylate as a first-in-class clinical candidate for Hec1/Nek2 inhibition in cancer therapy. Eur. J. Med. Chem., 2020, 191, 112118.
[http://dx.doi.org/10.1016/j.ejmech.2020.112118] [PMID: 32113126]
[80]
Matsumoto, K.; Hayashi, K.; Murata-Hirai, K.; Iwasaki, M.; Okamura, H.; Minato, N.; Morita, C.T.; Tanaka, Y. Targeting cancer cells with a bisphosphonate prodrug. ChemMedChem, 2016, 11(24), 2656-2663.
[http://dx.doi.org/10.1002/cmdc.201600465] [PMID: 27786425]
[81]
Al-Ghorbani, M.; Pavankumar, G.S.; Naveen, P.; Thirusangu, P.; Prabhakar, B.T.; Khanum, S.A. Synthesis and an angiolytic role of novel piperazine-benzothiazole analogues on neovascularization, a chief tumoral parameter in neoplastic development. Bioorg. Chem., 2016, 65, 110-117.
[http://dx.doi.org/10.1016/j.bioorg.2016.02.006] [PMID: 26918263]
[82]
Thirusangu, P.; Vigneshwaran, V.; Prashanth, T.; Vijay Avin, B.R.; Malojirao, V.H.; Rakesh, H.; Khanum, S.A.; Mahmood, R.; Prabhakar, B.T. BP-1T, an antiangiogenic benzophenone-thiazole pharmacophore, counteracts HIF-1 signalling through p53/MDM2-mediated HIF-1α proteasomal degradation. Angiogenesis, 2017, 20(1), 55-71.
[http://dx.doi.org/10.1007/s10456-016-9528-3] [PMID: 27743086]
[83]
Di Martile, M.; Desideri, M.; De Luca, T.; Gabellini, C.; Buglioni, S.; Eramo, A.; Sette, G.; Milella, M.; Rotili, D.; Mai, A.; Carradori, S.; Secci, D.; De Maria, R.; Del Bufalo, D.; Trisciuoglio, D. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells. Oncotarget, 2016, 7(10), 11332-11348.
[http://dx.doi.org/10.18632/oncotarget.7238] [PMID: 26870991]
[84]
Chimenti, F.; Bizzarri, B.; Maccioni, E.; Secci, D.; Bolasco, A.; Chimenti, P.; Fioravanti, R.; Granese, A.; Carradori, S.; Tosi, F.; Ballario, P.; Vernarecci, S.; Filetici, P. A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4′-chlorophenyl)thiazol-2-yl)hydrazone. J. Med. Chem., 2009, 52(2), 530-536.
[http://dx.doi.org/10.1021/jm800885d] [PMID: 19099397]
[85]
Wang, L.; Guo, C.; Li, X.; Yu, X.; Li, X.; Xu, K.; Jiang, B.; Jia, X.; Li, C.; Shi, D. Design, synthesis and biological evaluation of bromophenol-thiazolylhydrazone hybrids inhibiting the interaction of translation initiation factors eIF4E/eIF4G as multifunctional agents for cancer treatment. Eur. J. Med. Chem., 2019, 177, 153-170.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.044] [PMID: 31132531]
[86]
Zakharenko, A. L.; Luzina, O. A.; Sokolov, D. N.; Kaledin, V. I.; Nikolin, V. P.; Popova, N. A.; Patel, J.; Zakharova, O. D.; Chepanova, A. A.; Zafar, A. Novel tyrosyl-DNA phosphodiesterase 1 inhibitors enhance the therapeutic impact of topotecan on in vivo tumor models. Eur. J. Med. Chem., 2019, 161, 581-593.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.055]
[87]
Wang, J.; Wang, L.; Zhang, S.; Fan, J.; Yang, H.; Li, Q.; Guo, C. Novel eIF4E/eIF4G protein-protein interaction inhibitors DDH-1 exhibits anti-cancer activity in vivo and in vitro. Int. J. Biol. Macromol., 2020, 160, 496-505.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.233] [PMID: 32479946]
[88]
Kim, S.J.; Jegal, K.H. Im, J.H.; Park, G.; Kim, S.; Jeong, H.G.; Cho, I.J.; Kang, K.W. Involvement of ER stress and reactive oxygen species generation in anti-cancer effect of CKD-516 for lung cancer. Cancer Chemother. Pharmacol., 2020, 85(4), 685-697.
[http://dx.doi.org/10.1007/s00280-020-04043-x] [PMID: 32157413]
[89]
Kim, M.Y.; Shin, J.Y.; Kim, J.O.; Son, K.H.; Kim, Y.S.; Jung, C.K.; Kang, J.H. Anti-tumor efficacy of CKD-516 in combination with radiation in xenograft mouse model of lung squamous cell carcinoma. BMC Cancer, 2020, 20(1), 1057.
[http://dx.doi.org/10.1186/s12885-020-07566-x] [PMID: 33143663]
[90]
Millet, A.; Plaisant, M.; Ronco, C.; Cerezo, M.; Abbe, P.; Jaune, E.; Cavazza, E.; Rocchi, S.; Benhida, R. Discovery and optimization of N -(4-(3-Aminophenyl)thiazol-2-yl)acetamide as a novel scaffold active against sensitive and resistant cancer cells. J. Med. Chem., 2016, 59(18), 8276-8292.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00547] [PMID: 27575313]
[91]
Cerezo, M.; Lehraiki, A.; Millet, A.; Rouaud, F.; Plaisant, M.; Jaune, E.; Botton, T.; Ronco, C.; Abbe, P.; Amdouni, H.; Passeron, T.; Hofman, V.; Mograbi, B.; Dabert-Gay, A.S.; Debayle, D.; Alcor, D.; Rabhi, N.; Annicotte, J.S.; Héliot, L.; Gonzalez-Pisfil, M.; Robert, C.; Moréra, S.; Vigouroux, A.; Gual, P.; Ali, M.M.U.; Bertolotto, C.; Hofman, P.; Ballotti, R.; Benhida, R.; Rocchi, S. Compounds triggering ER stress exert anti-melanoma effects and overcome braf inhibitor resistance. Cancer Cell, 2016, 29(6), 805-819.
[http://dx.doi.org/10.1016/j.ccell.2016.04.013] [PMID: 27238082]
[92]
Abdel-Maksoud, M.S.; El-Gamal, M.I.; Lee, B.S.; Gamal El-Din, M.M.; Jeon, H.R.; Kwon, D.; Ammar, U.M.; Mersal, K.I.; Ali, E.M.H.; Lee, K.T.; Yoo, K.H.; Han, D.K.; Lee, J.K.; Kim, G.; Choi, H.S.; Kwon, Y.J.; Lee, K.H.; Oh, C.H. Discovery of new imidazo[2,1- b]thiazole derivatives as potent Pan-RAF inhibitors with promising in vitro and in vivo anti-melanoma activity. J. Med. Chem., 2021, 64(10), 6877-6901.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00230] [PMID: 33999621]
[93]
Morigi, R.; Locatelli, A.; Leoni, A.; Rambaldi, M.; Bortolozzi, R.; Mattiuzzo, E.; Ronca, R.; Maccarinelli, F.; Hamel, E.; Bai, R.; Brancale, A.; Viola, G. Synthesis, in vitro and in vivo biological evaluation of substituted 3-(5-imidazo[2,1-b]thiazolylmethylene)-2-indolinones as new potent anticancer agents. Eur. J. Med. Chem., 2019, 166, 514-530.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.049] [PMID: 30784885]
[94]
dos Santos Silva, T.D.; Bomfim, L.M.; da Cruz Rodrigues, A.C.B.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.; Soares, M.B.P.; Bezerra, D.P.; de Oliveira, C.M.V.; Leite, A.C.L.; Militão, G.C.G. Anti-liver cancer activity in vitro and in vivo induced by 2-pyridyl 2,3-thiazole derivatives. Toxicol. Appl. Pharmacol., 2017, 329, 212-223.
[http://dx.doi.org/10.1016/j.taap.2017.06.003] [PMID: 28610992]
[95]
Xie, J.; Si, X.; Gu, S.; Wang, M.; Shen, J.; Li, H.; Shen, J.; Li, D.; Fang, Y.; Liu, C.; Zhu, J. Allosteric inhibitors of SHP2 with therapeutic potential for cancer treatment. J. Med. Chem., 2017, 60(24), 10205-10219.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01520] [PMID: 29155585]
[96]
Wang, B.; Wu, J.; Wu, Y.; Chen, C.; Zou, F.; Wang, A.; Wu, H.; Hu, Z.; Jiang, Z.; Liu, Q.; Wang, W.; Zhang, Y.; Liu, F.; Zhao, M.; Hu, J.; Huang, T.; Ge, J.; Wang, L.; Ren, T.; Wang, Y.; Liu, J.; Liu, Q. Discovery of 4-(((4-(5-chloro-2-(((1s,4s)-4-((2-methoxyethyl)amino)cyclohexyl)amino) pyridin-4-yl)thiazol-2-yl)amino)methyl)tetrahydro-2H-pyran-4-carbonitrile (JSH-150) as a novel highly selective and potent CDK9 kinase inhibitor. Eur. J. Med. Chem., 2018, 158, 896-916.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.025] [PMID: 30253346]
[97]
Liang, X.; Li, F.; Chen, C.; Jiang, Z.; Wang, A.; Liu, X.; Ge, J.; Hu, Z.; Yu, K.; Wang, W.; Zou, F.; Liu, Q.; Wang, B.; Wang, L.; Zhang, S.; Wang, Y.; Liu, Q.; Liu, J. Discovery of (S)-2-amino-N-(5-(6-chloro-5-(3-methylphenylsulfonamido)pyridin-3-yl)-4-methylthiazol-2-yl)-3-methylbutanamide (CHMFL-PI3KD-317) as a potent and selective phosphoinositide 3-kinase delta (PI3Kδ) inhibitor. Eur. J. Med. Chem., 2018, 156, 831-846.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.036] [PMID: 30053721]
[98]
Zhao, Q.; Ren, C.; Liu, L.; Chen, J.; Shao, Y.; Sun, N.; Sun, R.; Kong, Y.; Ding, X.; Zhang, X.; Xu, Y.; Yang, B.; Yin, Q.; Yang, X.; Jiang, B. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting von hippel-lindau (VHL) E3 ubiquitin ligase. J. Med. Chem., 2019, 62(20), 9281-9298.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01264] [PMID: 31539241]
[99]
Shen, X.; Zhao, L.; Chen, P.; Gong, Y.; Liu, D.; Zhang, X.; Dai, L.; Sun, Q.; Lou, J.; Jin, Z.; Zhang, B.; Niu, D.; Chen, C.; Qi, X.; Jia, D. A thiazole-derived oridonin analogue exhibits antitumor activity by directly and allosterically inhibiting STAT3. J. Biol. Chem., 2019, 294(46), 17471-17486.
[http://dx.doi.org/10.1074/jbc.RA119.009801] [PMID: 31594861]
[100]
Jiao, P.; Wang, Y.; Mao, B.; Wang, B.; Zhong, Y.; Jin, H.; Zhang, L.; Zhang, L.; Liu, Z. Discovery of 2-(2-aminobenzo[d]thiazol-6-yl) benzo[d]oxazol-5-amine derivatives that regulated HPV relevant cellular pathway and prevented cervical cancer from abnormal proliferation. Eur. J. Med. Chem., 2020, 204, 112556.
[http://dx.doi.org/10.1016/j.ejmech.2020.112556] [PMID: 32739649]
[101]
Yuan, J.M.; Chen, N.Y.; Liao, H.R.; Zhang, G.H.; Li, X.J.; Gu, Z.Y.; Pan, C.X.; Mo, D.L.; Su, G.F. 3-(Benzo[ d]thiazol-2-yl)-4-aminoquinoline derivatives as novel scaffold topoisomerase I inhibitor via DNA intercalation: design, synthesis, and antitumor activities. New J. Chem., 2020, 44(26), 11203-11214.
[http://dx.doi.org/10.1039/C9NJ05846J]
[102]
Montemagno, C.; Serrano, B.; Durivault, J.; Nataf, V.; Mocquot, F.; Amblard, R.; Vial, V.; Ronco, C.; Benhida, R.; Dufies, M.; Faraggi, M.; Pagès, G. In vivo monitoring of the therapeutic efficacy of a CXCR1/2 inhibitor with 18F-FDG PET/CT imaging in experimental head and neck carcinoma: A feasibility study. Biochem. Biophys. Rep., 2021, 27, 101098.
[http://dx.doi.org/10.1016/j.bbrep.2021.101098] [PMID: 34430714]
[103]
Varun, V.; Sonam, S.; Kakkar, R. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications. MedChemComm, 2019, 10(3), 351-368.
[http://dx.doi.org/10.1039/C8MD00585K] [PMID: 30996856]
[104]
De Moraes Gomes, P.A.T.; Pena, L.J.; Leite, A.C.L. Isatin derivatives and their antiviral properties against arboviruses: A review. Mini Rev. Med. Chem., 2018, 19(1), 56-62.
[http://dx.doi.org/10.2174/1389557518666180424093305] [PMID: 29692243]
[105]
Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem., 2019, 164, 678-688.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.017] [PMID: 30654239]
[106]
Fan, Y.L.; Jin, X.H.; Huang, Z.P.; Yu, H.F.; Zeng, Z.G.; Gao, T.; Feng, L.S. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2018, 150, 347-365.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.016] [PMID: 29544148]
[107]
Pakravan, P.; Kashanian, S.; Khodaei, M.M.; Harding, F.J. Biochemical and pharmacological characterization of isatin and its derivatives: From structure to activity. Pharmacol. Rep., 2013, 65(2), 313-335.
[http://dx.doi.org/10.1016/S1734-1140(13)71007-7] [PMID: 23744416]
[108]
Meleddu, R.; Distinto, S.; Corona, A.; Tramontano, E.; Bianco, G.; Melis, C.; Cottiglia, F.; Maccioni, E. Isatin thiazoline hybrids as dual inhibitors of HIV-1 reverse transcriptase. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 130-136.
[http://dx.doi.org/10.1080/14756366.2016.1238366] [PMID: 27766892]
[109]
Nisha; Gut, J.; Rosenthal, P.J.; Kumar, V. β-amino-alcohol tethered 4-aminoquinoline-isatin conjugates: Synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2014, 84, 566-573.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.064] [PMID: 25062007]
[110]
Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev., 2012, 112(11), 6104-6155.
[http://dx.doi.org/10.1021/cr300135y] [PMID: 22950860]
[111]
Liang, C.; Xia, J.; Lei, D.; Li, X.; Yao, Q.; Gao, J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur. J. Med. Chem., 2014, 74, 742-750.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.040] [PMID: 24176732]
[112]
Zhang, X.; Song, Y.; Wu, Y.; Dong, Y.; Lai, L.; Zhang, J.; Lu, B.; Dai, F.; He, L.; Liu, M.; Yi, Z. Indirubin inhibits tumor growth by antitumor angiogenesis via blocking VEGFR2-mediated JAK/STAT3 signaling in endothelial cell. Int. J. Cancer, 2011, 129(10), 2502-2511.
[http://dx.doi.org/10.1002/ijc.25909] [PMID: 21207415]
[113]
Lee, C.J.; Wilson, L.; Jordan, M.A.; Nguyen, V.; Tang, J.; Smiyun, G. Hesperidin suppressed proliferations of both Human breast cancer and androgen-dependent prostate cancer cells. Phytother. Res., 2010, 24(S1), S15-S19.
[http://dx.doi.org/10.1002/ptr.2856]
[114]
Prenen, H.; Cools, J.; Mentens, N.; Folens, C.; Sciot, R.; Schöffski, P.; Van Oosterom, A.; Marynen, P.; Debiec-Rychter, M. Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumor mutants refractory to imatinib mesylate. Clin. Cancer Res., 2006, 12(8), 2622-2627.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2275] [PMID: 16638875]
[115]
Ma, J.; Li, S.; Reed, K.; Guo, P.; Gallo, J.M. Pharmacodynamic-mediated effects of the angiogenesis inhibitor SU5416 on the tumor disposition of temozolomide in subcutaneous and intracerebral glioma xenograft models. J. Pharmacol. Exp. Ther., 2003, 305(3), 833-839.
[http://dx.doi.org/10.1124/jpet.102.048587] [PMID: 12626639]
[116]
Kaur, J.; Kaur, B.; Singh, P. Rational modification of semaxanib and sunitinib for developing a tumor growth inhibitor targeting ATP binding site of tyrosine kinase. Bioorg. Med. Chem. Lett., 2018, 28(2), 129-133.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.049] [PMID: 29208523]
[117]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Gzella, A.; Lesyk, R. Synthesis of new 4-thiazolidinone-, pyrazoline-, and isatin-based conjugates with promising antitumor activity. J. Med. Chem., 2012, 55(20), 8630-8641.
[http://dx.doi.org/10.1021/jm300789g] [PMID: 22992049]
[118]
Chiou, C.T.; Lee, W.C.; Liao, J.H.; Cheng, J.J.; Lin, L.C.; Chen, C.Y.; Song, J.S.; Wu, M.H.; Shia, K.S.; Li, W.T. Synthesis and evaluation of 3-ylideneoxindole acetamides as potent anticancer agents. Eur. J. Med. Chem., 2015, 98, 1-12.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.062] [PMID: 25988923]
[119]
Kumar, A.; Gupta, G.; Bishnoi, A.K.; Saxena, R.; Saini, K.S.; Konwar, R.; Kumar, S.; Dwivedi, A. Design and synthesis of new bioisosteres of spirooxindoles (MI-63/219) as anti-breast cancer agents. Bioorg. Med. Chem., 2015, 23(4), 839-848.
[http://dx.doi.org/10.1016/j.bmc.2014.12.037] [PMID: 25618595]
[120]
Hou, J.; Jin, K.; Li, J.; Jiang, Y.; Li, X.; Wang, X.; Huang, Y.; Zhang, Y.; Xu, W. LJNK, an indoline-2,3-dione-based aminopeptidase N inhibitor with promising antitumor potency. Anticancer Drugs, 2016, 27(6), 496-507.
[http://dx.doi.org/10.1097/CAD.0000000000000351] [PMID: 26872309]
[121]
Jin, K.; Zhang, X.; Ma, C.; Xu, Y.; Yuan, Y.; Xu, W. Novel indoline-2,3-dione derivatives as inhibitors of aminopeptidase N (APN). Bioorg. Med. Chem., 2013, 21(9), 2663-2670.
[http://dx.doi.org/10.1016/j.bmc.2012.06.024] [PMID: 23510562]
[122]
Zhang, X.; Wang, M.; Teng, S.; Wang, D.; Li, X.; Wang, X.; Liao, W.; Wang, D. Indolyl-chalcone derivatives induce hepatocellular carcinoma cells apoptosis through oxidative stress related mitochondrial pathway in vitro and in vivo. Chem. Biol. Interact., 2018, 293, 61-69.
[http://dx.doi.org/10.1016/j.cbi.2018.07.025] [PMID: 30055129]
[123]
Shang, Y.; Wang, Q.; Li, J.; Zhao, Q.; Huang, X.; Dong, H.; Liu, H.; Zhang, Y.; Zhang, J.; Gui, R.; Nie, X. The acetone indigo red dehydrating agent IF203 Induces HepG2 cell death through cell cycle arrest, autophagy and apoptosis. OncoTargets Ther., 2020, 13, 473-486.
[http://dx.doi.org/10.2147/OTT.S232594] [PMID: 32021291]
[124]
Rana, S.; Blowers, E.C.; Tebbe, C.; Contreras, J.I.; Radhakrishnan, P.; Kizhake, S.; Zhou, T.; Rajule, R.N.; Arnst, J.L.; Munkarah, A.R.; Rattan, R.; Natarajan, A. Isatin derived spirocyclic analogues with α-methylene-γ-butyrolactone as anticancer agents: A structure-activity relationship study. J. Med. Chem., 2016, 59(10), 5121-5127.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00400] [PMID: 27077228]
[125]
Gabr, M.T.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M.; Ni, N. Isatin-β-thiocarbohydrazones: Microwave-assisted synthesis, antitumor activity and structure-activity relationship. Eur. J. Med. Chem., 2017, 128, 36-44.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.030] [PMID: 28147307]
[126]
Pandey, M.K.; Gowda, K.; Sung, S.; Abraham, T.; Budak-Alpdogan, T.; Talamo, G.; Dovat, S.; Amin, S. A novel dual inhibitor of microtubule and Bruton’s tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis. Exp. Hematol., 2017, 53, 31-42.
[http://dx.doi.org/10.1016/j.exphem.2017.06.003] [PMID: 28647392]
[127]
Krishnegowda, G.; Prakasha Gowda, A.S.; Tagaram, H.R.S.; Carroll, K.F.S.O.; Irby, R.B.; Sharma, A.K.; Amin, S. Synthesis and biological evaluation of a novel class of isatin analogs as dual inhibitors of tubulin polymerization and Akt pathway. Bioorg. Med. Chem., 2011, 19(20), 6006-6014.
[http://dx.doi.org/10.1016/j.bmc.2011.08.044] [PMID: 21920762]
[128]
Pati, M. L.; Niso, M.; Spitzer, D.; Berardi, F.; Contino, M.; Riganti, C.; Hawkins, W. G.; Abate, C. Multifunctional thiosemicarbazones and deconstructed analogues as a strategy to study the involvement of metal chelation, sigma-2 (Σ2) receptor and P-Gp protein in the cytotoxic action: in vitro and in vivo activity in pancreatic tumors. Eur. J. Med. Chem., 2018, 144, 359-371.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.024]
[129]
Ohman, K.A.; Hashim, Y.M.; Vangveravong, S.; Nywening, T.M.; Cullinan, D.R.; Goedegebuure, S.P.; Liu, J.; Van Tine, B.A.; Tiriac, H.; Tuveson, D.A.; DeNardo, D.G.; Spitzer, D.; Mach, R.H.; Hawkins, W.G. Conjugation to the sigma-2 ligand SV119 overcomes uptake blockade and converts dm-Erastin into a potent pancreatic cancer therapeutic. Oncotarget, 2016, 7(23), 33529-33541.
[http://dx.doi.org/10.18632/oncotarget.9551] [PMID: 27244881]
[130]
Wang, J.; Yun, D.; Yao, J.; Fu, W.; Huang, F.; Chen, L.; Wei, T.; Yu, C.; Xu, H.; Zhou, X.; Huang, Y.; Wu, J.; Qiu, P.; Li, W. Design, synthesis and QSAR study of novel isatin analogues inspired Michael acceptor as potential anticancer compounds. Eur. J. Med. Chem., 2018, 144, 493-503.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.043] [PMID: 29288946]
[131]
Zhang, W.H.; Chen, S.; Liu, X.L. Bing-Lin; Liu, X.W.; Zhou, Y. Study on antitumor activities of the chrysin-chromene-spirooxindole on Lewis lung carcinoma C57BL/6 mice in vivo. Bioorg. Med. Chem. Lett., 2020, 30(17), 127410.
[http://dx.doi.org/10.1016/j.bmcl.2020.127410] [PMID: 32738990]
[132]
Annageldiyev, C.; Gowda, K.; Patel, T.; Bhattacharya, P.; Tan, S.F.; Iyer, S.; Desai, D.; Dovat, S.; Feith, D.J.; Loughran, T.P., Jr; Amin, S.; Claxton, D.; Sharma, A. The novel Isatin analog KS99 targets stemness markers in acute myeloid leukemia. Haematologica, 2020, 105(3), 687-696.
[http://dx.doi.org/10.3324/haematol.2018.212886] [PMID: 31123028]
[133]
Hua, Y.; Zhou, N.; Zhang, J.; Zhang, Z.; Li, N.; Wang, J.; Zheng, W.; Li, X.; Wang, F.; Zhang, L.; Hou, L. Isatin inhibits the invasion and metastasis of SH-SY5Y neuroblastoma cells in vitro and in vivo. Int. J. Oncol., 2020, 58(1), 122-132.
[http://dx.doi.org/10.3892/ijo.2020.5144] [PMID: 33367935]
[134]
Bansal, M.; Upadhyay, C. Poonam; Kumar, S.; Rathi, B. Phthalimide analogs for antimalarial drug discovery. RSC Medicinal Chemistry, 2021, 12(11), 1854-1867.
[http://dx.doi.org/10.1039/D1MD00244A] [PMID: 34825184]
[135]
Lu, Y.; Yu, X.; Evans, C.J.; Yang, S.; Zhang, K. Elucidating the role of acetylene in ortho -phthalimide functional benzoxazines: design, synthesis, and structure-property investigations. Polym. Chem., 2021, 12(35), 5059-5068.
[http://dx.doi.org/10.1039/D1PY00850A]
[136]
Schneider, P.; Schneider, G. Privileged structures revisited. Angew. Chem. Int. Ed., 2017, 56(27), 7971-7974.
[http://dx.doi.org/10.1002/anie.201702816] [PMID: 28558125]
[137]
Zahran, M.; Agwa, H.; Osman, A.; Hammad, S.; El-Aarag, B.; Ismail, N.; Salem, T.; Gamal-Eldeen, A. Synthesis and biological evaluation of phthalimide dithiocarbamate and dithioate derivatives as anti-proliferative and anti-angiogenic agents-I. Eur. J. Chem., 2017, 8(4), 391-399.
[http://dx.doi.org/10.5155/eurjchem.8.4.391-399.1652]
[138]
Abdulrahman, H.S.; Hassan Mohammed, M.; Al-Ani, L.A.; Ahmad, M.H.; Hashim, N.M.; Yehye, W.A. Synthesis of phthalimide imine derivatives as a potential anticancer agent. J. Chem., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/3928204]
[139]
Alanazi, A.M.; El-Azab, A.S.; Al-Suwaidan, I.A.; ElTahir, K.E.H.; Asiri, Y.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A.M. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: Anti-inflammatory and analgesic activities. Eur. J. Med. Chem., 2015, 92, 115-123.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.039] [PMID: 25549551]
[140]
Singh, G.; Saroa, A.; Girdhar, S.; Rani, S.; Sahoo, S.; Choquesillo-Lazarte, D. Synthesis, characterization, electronic absorption and antimicrobial studies of N-(silatranylpropyl)phthalimide derived from phthalic anhydride. Inorg. Chim. Acta, 2015, 427, 232-239.
[http://dx.doi.org/10.1016/j.ica.2015.01.011]
[141]
Al-Qaisi, J.A.; Alhussainy, T.M.; Qinna, N.A.; Matalka, K.Z.; Al-Kaissi, E.N.; Muhi-Eldeen, Z.A. Synthesis and pharmacological evaluation of aminoacetylenic isoindoline-1,3-dione derivatives as anti-inflammatory agents. Arab. J. Chem., 2014, 7(6), 1024-1030.
[http://dx.doi.org/10.1016/j.arabjc.2010.12.030]
[142]
Davood, A.; Iman, M.; Pouriaiee, H.; Shafaroodi, H.; Akhbari, S.; Azimidoost, L.; Imani, E.; Rahmatpour, S. Novel derivatives of phthalimide with potent anticonvulsant activity in PTZ and MES seizure models. Iran. J. Basic Med. Sci., 2017, 20(4), 430-437.
[http://dx.doi.org/10.22038/IJBMS.2017.8586] [PMID: 28804613]
[143]
Cao, Y.; Sun, N.; Zhang, J.; Liu, Z.; Tang, Y.; Wu, Z.; Kim, K.M.; Cheon, S.H. Design, synthesis, and evaluation of bitopic arylpiperazine-phthalimides as selective dopamine D 3 receptor agonists. MedChemComm, 2018, 9(9), 1457-1465.
[http://dx.doi.org/10.1039/C8MD00237A] [PMID: 30288220]
[144]
Chidan Kumar, C.S.; Loh, W.S.; Chandraju, S.; Win, Y.F.; Tan, W.K.; Quah, C.K.; Fun, H.K. Synthesis, structural and antioxidant studies of some novel N-ethyl phthalimide esters. PLoS One, 2015, 10(3), e0119440.
[http://dx.doi.org/10.1371/journal.pone.0119440] [PMID: 25742494]
[145]
Kushwaha, N.; Kaushik, D. Recent advances and future prospects of phthalimide derivatives. J. Appl. Pharm. Sci., 2016, 6(03), 159-171.
[http://dx.doi.org/10.7324/JAPS.2016.60330]
[146]
Leite, A.C.L.; Barbosa, F.F.; Cardoso, M.V.D.O.; Moreira, D.R.M.; Coêlho, L.C.D.; Silva, E.B.; Filho, G.B.D.O.; Souza, V.M.O.; Pereira, V.R.A.; Reis, L.D.C. Phthaloyl amino acids as anti-inflammatory and immunomodulatory prototypes. Med. Chem. Res., 2014, 23(4), 1701-1708.
[http://dx.doi.org/10.1007/s00044-013-0730-1]
[147]
Coêlho, L.C.D.; Cardoso, M.V.O.; Moreira, D.R.M.; Gomes, P.A.T.M.; Cavalcanti, S.M.T.; Oliveira, A.R.; Filho, G.B.O.; Siqueira, L.R.P.; Barbosa, M.O.; Borba, E.F.O.; Silva, T.G.; Kaskow, B.; Karimi, M.; Abraham, L.J.; Leite, A.C.L. Novel phthalimide derivatives with TNF-α and IL-1β expression inhibitory and apoptotic inducing properties. MedChemComm, 2014, 5(6), 758-765.
[http://dx.doi.org/10.1039/C4MD00070F]
[148]
Cardoso, M.V.O.; Moreira, D.R.M.; Filho, G.B.O.; Cavalcanti, S.M.T.; Coelho, L.C.D.; Espíndola, J.W.P.; Gonzalez, L.R.; Rabello, M.M.; Hernandes, M.Z.; Ferreira, P.M.P.; Pessoa, C.; Alberto de Simone, C.; Guimarães, E.T.; Soares, M.B.P.; Leite, A.C.L. Design, synthesis and structure-activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities. Eur. J. Med. Chem., 2015, 96, 491-503.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.041] [PMID: 25942060]
[149]
da Costa, P.M.; da Costa, M.P.; Carvalho, A.A.; Cavalcanti, S.M.T.; de Oliveira Cardoso, M.V.; de Oliveira Filho, G.B.; de Araújo Viana, D.; Fechine-Jamacaru, F.V.; Leite, A.C.L.; de Moraes, M.O.; Pessoa, C.; Ferreira, P.M.P. Improvement of in vivo anticancer and antiangiogenic potential of thalidomide derivatives. Chem. Biol. Interact., 2015, 239, 174-183.
[http://dx.doi.org/10.1016/j.cbi.2015.06.037] [PMID: 26134001]
[150]
Santiago, E.F.; de Oliveira, S.A.; de Oliveira Filho, G.B.; Moreira, D.R.M.; Gomes, P.A.T.; da Silva, A.L.; de Barros, A.F.; da Silva, A.C.; dos Santos, T.A.R.; Pereira, V.R.A.; Gonçalves, G.G.A.; Brayner, F.A.; Alves, L.C.; Wanderley, A.G.; Leite, A.C.L. Evaluation of the anti-Schistosoma mansoni activity of thiosemicarbazones and thiazoles. Antimicrob. Agents Chemother., 2014, 58(1), 352-363.
[http://dx.doi.org/10.1128/AAC.01900-13] [PMID: 24165185]
[151]
Gomes, P.A.T.M.; Oliveira, A.R.; Cardoso, M.V.O.; Santiago, E.F.; Barbosa, M.O.; de Siqueira, L.R.P.; Moreira, D.R.M.; Bastos, T.M.; Brayner, F.A.; Soares, M.B.P.; Mendes, A.P.O.; de Castro, M.C.A.B.; Pereira, V.R.A.; Leite, A.C.L. Phthalimido-thiazoles as building blocks and their effects on the growth and morphology of Trypanosoma cruzi. Eur. J. Med. Chem., 2016, 111, 46-57.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.010] [PMID: 26854377]
[152]
Aliança, A.S.S.; Oliveira, A.R.; Feitosa, A.P.S.; Ribeiro, K.R.C.; de Castro, M.C.A.B.; Leite, A.C.L.; Alves, L.C.; Brayner, F.A. In vitro evaluation of cytotoxicity and leishmanicidal activity of phthalimido-thiazole derivatives. Eur. J. Pharm. Sci., 2017, 105, 1-10.
[http://dx.doi.org/10.1016/j.ejps.2017.05.005] [PMID: 28478133]
[153]
Yin, L.L.; Wen, X.M.; Lai, Q.H.; Li, J.; Wang, X.W. Lenalidomide improvement of cisplatin antitumor efficacy on triple-negative breast cancer cells in vitro. Oncol. Lett., 2018, 15(5), 6469-6474.
[http://dx.doi.org/10.3892/ol.2018.8120] [PMID: 29616116]
[154]
Matsushita, M.; Ozaki, Y.; Hasegawa, Y.; Terada, F.; Tabata, N.; Shiheido, H.; Yanagawa, H.; Oikawa, T.; Matsuo, K.; Du, W. A novel phthalimide derivative, TC11, has preclinical effects on high-risk myeloma cells and osteoclasts. PLoS One, 2015, 10(1)
[http://dx.doi.org/10.1371/journal.pone.0116135]
[155]
Hozumi, M.; Ichikawa, D.; Matsushita, M.; Kamiyama, E.; Yanagawa, H.; Tabata, N.; Kitabatake, S.; Ueda, A.; Yamaguchi, T.; Sato, M.; Hattori, Y. Drug design for overcoming high-risk myeloma and identification of novel binding proteins to immune-modulatory drugs. Blood, 2015, 126(23), 1800.
[http://dx.doi.org/10.1182/blood.V126.23.1800.1800]
[156]
Aida, S.; Hozumi, M.; Ichikawa, D.; Iida, K.; Yonemura, Y.; Tabata, N.; Yamada, T.; Matsushita, M.; Sugai, T.; Yanagawa, H.; Hattori, Y. A novel phenylphthalimide derivative, pegylated TC11, improves pharmacokinetic properties and induces apoptosis of high-risk myeloma cells via G2/M cell-cycle arrest. Biochem. Biophys. Res. Commun., 2017, 493(1), 514-520.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.159] [PMID: 28867196]
[157]
Xiao, D.; Wang, Y.; Hu, X.; Kan, W.; Zhang, Q.; Jiang, X.; Zhou, Y.; Li, J.; Lu, W. Design, synthesis and biological evaluation of the thioether-containing lenalidomide analogs with anti-proliferative activities. Eur. J. Med. Chem., 2019, 176, 419-430.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.035] [PMID: 31125896]
[158]
National Library of Medicine. Iberdomide | CC-220 | C25H27N3O5 -PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Iberdomide#section=2D-Structure (Accessed on: Jun 18, 2022)
[159]
Wang, Y.; Mi, T.; Li, Y.; Kan, W.; Xu, G.; Li, J.; Zhou, Y.; Li, J.; Jiang, X. Design, synthesis and biological evaluation of thioether-containing lenalidomide and pomalidomide derivatives with anti-multiple myeloma activity. Eur. J. Med. Chem., 2021, 209, 112912.
[http://dx.doi.org/10.1016/j.ejmech.2020.112912] [PMID: 33328101]
[160]
Ferreira, P.M.P.; da Costa, P.M.; de Menezes Costa, A.; Lima, D.J.B.; Drumond, R.R.; Silva, J.D.N.; de Magalhães Moreira, D.R.; de Oliveira Filho, G.B.; Ferreira, J.M.; de Queiroz, M.G.R. Cytotoxic and toxicological effects of phthalimide derivatives on tumor and normal murine cells. An. Acad. Bras. Cienc., 2015, 87(1), 313-330.
[161]
Winter, G.E.; Buckley, D.L.; Paulk, J.; Roberts, J.M.; Souza, A.; Dhe-Paganon, S.; Bradner, J.E. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 2015, 348(6241), 1376-1381.
[http://dx.doi.org/10.1126/SCIENCE.AAB1433]
[162]
Liu, H.; Ding, X.; Liu, L.; Mi, Q.; Zhao, Q.; Shao, Y.; Ren, C.; Chen, J.; Kong, Y.; Qiu, X.; Elvassore, N.; Yang, X.; Yin, Q.; Jiang, B. Discovery of novel BCR-ABL PROTACs based on the cereblon E3 ligase design, synthesis, and biological evaluation. Eur. J. Med. Chem., 2021, 223, 113645.
[http://dx.doi.org/10.1016/j.ejmech.2021.113645] [PMID: 34217059]
[163]
Wang, M.; Zhou, A.; An, T.; Kong, L.; Yu, C.; Liu, J.; Xia, C.; Zhou, H.; Li, Y. N-Hydroxyphthalimide exhibits antitumor activity by suppressing mTOR signaling pathway in BT-20 and LoVo cells. J. Exp. Clin. Cancer Res., 2016, 35(1), 41.
[http://dx.doi.org/10.1186/s13046-016-0315-1] [PMID: 26940018]
[164]
Santin, J.R.; da Silva, G.F.; Pastor, M.V.D.; Broering, M.F.; Nunes, R.; Braga, R.C.; de Sousa, I.T.S.; Stiz, D.S.; da Silva, K.A.B.S.; Stoeberl, L.C.; Corrêa, R.; Filho, V.C.; dos Santos, C.E.M.; Quintão, N.L.M. Biological and toxicological evaluation of N-(4methyl-phenyl)-4-methylphthalimide on bone cancer in mice. Anticancer. Agents Med. Chem., 2019, 19(5), 667-676.
[http://dx.doi.org/10.2174/1871520619666190207130732] [PMID: 30734686]
[165]
Wee, C.W.; Kim, J.H.; Kim, H.J.; Kang, H.C.; Suh, S.Y.; Shin, B.S.; Ma, E.; Kim, H. Radiosensitization of glioblastoma cells by a novel DNA methyltransferase-inhibiting phthalimido-alkanamide derivative. Anticancer Res., 2019, 39(2), 759-769.
[http://dx.doi.org/10.21873/anticanres.13173] [PMID: 30711955]
[166]
Joo, I.; Kim, J.H.; Lee, J.M.; Choi, J.W.; Han, J.K.; Choi, B.I. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors. Ultrasonography, 2014, 33(1), 18-25.
[http://dx.doi.org/10.14366/usg.13006] [PMID: 24936491]
[167]
Oh, D.Y.; Kim, T.M.; Han, S.W.; Shin, D.Y.; Lee, Y.G.; Lee, K.W.; Kim, J.H.; Kim, T.Y.; Jang, I.J.; Lee, J.S.; Bang, Y.J. Phase I study of CKD-516, a novel vascular disrupting agent, in patients with advanced solid tumors. Cancer Res. Treat., 2016, 48(1), 28-36.
[http://dx.doi.org/10.4143/crt.2014.258] [PMID: 25715767]
[168]
CID 46929538 - S516| C21H19N5O4S – PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/46929538 (Accessed on: May 30, 2022).
[169]
RNR inhibitor COH29 in treating patients with solid tumors that are refractory to standard therapy or for which no standard therapy exists - no study results posted. NCT02112565, Available from: https://clinicaltrials.gov/ct2/show/results/NCT02112565
[170]
Rnr inhibitor COH29 | C22H16N2O5S - PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Rnr-inhibitor-COH29(accessed on: May 30, 2022).
[171]
A phase 1/2 study of MEDI4276 in adults subjects with select HER2-expressing advanced solid tumors. Patent NCT02576548, Available from: https://clinicaltrials.gov/ct2/show/results/NCT02576548?term=MEDI4276&draw=2&rank=1(accessed on: May 7, 2022).
[http://dx.doi.org/10.3390/antib8010011] [PMID: 31544817]
[172]
Faria, M.; Peay, M.; Lam, B.; Ma, E.; Yuan, M.; Waldron, M.; Mylott, W.; Liang, M.; Rosenbaum, A. Multiplex LCMS/ MS assays for clinical bioanalysis of MEDI4276, an antibody-drug conjugate of tubulysin analogue attached via cleavable linker to a biparatopic humanized antibody against HER-2. Antibodies, 2019, 8(1), 11.
[http://dx.doi.org/10.3390/ANTIB8010011]
[173]
Safety and tolerability study for T-1101 (Tosylate) to treat advanced refractory solid tumors - full text view patent NCT03195764. 2017. Available from: https://clinicaltrials. gov/ct2/show/study/NCT03195764?id=NCT03195764&draw=2&rank=1(accessed on: Jun 25, 2022).
[174]
Folic acid-tubulysin conjugate EC1456 in patients with advanced solid tumors patent NCT01999738 Available from: https://clinicaltrials.gov/ct2/show/NCT01999738(accessed on: Aug 7, 2022).
[175]
Sachdev, J.C.; Edelman, M.; Harb, W.; Armour, A.; Wang, D.; Starodub, A.N. Phase 1 dose-escalation study of the folic acid-tubulysin small-molecule drug conjugate (SMDC) folate-tubulysin EC1456: Study update. In: Annals of Oncology; Elsevier, 2016; 7, p. vi126.
[http://dx.doi.org/10.1093/annonc/mdw368.38]
[176]
An exploratory study of the folic acid-tubulysin conjugate EC1456 in ovarian cancer subjects undergoing surgery. Patent NCT03011320, Available from: https://clinicaltrials. gov/ct2/show/record/NCT03011320?view=record(accessed on: Aug 9, 2022).
[177]
Endocyte, Inc. Endocyte Announces Clinical Updates for EC1456 and EC1169. Endocyte Announces Clinical Updates for EC1456 and EC1169, Available from: https://www.globenewswire.com/news-release/2017/06/02/1006220/0/en/Endocyte-Announces-Clinical-Updates-for-EC1456-and-EC1169.html (Accessed on: Aug 20, 2022).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy