Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Mini-Review Article

Imidazo[4,5-b]Pyridines: From Kinase Inhibitors to more Diversified Biological Properties

Author(s): Karim Jarmoni, Khalid Misbahi and Vincent Ferrières*

Volume 31, Issue 5, 2024

Published on: 03 July, 2023

Page: [515 - 528] Pages: 14

DOI: 10.2174/0929867330666230426111650

Price: $65

conference banner
Abstract

Imidazo[4,5-b]pyridines are amongst the oldest known heteroaromatic derivatives. Their structural similarity with purine basis has however aroused the curiosity of biologists and resulted in the developments of innovative bioactive compounds. This review thus firstly describes the main synthetic ways currently used to produce imidazo[ 4,5-b]pyridine derivatives, and secondly gives examples of their potential, especially focusing on protein inhibition abilities, thus opening the way to applications as anti-cancer or antimicrobial agents.

Keywords: Imidazo[4, 5-b]pyridines, synthesis, kinase inhibitors, antimicrobial activities, antioxidant properties, heteroaromatic derivatives.

Next »
[1]
Foster, A.; Kemp, J. Glutamate- and GABA-based CNS therapeutics. Curr. Opin. Pharmacol., 2006, 6(1), 7-17.
[http://dx.doi.org/10.1016/j.coph.2005.11.005] [PMID: 16377242]
[2]
Temple, C., Jr; Rose, J.D.; Comber, R.N.; Rener, G.A. Synthesis of potential anticancer agents: Imidazo[4,5-c]pyridines and imidazo[4,5-b]pyridines. J. Med. Chem., 1987, 30(10), 1746-1751.
[http://dx.doi.org/10.1021/jm00393a011] [PMID: 3656351]
[3]
Cristalli, G.; Vittori, S.; Eleuteri, A.; Grifantini, M.; Volpini, R.; Lupidi, G.; Capolongo, L.; Pesenti, E. Purine and 1-deazapurine ribonucleosides and deoxyribonucleosides: Synthesis and biological activity. J. Med. Chem., 1991, 34(7), 2226-2230.
[http://dx.doi.org/10.1021/jm00111a044] [PMID: 2066996]
[4]
Cristalli, G.; Vittori, S.; Eleuteri, A.; Volpini, R.; Camaioni, E.; Lupidi, G.; Mahmood, N.; Bevilacqua, F.; Palù, G. Synthesis and biological evaluation of N6-cycloalkyl derivatives of 1-deazaadenine nucleosides: A new class of anti-human immunodeficiency virus agents. J. Med. Chem., 1995, 38(20), 4019-4025.
[http://dx.doi.org/10.1021/jm00020a017] [PMID: 7562937]
[5]
Cundy, D.J.; Holan, G.; Otaegui, M.; Simpson, G.W. 3-[(3′-Hydroxymethyl)-4′-hydroxybutyl]imidazo[4,5-b] pyridines-novel antiviral agents. Bioorg. Med. Chem. Lett., 1997, 7(6), 669-674.
[http://dx.doi.org/10.1016/S0960-894X(97)00082-6]
[6]
Banie, H.; Sinha, A.; Thomas, R.J.; Sircar, J.C.; Richards, M.L. 2-phenylimidazopyridines, a new series of Golgi compounds with potent antiviral activity. J. Med. Chem., 2007, 50(24), 5984-5993.
[http://dx.doi.org/10.1021/jm0704907] [PMID: 17973358]
[7]
Mader, M.; de Dios, A.; Shih, C.; Bonjouklian, R.; Li, T.; White, W.; de Uralde, B.L.; Sánchez-Martinez, C.; del Prado, M.; Jaramillo, C.; de Diego, E.; Martín Cabrejas, L.M.; Dominguez, C.; Montero, C.; Shepherd, T.; Dally, R.; Toth, J.E.; Chatterjee, A.; Pleite, S.; Blanco-Urgoiti, J.; Perez, L.; Barberis, M.; Lorite, M.J.; Jambrina, E.; Nevill, C.R., Jr; Lee, P.A.; Schultz, R.C.; Wolos, J.A.; Li, L.C.; Campbell, R.M.; Anderson, B.D. Imidazolyl benzimidazoles and imidazo[4,5-b]pyridines as potent p38α MAP kinase inhibitors with excellent in vivo antiinflammatory properties. Bioorg. Med. Chem. Lett., 2008, 18(1), 179-183.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.106] [PMID: 18039577]
[8]
Bukowski, L.; Kaliszan, R. Imidazo[4,5-b]pyridine derivatives of potential tuberculostatic activity. Part 1: Synthesis and quantitative structure-activity relationships. Arch. Pharm. (Weinheim), 1991, 324(2), 121-127.
[http://dx.doi.org/10.1002/ardp.19913240212] [PMID: 1906702]
[9]
Nicholson, A.N.; Pascoe, P.A. Hypnotic activity of an imidazo-pyridine (zolpidem). Br. J. Clin. Pharmacol., 1986, 21(2), 205-211.
[http://dx.doi.org/10.1111/j.1365-2125.1986.tb05176.x] [PMID: 3954937]
[10]
Holm, K.J.; Goa, K.L. Zolpidem. Drugs, 2000, 59(4), 865-889.
[http://dx.doi.org/10.2165/00003495-200059040-00014] [PMID: 10804040]
[11]
Bolm, C.; Hendriks, C.; Nürnberg, P. Zolimidine analogues: The synthesis of imidazo[1,2-α]pyridine-based sulfilimines and sulfoximines. Synthesis, 2015, 47(8), 1190-1194.
[http://dx.doi.org/10.1055/s-0034-1380109]
[12]
Bagdi, A.K.; Santra, S.; Monir, K.; Hajra, A. Synthesis of imidazo[1,2-a]pyridines: A decade update. Chem. Commun., 2015, 51(9), 1555-1575.
[http://dx.doi.org/10.1039/C4CC08495K] [PMID: 25407981]
[13]
Krause, M.; Foks, H.; Gobis, K. Pharmacological potential and synthetic approaches of imidazo[4,5-b]pyridine and imidazo[4,5-c]pyridine derivatives. Molecules, 2017, 22(3), 399.
[http://dx.doi.org/10.3390/molecules22030399] [PMID: 28273868]
[14]
Tschitschibabin, A.E.; Kirsanow, A.W. α, β′-Diamino-pyridin und α, β-Diamino-pyridin. Ber. Dtsch. Chem. Ges. B, 1927, 60(3), 766-776.
[http://dx.doi.org/10.1002/cber.19270600330]
[15]
Dymińska, L.; Gągor, A.; Talik, Z.; Lorenc, J.; Hanuza, J. Vibrational spectra and structure of methyl-derivatives of imidazo[4,5-c]pyridine based on DFT quantum chemical calculations and XRD studies. Vib. Spectrosc., 2011, 57(2), 229-241.
[http://dx.doi.org/10.1016/j.vibspec.2011.07.009]
[16]
René, O.; Souverneva, A.; Magnuson, S.R.; Fauber, B.P. Efficient syntheses of 2-fluoroalkylbenzimidazoles and -benzothiazoles. Tetrahedron Lett., 2013, 54(3), 201-204.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.069]
[17]
Baladi, T.; Aziz, J.; Dufour, F.; Abet, V.; Stoven, V.; Radvanyi, F.; Poyer, F.; Wu, T.D.; Guerquin-Kern, J.L.; Bernard-Pierrot, I.; Garrido, S.M.; Piguel, S. Design, synthesis, biological evaluation and cellular imaging of imidazo[4,5-b]pyridine derivatives as potent and selective TAM inhibitors. Bioorg. Med. Chem., 2018, 26(20), 5510-5530.
[http://dx.doi.org/10.1016/j.bmc.2018.09.031] [PMID: 30309671]
[18]
Kale, R.P.; Shaikh, M.U.; Jadhav, G.R.; Gill, C.H. Eco-friendly and facile synthesis of 2-substituted-1H-imidazo[4,5-b]pyridine in aqueous medium by air oxidation. Tetrahedron Lett., 2009, 50(16), 1780-1782.
[http://dx.doi.org/10.1016/j.tetlet.2008.12.104]
[19]
Dekhane, D.V.; Pawar, S.S.; Gupta, S.V.; Shingare, M.S.; Thore, S.N. Lithium bromide catalyzed solvent free method for synthesis of 2-substituted benzimidazoles and imidazopyridines. Chin. Chem. Lett., 2010, 21(5), 519-523.
[http://dx.doi.org/10.1016/j.cclet.2009.11.034]
[20]
Joule, J.A.; Mills, K. Heterocyclic Chemistry, 4th ed; Blackwell Publishing: India, 2007.
[21]
Hranjec, M.; Lučić, B.; Ratkaj, I.; Pavelić, S.K.; Piantanida, I.; Pavelić, K.; Karminski-Zamola, G. Novel imidazo[4,5-b]pyridine and triaza-benzo[c]fluorene derivatives: Synthesis, antiproliferative activity and DNA binding studies. Eur. J. Med. Chem., 2011, 46(7), 2748-2758.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.062] [PMID: 21524829]
[22]
Hranjec, M.; Pavlović, G.; Marinović, M.; Karminski-Zamola, G. Synthesis, spectroscopic properties and crystal structure determination of 2-(2-pyridin-4-yl-vinyl)-1H-benzimidazole derivatives. Struct. Chem., 2008, 19(2), 353-359.
[http://dx.doi.org/10.1007/s11224-008-9291-1]
[23]
Kappe, C. O.; Dallinger, D.; Murphree, S. S. Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments, and Protocols. 2008. p. 525.
[http://dx.doi.org/10.1002/9783527623907]
[24]
Martínez-Palou, R.; Zepeda, L.G.; Höpfl, H.; Montoya, A.; Guzmán-Lucero, D.J.; Guzmán, J. Parallel and automated library synthesis of 2-long alkyl chain benzoazoles and azole[4,5-b]pyridines under microwave irradiation. Mol. Divers., 2005, 9(4), 361-369.
[http://dx.doi.org/10.1007/s11030-005-6357-5] [PMID: 16311813]
[25]
Bavetsias, V.; Large, J.M.; Sun, C.; Bouloc, N.; Kosmopoulou, M.; Matteucci, M.; Wilsher, N.E.; Martins, V.; Reynisson, J.; Atrash, B.; Faisal, A.; Urban, F.; Valenti, M.; de Haven Brandon, A.; Box, G.; Raynaud, F.I.; Workman, P.; Eccles, S.A.; Bayliss, R.; Blagg, J.; Linardopoulos, S.; McDonald, E. Imidazo[4,5-b]pyridine derivatives as inhibitors of Aurora kinases: Lead optimization studies toward the identification of an orally bioavailable preclinical development candidate. J. Med. Chem., 2010, 53(14), 5213-5228.
[http://dx.doi.org/10.1021/jm100262j] [PMID: 20565112]
[26]
Bourichi, S.; Rodi, Y.K.; Hoekelek, T.; Ouzidan, Y.; Chahdi, F.O.; Akhazzane, M.; Essassi, E.M. Crystal structure and Hirshfeld surface analysis of 6-bromo-2-(4-chlorophenyl)-3-((1-octyl-1H-1,2,3-triazol-4-yl)methyl)-3H-imidazo[4,5-B]pyridine. J. Maroc. Chim. Heterocycl., 2019, 18(1), 43.
[27]
Jabri, Z.; Sebbar, N.K.; Hökelek, T.; Mague, J.T.; Sabir, S.; Rodi, Y.K.; Misbahi, K. Crystal structure, Hirshfeld surface analysis and DFT study of 6-bromo-3-(5-bromohexyl)-2-[4-(dimethylamino)-phenyl]-3H-imidazo[4,5-b]pyridine. Acta Crystallogr. Sect. E Struct. Rep. Online, 2020, E76, 1234.
[28]
Jabri, Z.; Ibrahimi, B.E.; Jarmoni, K.; Sabir, S.; Misbahi, K.; Rodi, Y.K.; Mashrai, A.; Hökelek, T.; Mague, J.T.; Sebbar, N.K. New imidazo[4,5-b]pyridine derivatives: Synthesis, crystal structures, Hirshfeld surface analysis, DFT computations and Monte Carlo simulations. J. Chem. Technol. Metal., 2022, 57(3), 451.
[29]
Salomé, C.; Schmitt, M.; Bourguignon, J.J. Rapid synthesis of imidazo[4,5-b]pyridine containing polycyclics by means of palladium-catalyzed amidation of 2-chloro-3-nitropyridine. Tetrahedron Lett., 2009, 50(27), 3798-3800.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.031]
[30]
Chen, G.; Liu, Z.; Zhang, Y.; Shan, X.; Jiang, L.; Zhao, Y.; He, W.; Feng, Z.; Yang, S.; Liang, G. Synthesis and anti-inflammatory evaluation of novel benzimidazole and imidazopyridine derivatives. ACS Med. Chem. Lett., 2013, 4(1), 69-74.
[http://dx.doi.org/10.1021/ml300282t] [PMID: 24900565]
[31]
Shin, J.M.; Homerin, M.; Domagala, F.; Ficheux, H.; Sachs, G. Characterization of the inhibitory activity of tenatoprazole on the gastric H+,K+-ATPase in vitro and in vivo. Biochem. Pharmacol., 2006, 71(6), 837-849.
[http://dx.doi.org/10.1016/j.bcp.2005.11.030] [PMID: 16405921]
[32]
Scarpignato, C.; Hunt, R. Proton pump inhibitors: The beginning of the end or the end of the beginning? Curr. Opin. Pharmacol., 2008, 8(6), 677-684.
[http://dx.doi.org/10.1016/j.coph.2008.09.004] [PMID: 18840545]
[33]
Shin, J.M.; Cho, Y.M.; Sachs, G. Chemistry of covalent inhibition of the gastric (H+, K+)-ATPase by proton pump inhibitors. J. Am. Chem. Soc., 2004, 126(25), 7800-7811.
[http://dx.doi.org/10.1021/ja049607w] [PMID: 15212527]
[34]
Hall, P.A.; Levison, D.A. Review: Assessment of cell proliferation in histological material. J. Clin. Pathol., 1990, 43(3), 184-192.
[http://dx.doi.org/10.1136/jcp.43.3.184] [PMID: 2185282]
[35]
Manning, B.D.; Cantley, L.C. AKT/PKB signaling: Navigating downstream. Cell, 2007, 129(7), 1261-1274.
[http://dx.doi.org/10.1016/j.cell.2007.06.009] [PMID: 17604717]
[36]
Manning, B.D.; Toker, A. AKT/PKB signaling: Navigating the network. Cell, 2017, 169(3), 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[37]
Matheny, R.W., Jr; Adamo, M.L. Current perspectives on AKT Activation and AKT-ions. Exp. Biol. Med., 2009, 234(11), 1264-1270.
[http://dx.doi.org/10.3181/0904-MR-138] [PMID: 19596822]
[38]
Song, M.; Bode, A.M.; Dong, Z.; Lee, M.H. AKT as a therapeutic target for cancer. Cancer Res., 2019, 79(6), 1019-1031.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2738] [PMID: 30808672]
[39]
Hinz, N.; Jücker, M. Distinct functions of AKT isoforms in breast cancer: A comprehensive review. Cell Commun. Signal., 2019, 17(1), 154.
[http://dx.doi.org/10.1186/s12964-019-0450-3] [PMID: 31752925]
[40]
Pascual, J.; Turner, N.C. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann. Oncol., 2019, 30(7), 1051-1060.
[http://dx.doi.org/10.1093/annonc/mdz133] [PMID: 31050709]
[41]
Ashwell, M.A.; Lapierre, J.M.; Brassard, C.; Bresciano, K.; Bull, C.; Cornell-Kennon, S.; Eathiraj, S.; France, D.S.; Hall, T.; Hill, J.; Kelleher, E.; Khanapurkar, S.; Kizer, D.; Koerner, S.; Link, J.; Liu, Y.; Makhija, S.; Moussa, M.; Namdev, N.; Nguyen, K.; Nicewonger, R.; Palma, R.; Szwaya, J.; Tandon, M.; Uppalapati, U.; Vensel, D.; Volak, L.P.; Volckova, E.; Westlund, N.; Wu, H.; Yang, R.Y.; Chan, T.C.K. Discovery and optimization of a series of 3-(3-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amines: Orally bioavailable, selective, and potent ATP-independent Akt inhibitors. J. Med. Chem., 2012, 55(11), 5291-5310.
[http://dx.doi.org/10.1021/jm300276x] [PMID: 22533986]
[42]
Hallberg, B.; Palmer, R.H. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat. Rev. Cancer, 2013, 13(10), 685-700.
[http://dx.doi.org/10.1038/nrc3580] [PMID: 24060861]
[43]
Learn, K.S.; Wagner, J.C.; Albom, M.S.; Angeles, T.S.; Huang, Z.; Ghose, A.K.; Wan, W.; Cheng, M.; Dorsey, B.D.; Ott, G.R. Design of 7-amino-6-chloro-3H-imidazo[4,5-b]pyridine scaffold from 5-chloro-2,4-diaminopyrimidine pharmacophore: Identification of potent inhibitors of anaplastic lymphoma kinase. MedChemComm, 2012, 3(9), 1138.
[http://dx.doi.org/10.1039/c2md20061a]
[44]
Gschwind, A.; Fischer, O.M.; Ullrich, A. The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat. Rev. Cancer, 2004, 4(5), 361-370.
[http://dx.doi.org/10.1038/nrc1360] [PMID: 15122207]
[45]
Wiesmann, C.; Ultsch, M.H.; Bass, S.H.; de Vos, A.M. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature, 1999, 401(6749), 184-188.
[http://dx.doi.org/10.1038/43705] [PMID: 10490030]
[46]
Wang, T.; Lamb, M.L.; Block, M.H.; Davies, A.M.; Han, Y.; Hoffmann, E.; Ioannidis, S.; Josey, J.A.; Liu, Z.Y.; Lyne, P.D.; MacIntyre, T.; Mohr, P.J.; Omer, C.A.; Sjögren, T.; Thress, K.; Wang, B.; Wang, H.; Yu, D.; Zhang, H.J. Discovery of disubstituted imidazo[4,5- b ]pyridines and purines as potent TrkA inhibitors. ACS Med. Chem. Lett., 2012, 3(9), 705-709.
[http://dx.doi.org/10.1021/ml300074j] [PMID: 24900538]
[47]
Thress, K.; MacIntyre, T.; Wang, H.; Whitston, D.; Liu, Z.Y.; Hoffmann, E.; Wang, T.; Brown, J.L.; Webster, K.; Omer, C.; Zage, P.E.; Zeng, L.; Zweidler-McKay, P.A. Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the Trk kinase pathway. Mol. Cancer Ther., 2009, 8(7), 1818-1827.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0036] [PMID: 19509272]
[48]
Bavetsias, V.; Sun, C.; Bouloc, N.; Reynisson, J.; Workman, P.; Linardopoulos, S.; McDonald, E. Hit generation and exploration: Imidazo[4,5-b]pyridine derivatives as inhibitors of Aurora kinases. Bioorg. Med. Chem. Lett., 2007, 17(23), 6567-6571.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.076] [PMID: 17933533]
[49]
Carvajal, R.D.; Tse, A.; Schwartz, G.K. Aurora kinases: New targets for cancer therapy. Clin. Cancer Res., 2006, 12(23), 6869-6875.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1405] [PMID: 17145803]
[50]
Bolanos-Garcia, V.M. Aurora kinases. Int. J. Biochem. Cell Biol., 2005, 37(8), 1572-1577.
[http://dx.doi.org/10.1016/j.biocel.2005.02.021] [PMID: 15896667]
[51]
Keen, N.; Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nat. Rev. Cancer, 2004, 4(12), 927-936.
[http://dx.doi.org/10.1038/nrc1502] [PMID: 15573114]
[52]
Becker, W.; Sippl, W. Activation, regulation, and inhibition of DYRK1A. FEBS J., 2011, 278(2), 246-256.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07956.x] [PMID: 21126318]
[53]
Jarhad, D.B.; Mashelkar, K.K.; Kim, H.R.; Noh, M.; Jeong, L.S. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitors as potential therapeutics. J. Med. Chem., 2018, 61(22), 9791-9810.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00185] [PMID: 29985601]
[54]
Weber, C.; Sipos, M.; Paczal, A.; Balint, B.; Kun, V.; Foloppe, N.; Dokurno, P.; Massey, A.J.; Walmsley, D.L.; Hubbard, R.E.; Murray, J.; Benwell, K.; Edmonds, T.; Demarles, D.; Bruno, A.; Burbridge, M.; Cruzalegui, F.; Kotschy, A. Structure-guided discovery of potent and selective DYRK1A inhibitors. J. Med. Chem., 2021, 64(10), 6745-6764.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00023] [PMID: 33975430]
[55]
WHO. Neurological Disorders: Public Health Challenges. https://www.who.int/publications/i/item/97892415633692022.
[56]
Medina, M.; Avila, J. Glycogen synthase kinase-3 (GSK-3) inhibitors for the treatment of Alzheimer’s disease. Curr. Pharm. Des., 2010, 16(25), 2790-2798.
[http://dx.doi.org/10.2174/138161210793176581] [PMID: 20698823]
[57]
Hooper, C.; Killick, R.; Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem., 2008, 104(6), 1433-1439.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05194.x] [PMID: 18088381]
[58]
Sharma, N.; Singh, A.N. Exploring biomarkers for Alzheimer’s disease. J. Clin. Diagn. Res., 2016, 10(7), KE01-KE06.
[PMID: 27630867]
[59]
Mantzavinos, V.; Alexiou, A. Biomarkers for Alzheimer’s disease diagnosis. Curr. Alzheimer Res., 2017, 14(11), 1149-1154.
[PMID: 28164766]
[60]
Humpel, C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol., 2011, 29(1), 26-32.
[http://dx.doi.org/10.1016/j.tibtech.2010.09.007] [PMID: 20971518]
[61]
Lee, S.C.; Kim, H.T.; Park, C.H.; Lee, D.Y.; Chang, H.J.; Park, S.; Cho, J.M.; Ro, S.; Suh, Y.G. Design, synthesis and biological evaluation of novel imidazopyridines as potential antidiabetic GSK3β inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(13), 4221-4224.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.060] [PMID: 22672803]
[62]
Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev., 2001, 22(2), 153-183.
[PMID: 11294822]
[63]
Peyssonnaux, C.; Eychène, A. The Raf/MEK/ERK pathway: New concepts of activation. Biol. Cell, 2001, 93(1-2), 53-62.
[http://dx.doi.org/10.1016/S0248-4900(01)01125-X] [PMID: 11730323]
[64]
Newhouse, B.J.; Wenglowsky, S.; Grina, J.; Laird, E.R.; Voegtli, W.C.; Ren, L.; Ahrendt, K.; Buckmelter, A.; Gloor, S.L.; Klopfenstein, N.; Rudolph, J.; Wen, Z.; Li, X.; Feng, B. Imidazo[4,5-b]pyridine inhibitors of B-Raf kinase. Bioorg. Med. Chem. Lett., 2013, 23(21), 5896-5899.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.086] [PMID: 24042006]
[65]
An, X.D.; Liu, H.; Xu, Z.L.; Jin, Y.; Peng, X.; Yao, Y.M.; Geng, M.; Long, Y.Q. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization. Bioorg. Med. Chem. Lett., 2015, 25(3), 708-716.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.070] [PMID: 25529740]
[66]
Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(1_suppl)(Suppl.), S7-S19.
[http://dx.doi.org/10.1177/1758834011422556] [PMID: 22128289]
[67]
Chen, D.; Wang, Y.; Ma, Y.; Xiong, B.; Ai, J.; Chen, Y.; Geng, M.; Shen, J. Discovery of 3H-imidazo[4,5-b]pyridines as potent c-Met kinase inhibitors: Design, synthesis, and biological evaluation. ChemMedChem, 2012, 7(6), 1057-1070.
[http://dx.doi.org/10.1002/cmdc.201200120] [PMID: 22581753]
[68]
Park, J. K.; Kim, S.; Han, Y. J.; Kim, S. H.; Kang, N. S.; Lee, H.; Park, S. The discovery and the structural basis of an imidazo[4,5-b]pyridine-based p21-activated kinase 4 inhibitor. Bioorg Med. Chem. Lett., 2016, 26(11), 2580-2583.
[69]
Ye, D.Z.; Field, J. PAK signaling in cancer. Cell. Logist., 2012, 2(2), 105-116.
[http://dx.doi.org/10.4161/cl.21882] [PMID: 23162742]
[70]
Sivilotti, L.; Nistri, A. GABA receptor mechanisms in the central nervous system. Prog. Neurobiol., 1991, 36(1), 35-92.
[http://dx.doi.org/10.1016/0301-0082(91)90036-Z] [PMID: 1847747]
[71]
Watanabe, M.; Maemura, K.; Kanbara, K.; Tamayama, T.; Hayasaki, H. GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol., 2002, 213, 1-47.
[http://dx.doi.org/10.1016/S0074-7696(02)13011-7] [PMID: 11837891]
[72]
Bormann, J. The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci., 2000, 21(1), 16-19.
[http://dx.doi.org/10.1016/S0165-6147(99)01413-3] [PMID: 10637650]
[73]
Larsen, J.S.; Amrutkar, D.; Jacobsen, T.A.; Dyhring, T.; Nielsen, K.S.A. GABAA receptor ligand. Int. Patent, 2020, WO2020(053377), A1.
[74]
Menniti, F.S.; Faraci, W.S.; Schmidt, C.J. Phosphodiesterases in the CNS: Targets for drug development. Nat. Rev. Drug Discov., 2006, 5(8), 660-670.
[http://dx.doi.org/10.1038/nrd2058] [PMID: 16883304]
[75]
Siuciak, J.A.; Chapin, D.S.; Harms, J.F.; Lebel, L.A.; McCarthy, S.A.; Chambers, L.; Shrikhande, A.; Wong, S.; Menniti, F.S.; Schmidt, C.J. Inhibition of the striatum-enriched phosphodiesterase PDE10A: A novel approach to the treatment of psychosis. Neuropharmacology, 2006, 51(2), 386-396.
[http://dx.doi.org/10.1016/j.neuropharm.2006.04.013] [PMID: 16780899]
[76]
Seeger, T.F.; Bartlett, B.; Coskran, T.M.; Culp, J.S.; James, L.C.; Krull, D.L.; Lanfear, J.; Ryan, A.M.; Schmidt, C.J.; Strick, C.A.; Varghese, A.H.; Williams, R.D.; Wylie, P.G.; Menniti, F.S. Immunohistochemical localization of PDE10A in the rat brain. Brain Res., 2003, 985(2), 113-126.
[http://dx.doi.org/10.1016/S0006-8993(03)02754-9] [PMID: 12967715]
[77]
Hu, E.; Kunz, R.K.; Chen, N.; Rumfelt, S.; Siegmund, A.; Andrews, K.; Chmait, S.; Zhao, S.; Davis, C.; Chen, H.; Lester-Zeiner, D.; Ma, J.; Biorn, C.; Shi, J.; Porter, A.; Treanor, J.; Allen, J.R. Design, optimization, and biological evaluation of novel keto-benzimidazoles as potent and selective inhibitors of phosphodiesterase 10A (PDE10A). J. Med. Chem., 2013, 56(21), 8781-8792.
[http://dx.doi.org/10.1021/jm401234w] [PMID: 24102193]
[78]
Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The evolution of fungicide resistance. Adv. Appl. Microbiol., 2015, 90, 29-92.
[http://dx.doi.org/10.1016/bs.aambs.2014.09.001] [PMID: 25596029]
[79]
Wu, D.; Liu, M.; Li, Z.; Dang, M.; Liu, X.; Li, J.; Huang, L.; Ren, Y.; Zhang, Z.; Liu, W.; Liu, A. Synthesis and fungicidal activity of novel imidazo[4,5-b]pyridine derivatives. Heterocycl. Commun., 2019, 25(1), 8-14.
[http://dx.doi.org/10.1515/hc-2019-0003]
[80]
Liu, M.; Quan, C.; Dang, M.; Ren, Y.; Ren, J.; Xiang, J.; Liu, X.; He, L.; Liu, W.; Liu, A. Design, synthesis, and activity of novel i[4,5-b]pyridine derivatives. J. Heterocycl. Chem., 2018, 55(9), 2061-2068.
[http://dx.doi.org/10.1002/jhet.3243]
[81]
Lukasik, P.M.; Elabar, S.; Lam, F.; Shao, H.; Liu, X.; Abbas, A.Y.; Wang, S. Synthesis and biological evaluation of imidazo[4,5-b]pyridine and 4-heteroaryl-pyrimidine derivatives as anti-cancer agents. Eur. J. Med. Chem., 2012, 57, 311-322.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.034] [PMID: 23085105]
[82]
Sudre, P.; ten Dam, G.; Kochi, A. Tuberculosis: A global overview of the situation today. Bull. World Health Organ., 1992, 70(2), 149-159.
[PMID: 1600578]
[83]
Gawad, J.; Bonde, C. Synthesis, biological evaluation and molecular docking studies of 6-(4-nitrophenoxy)-1H-imidazo[4,5-b]pyridine derivatives as novel antitubercular agents: Future DprE1 inhibitors. Chem. Cent. J., 2018, 12(1), 138.
[http://dx.doi.org/10.1186/s13065-018-0515-1] [PMID: 30569203]
[84]
Locarnini, S.; Littlejohn, M.; Aziz, M.N.; Yuen, L. Possible origins and evolution of the hepatitis B virus (HBV). Semin. Cancer Biol., 2013, 23(6), 561-575.
[http://dx.doi.org/10.1016/j.semcancer.2013.08.006] [PMID: 24013024]
[85]
Lavanchy, D. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. J. Clin. Virol., 2005, 34(Suppl. 1), S1-S3.
[http://dx.doi.org/10.1016/S1386-6532(05)00384-7] [PMID: 16461208]
[86]
Datta, S. An overview of molecular epidemiology of hepatitis B virus (HBV) in India. Virol. J., 2008, 5(1), 156.
[http://dx.doi.org/10.1186/1743-422X-5-156] [PMID: 19099581]
[87]
Gerasi, M.; Frakolaki, E.; Papadakis, G.; Chalari, A.; Lougiakis, N.; Marakos, P.; Pouli, N.; Vassilaki, N. Design, synthesis and anti-HBV activity evaluation of new substituted imidazo[4,5-b]pyridines. Bioorg. Chem., 2020, 98, 103580.
[http://dx.doi.org/10.1016/j.bioorg.2020.103580] [PMID: 32005482]
[88]
Boček, I.; Starčević, K.; Novak Jovanović, I.; Vianello, R.; Hranjec, M. Novel imidazo[4,5-b]pyridine derived acrylonitriles: A combined experimental and computational study of their antioxidative potential. J. Mol. Liq., 2021, 342, 117527.
[http://dx.doi.org/10.1016/j.molliq.2021.117527]
[89]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy