Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Chemical Strategies towards the Development of Effective Anticancer Peptides

Author(s): Cuicui Li and Kang Jin*

Volume 31, Issue 14, 2024

Published on: 12 July, 2023

Page: [1839 - 1873] Pages: 35

DOI: 10.2174/0929867330666230426111157

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer is increasingly recognized as one of the primary causes of death and has become a multifaceted global health issue. Modern medical science has made significant advancements in the diagnosis and therapy of cancer over the past decade. The detrimental side effects, lack of efficacy, and multidrug resistance of conventional cancer therapies have created an urgent need for novel anticancer therapeutics or treatments with low cytotoxicity and drug resistance. The pharmaceutical groups have recognized the crucial role that peptide therapeutic agents can play in addressing unsatisfied healthcare demands and how these become great supplements or even preferable alternatives to biological therapies and small molecules. Anticancer peptides, as a vibrant therapeutic strategy against various cancer cells, have demonstrated incredible anticancer potential due to high specificity and selectivity, low toxicity, and the ability to target the surface of traditional “undruggable” proteins. This review will provide the research progression of anticancer peptides, mainly focusing on the discovery and modifications along with the optimization and application of these peptides in clinical practice.

Keywords: Anticancer peptide, ACPs, cytotoxicity, drug resistance, undruggable proteins, chemotherapy.

[1]
Luan, X.; Wu, Y.; Shen, Y.W.; Zhang, H.; Zhou, Y.D.; Chen, H.Z.; Nagle, D.G.; Zhang, W.D. Cytotoxic and antitumor peptides as novel chemotherapeutics. Nat. Prod. Rep., 2021, 38(1), 7-17.
[http://dx.doi.org/10.1039/D0NP00019A] [PMID: 32776055]
[2]
Xie, M.; Liu, D.; Yang, Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biol., 2020, 10(7), 200004.
[http://dx.doi.org/10.1098/rsob.200004] [PMID: 32692959]
[3]
Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with dual antimicrobial and anticancer activities. Front Chem., 2017, 5, 5.
[http://dx.doi.org/10.3389/fchem.2017.00005] [PMID: 28271058]
[4]
Pan, X.; Xu, J.; Jia, X. Research progress evaluating the function and mechanism of anti-tumor peptides. Cancer Manag. Res., 2020, 12, 397-409.
[http://dx.doi.org/10.2147/CMAR.S232708] [PMID: 32021452]
[5]
Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov., 2021, 20(4), 309-325.
[http://dx.doi.org/10.1038/s41573-020-00135-8] [PMID: 33536635]
[6]
Mullard, A. 2021 FDA approvals. Nat. Rev. Drug Discov., 2022, 21(2), 83-88.
[http://dx.doi.org/10.1038/d41573-022-00001-9] [PMID: 34983958]
[7]
Chai, T.T.; Ee, K.Y.; Kumar, D.T.; Manan, F.A.; Wong, F.C. Plant bioactive peptides: Current status and prospects towards use on human health. Protein Pept. Lett., 2021, 28(6), 623-642.
[http://dx.doi.org/10.2174/18755305MTEygMzc63] [PMID: 33319654]
[8]
Li, X.; Guo, M.; Chi, J.; Ma, J. Bioactive peptides from walnut residue protein. Molecules, 2020, 25(6), 1285.
[http://dx.doi.org/10.3390/molecules25061285] [PMID: 32178315]
[9]
Kaneko, K. Appetite regulation by plant-derived bioactive peptides for promoting health. Peptides, 2021, 144, 170608.
[http://dx.doi.org/10.1016/j.peptides.2021.170608] [PMID: 34265369]
[10]
Chigumba, D.N.; Mydy, L.S.; de Waal, F.; Li, W.; Shafiq, K.; Wotring, J.W.; Mohamed, O.G.; Mladenovic, T.; Tripathi, A.; Sexton, J.Z.; Kautsar, S.; Medema, M.H.; Kersten, R.D. Discovery and biosynthesis of cyclic plant peptides via autocatalytic cyclases. Nat. Chem. Biol., 2022, 18(1), 18-28.
[http://dx.doi.org/10.1038/s41589-021-00892-6] [PMID: 34811516]
[11]
Hitotsuyanagi, Y.; Ishikawa, H.; Hasuda, T.; Takeya, K. Isolation, structural elucidation, and synthesis of RA-XVII, a novel bicyclic hexapeptide from Rubia cordifolia, and the effect of side chain at residue 1 upon the conformation and cytotoxic activity. Tetrahedron Lett., 2004, 45(5), 935-938.
[http://dx.doi.org/10.1016/j.tetlet.2003.11.112]
[12]
Hitotsuyanagi, Y. Design and synthesis of analogues of RA-VII-an antitumor bicyclic hexapeptide from Rubiae radix. J. Nat. Med., 2021, 75(4), 752-761.
[http://dx.doi.org/10.1007/s11418-021-01542-w] [PMID: 34244894]
[13]
Aaghaz, S.; Gohel, V.; Kamal, A. Peptides as potential anticancer agents. Curr. Top. Med. Chem., 2019, 19(17), 1491-1511.
[http://dx.doi.org/10.2174/1568026619666190125161517] [PMID: 30686254]
[14]
Han, B.; Goeger, D.; Maier, C.S.; Gerwick, W.H. The wewakpeptins, cyclic depsipeptides from a Papua new Guinea collection of the marine cyanobacterium Lyngbya semiplena. J. Org. Chem., 2005, 70(8), 3133-3139.
[http://dx.doi.org/10.1021/jo0478858] [PMID: 15822975]
[15]
Luesch, H.; Moore, R.E.; Paul, V.J.; Mooberry, S.L.; Corbett, T.H. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J. Nat. Prod., 2001, 64(7), 907-910.
[http://dx.doi.org/10.1021/np010049y] [PMID: 11473421]
[16]
Pettit, G.R.; Kamano, Y.; Herald, C.L.; Tuinman, A.A.; Boettner, F.E.; Kizu, H.; Schmidt, J.M.; Baczynskyj, L.; Tomer, K.B.; Bontems, R.J. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J. Am. Chem. Soc., 1987, 109(22), 6883-6885.
[http://dx.doi.org/10.1021/ja00256a070]
[17]
Yang, K.; Chen, B.; Gianolio, D.A.; Stefano, J.E.; Busch, M.; Manning, C.; Alving, K.; Gregory, R.C.; Brondyk, W.H.; Miller, R.J.; Dhal, P.K. Convergent synthesis of hydrophilic monomethyl dolastatin 10 based drug linkers for antibody–drug conjugation. Org. Biomol. Chem., 2019, 17(35), 8115-8124.
[http://dx.doi.org/10.1039/C9OB01639B] [PMID: 31460552]
[18]
Shnyder, S.; Cooper, P.; Millington, N.; Pettit, G.; Bibby, M. Auristatin PYE, a novel synthetic derivative of dolastatin 10, is highly effective in human colon tumour models. Int. J. Oncol., 2007, 31(2), 353-360.
[http://dx.doi.org/10.3892/ijo.31.2.353] [PMID: 17611692]
[19]
Kaplon, H.; Muralidharan, M.; Schneider, Z.; Reichert, J.M. Antibodies to watch in 2020. MAbs, 2020, 12(1), 1703531.
[http://dx.doi.org/10.1080/19420862.2019.1703531] [PMID: 31847708]
[20]
Tilly, H.; Morschhauser, F.; Sehn, L.H.; Friedberg, J.W.; Trněný, M.; Sharman, J.P.; Herbaux, C.; Burke, J.M.; Matasar, M.; Rai, S.; Izutsu, K.; Mehta-Shah, N.; Oberic, L.; Chauchet, A.; Jurczak, W.; Song, Y.; Greil, R.; Mykhalska, L.; Bergua-Burgués, J.M.; Cheung, M.C.; Pinto, A.; Shin, H.J.; Hapgood, G.; Munhoz, E.; Abrisqueta, P.; Gau, J.P.; Hirata, J.; Jiang, Y.; Yan, M.; Lee, C.; Flowers, C.R.; Salles, G. Polatuzumab vedotin in previously untreated diffuse large B-Cell lymphoma. N. Engl. J. Med., 2022, 386(4), 351-363.
[http://dx.doi.org/10.1056/NEJMoa2115304] [PMID: 34904799]
[21]
Canellos, G.P.; LaCasce, A.S. Brentuximab vedotin for stage III or IV hodgkin’s lymphoma. N. Engl. J. Med., 2018, 378(16), 1560.
[PMID: 29671468]
[22]
Hossain, M.B.; van der Helm, D.; Antel, J.; Sheldrick, G.M.; Sanduja, S.K.; Weinheimer, A.J. Crystal and molecular structure of didemnin B, an antiviral and cytotoxic depsipeptide. Proc. Natl. Acad. Sci., 1988, 85(12), 4118-4122.
[http://dx.doi.org/10.1073/pnas.85.12.4118] [PMID: 3380783]
[23]
Potts, M.B.; McMillan, E.A.; Rosales, T.I.; Kim, H.S.; Ou, Y.H.; Toombs, J.E.; Brekken, R.A.; Minden, M.D.; MacMillan, J.B.; White, M.A. Mode of action and pharmacogenomic biomarkers for exceptional responders to didemnin B. Nat. Chem. Biol., 2015, 11(6), 401-408.
[http://dx.doi.org/10.1038/nchembio.1797] [PMID: 25867045]
[24]
Maroun, J.A.; Belanger, K.; Seymour, L.; Matthews, S.; Roach, J.; Dionne, J.; Soulieres, D.; Stewart, D.; Goel, R.; Charpentier, D.; Goss, G.; Tomiak, E.; Yau, J.; Jimeno, J.; Chiritescu, G. Phase I study of Aplidine in a daily×5 one-hour infusion every 3 weeks in patients with solid tumors refractory to standard therapy. A National Cancer Institute of Canada Clinical Trials Group study: NCIC CTG IND 115. Ann. Oncol., 2006, 17(9), 1371-1378.
[http://dx.doi.org/10.1093/annonc/mdl165] [PMID: 16966366]
[25]
Jimenez, P.C.; Wilke, D.V.; Branco, P.C.; Bauermeister, A.; Rezende-Teixeira, P.; Gaudêncio, S.P.; Costa-Lotufo, L.V. Enriching cancer pharmacology with drugs of marine origin. Br. J. Pharmacol., 2020, 177(1), 3-27.
[http://dx.doi.org/10.1111/bph.14876] [PMID: 31621891]
[26]
White, K.M.; Rosales, R.; Yildiz, S.; Kehrer, T.; Miorin, L.; Moreno, E.; Jangra, S.; Uccellini, M.B.; Rathnasinghe, R.; Coughlan, L.; Martinez-Romero, C.; Batra, J.; Rojc, A.; Bouhaddou, M.; Fabius, J.M.; Obernier, K.; Dejosez, M.; Guillén, M.J.; Losada, A.; Avilés, P.; Schotsaert, M.; Zwaka, T.; Vignuzzi, M.; Shokat, K.M.; Krogan, N.J.; García-Sastre, A. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science, 2021, 371(6532), 926-931.
[http://dx.doi.org/10.1126/science.abf4058] [PMID: 33495306]
[27]
Scala, S. Molecular pathways: Targeting the CXCR4-CXCL12 axis-untapped potential in the tumor microenvironment. Clin. Cancer Res., 2015, 21(19), 4278-4285.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0914] [PMID: 26199389]
[28]
Pernas, S.; Martin, M.; Kaufman, P.A.; Gil-Martin, M.; Gomez Pardo, P.; Lopez-Tarruella, S.; Manso, L.; Ciruelos, E.; Perez-Fidalgo, J.A.; Hernando, C.; Ademuyiwa, F.O.; Weilbaecher, K.; Mayer, I.; Pluard, T.J.; Martinez Garcia, M.; Vahdat, L.; Perez-Garcia, J.; Wach, A.; Barker, D.; Fung, S.; Romagnoli, B.; Cortes, J. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: A phase 1, single-arm, dose-escalation trial. Lancet Oncol., 2018, 19(6), 812-824.
[http://dx.doi.org/10.1016/S1470-2045(18)30147-5] [PMID: 29706375]
[29]
Kim, M.; Kang, N.; Ko, S.; Park, J.; Park, E.; Shin, D.; Kim, S.; Lee, S.; Lee, J.; Lee, S.; Ha, E.; Jeon, S.; Park, Y. Antibacterial and antibiofilm activity and mode of action of Magainin 2 against drug-resistant acinetobacter baumannii. Int. J. Mol. Sci., 2018, 19(10), 3041.
[http://dx.doi.org/10.3390/ijms19103041] [PMID: 30301180]
[30]
Anand, P.; Grigoryan, A.; Bhuiyan, M.H.; Ueberheide, B.; Russell, V.; Quinoñez, J.; Moy, P.; Chait, B.T.; Poget, S.F.; Holford, M. Sample limited characterization of a novel disulfide-rich venom peptide toxin from terebrid marine snail Terebra variegata. PLoS One, 2014, 9(4), e94122.
[http://dx.doi.org/10.1371/journal.pone.0094122] [PMID: 24713808]
[31]
Fahy, R.J.; Wewers, M.D. Pulmonary defense and the human cathelicidin hCAP-18/LL-37. Immunol. Res., 2005, 31(2), 075-090.
[http://dx.doi.org/10.1385/IR:31:2:075] [PMID: 15778507]
[32]
Gaspar, D.; Freire, J.M.; Pacheco, T.R.; Barata, J.T.; Castanho, M.A.R.B. Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics. Biochim. Biophys. Acta Mol. Cell Res., 2015, 1853(2), 308-316.
[http://dx.doi.org/10.1016/j.bbamcr.2014.11.006] [PMID: 25447543]
[33]
Li, B.; Lyu, P.; Xi, X.; Ge, L.; Mahadevappa, R.; Shaw, C.; Kwok, H.F. Triggering of cancer cell cycle arrest by a novel scorpion venom-derived peptide-Gonearrestide. J. Cell. Mol. Med., 2018, 22(9), 4460-4473.
[http://dx.doi.org/10.1111/jcmm.13745] [PMID: 29993185]
[34]
Cassoli, J.S.; Verano-Braga, T.; Oliveira, J.S.; Montandon, G.G.; Cologna, C.T.; Peigneur, S.; Pimenta, A.M.C.; Kjeldsen, F.; Roepstorff, P.; Tytgat, J.; de Lima, M.E. The proteomic profile of Stichodactyla duerdeni secretion reveals the presence of a novel O-linked glycopeptide. J. Proteomics, 2013, 87, 89-102.
[http://dx.doi.org/10.1016/j.jprot.2013.05.022] [PMID: 23727489]
[35]
Pazgier, M.; Liu, M.; Zou, G.; Yuan, W.; Li, C.; Li, C.; Li, J.; Monbo, J.; Zella, D.; Tarasov, S.G.; Lu, W. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc. Natl. Acad. Sci., 2009, 106(12), 4665-4670.
[http://dx.doi.org/10.1073/pnas.0900947106] [PMID: 19255450]
[36]
Kang, J.; Zhao, G.; Lin, T.; Tang, S.; Xu, G.; Hu, S.; Bi, Q.; Guo, C.; Sun, L.; Han, S.; Xu, Q.; Nie, Y.; Wang, B.; Liang, S.; Ding, J.; Wu, K. A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells. Cancer Lett., 2013, 339(2), 247-259.
[http://dx.doi.org/10.1016/j.canlet.2013.06.016] [PMID: 23792224]
[37]
Liu, M.; Li, C.; Pazgier, M.; Li, C.; Mao, Y.; Lv, Y.; Gu, B.; Wei, G.; Yuan, W.; Zhan, C.; Lu, W.Y.; Lu, W. D-peptide inhibitors of the p53–MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc. Natl. Acad. Sci., 2010, 107(32), 14321-14326.
[http://dx.doi.org/10.1073/pnas.1008930107] [PMID: 20660730]
[38]
Zhan, C.; Zhao, L.; Wei, X.; Wu, X.; Chen, X.; Yuan, W.; Lu, W.Y.; Pazgier, M.; Lu, W. An ultrahigh affinity d-peptide antagonist Of MDM2. J. Med. Chem., 2012, 55(13), 6237-6241.
[http://dx.doi.org/10.1021/jm3005465] [PMID: 22694121]
[39]
Kim, J.H.; Seok, J.K.; Kim, Y.M.; Boo, Y.C. Identification of small peptides and glycinamide that inhibit melanin synthesis using a positional scanning synthetic peptide combinatorial library. Br. J. Dermatol., 2019, 181(1), 128-137.
[http://dx.doi.org/10.1111/bjd.17634] [PMID: 30637717]
[40]
Yin, Y.; Ochi, N.; Craven, T.W.; Baker, D.; Takigawa, N.; Suga, H. De novo carborane-containing macrocyclic peptides targeting human epidermal growth factor receptor. J. Am. Chem. Soc., 2019, 141(49), 19193-19197.
[http://dx.doi.org/10.1021/jacs.9b09106] [PMID: 31752491]
[41]
Takada, Y.; Itoh, H.; Paudel, A.; Panthee, S.; Hamamoto, H.; Sekimizu, K.; Inoue, M. Discovery of gramicidin A analogues with altered activities by multidimensional screening of a one-bead-one-compound library. Nat. Commun., 2020, 11(1), 4935.
[http://dx.doi.org/10.1038/s41467-020-18711-2] [PMID: 33004797]
[42]
Guardiola, S.; Díaz-Lobo, M.; Seco, J.; García, J.; Nevola, L.; Giralt, E. Peptides targeting EGF block the EGF-EGFR interaction. ChemBioChem, 2016, 17(8), 702-711.
[http://dx.doi.org/10.1002/cbic.201500525] [PMID: 26677067]
[43]
Cha, N.; Han, X.; Jia, B.; Liu, Y.; Wang, X.; Gao, Y.; Ren, J. Structure-based design of peptides against HER2 with cytotoxicity on colon cancer. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 649-654.
[http://dx.doi.org/10.3109/21691401.2016.1167705] [PMID: 27068253]
[44]
Chatterjee, S.; Lesniak, W.G.; Miller, M.S.; Lisok, A.; Sikorska, E.; Wharram, B.; Kumar, D.; Gabrielson, M.; Pomper, M.G.; Gabelli, S.B.; Nimmagadda, S. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem. Biophys. Res. Commun., 2017, 483(1), 258-263.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.156] [PMID: 28025143]
[45]
Gabernet, G.; Gautschi, D.; Müller, A.T.; Neuhaus, C.S.; Armbrecht, L.; Dittrich, P.S.; Hiss, J.A.; Schneider, G. In silico design and optimization of selective membranolytic anticancer peptides. Sci. Rep., 2019, 9(1), 11282.
[http://dx.doi.org/10.1038/s41598-019-47568-9] [PMID: 31375699]
[46]
Tada, N.; Horibe, T.; Haramoto, M.; Ohara, K.; Kohno, M.; Kawakami, K. A single replacement of histidine to arginine in EGFR-lytic hybrid peptide demonstrates the improved anticancer activity. Biochem. Biophys. Res. Commun., 2011, 407(2), 383-388.
[http://dx.doi.org/10.1016/j.bbrc.2011.03.030] [PMID: 21396910]
[47]
Zhang, P.; Ma, J.; Yan, Y.; Chen, B.; Liu, B.; Jian, C.; Zhu, B.; Liang, S.; Zeng, Y.; Liu, Z. Arginine modification of lycosin-I to improve inhibitory activity against cancer cells. Org. Biomol. Chem., 2017, 15(44), 9379-9388.
[http://dx.doi.org/10.1039/C7OB02233F] [PMID: 29090725]
[48]
Ke, M.; Dong, J.; Wang, Y.; Zhang, J.; Zhang, M.; Wu, Z.; Lv, Y.; Wu, R. MEL-pep, an analog of melittin, disrupts cell membranes and reverses 5-fluorouracil resistance in human hepatocellular carcinoma cells. Int. J. Biochem. Cell Biol., 2018, 101, 39-48.
[http://dx.doi.org/10.1016/j.biocel.2018.05.013] [PMID: 29800725]
[49]
Li, Y.; Lei, Y.; Wagner, E.; Xie, C.; Lu, W.; Zhu, J.; Shen, J.; Wang, J.; Liu, M. Potent retro-inverso D-peptide for simultaneous targeting of angiogenic blood vasculature and tumor cells. Bioconjug. Chem., 2013, 24(1), 133-143.
[http://dx.doi.org/10.1021/bc300537z] [PMID: 23241015]
[50]
Li, X.; Liu, C.; Chen, S.; Hu, H.; Su, J.; Zou, Y. d -Amino acid mutation of PMI as potent dual peptide inhibitors of p53-MDM2/MDMX interactions. Bioorg. Med. Chem. Lett., 2017, 27(20), 4678-4681.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.014] [PMID: 28916339]
[51]
Kluskens, L.D.; Nelemans, S.A.; Rink, R.; de Vries, L.; Meter-Arkema, A.; Wang, Y.; Walther, T.; Kuipers, A.; Moll, G.N.; Haas, M. Angiotensin-(1-7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog. J. Pharmacol. Exp. Ther., 2009, 328(3), 849-854.
[http://dx.doi.org/10.1124/jpet.108.146431] [PMID: 19038778]
[52]
Leshchiner, E.S.; Parkhitko, A.; Bird, G.H.; Luccarelli, J.; Bellairs, J.A.; Escudero, S.; Opoku-Nsiah, K.; Godes, M.; Perrimon, N.; Walensky, L.D. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc. Natl. Acad. Sci., 2015, 112(6), 1761-1766.
[http://dx.doi.org/10.1073/pnas.1413185112] [PMID: 25624485]
[53]
Li, C.; Zhao, N.; An, L.; Dai, Z.; Chen, X.; Yang, F.; You, Q.; Di, B.; Hu, C.; Xu, L. Apoptosis-inducing activity of synthetic hydrocarbon-stapled peptides in H358 cancer cells expressing KRASG12C. Acta Pharm. Sin. B, 2021, 11(9), 2670-2684.
[http://dx.doi.org/10.1016/j.apsb.2021.06.013] [PMID: 34589388]
[54]
Lin, T.; Min, H.; Jiang, C.; Niu, M.; Yan, F.; Xu, L.; Di, B. Design, synthesis and biological evaluation of phosphopeptides as Polo-like kinase 1 Polo-box domain inhibitors. Bioorg. Med. Chem., 2018, 26(12), 3429-3437.
[http://dx.doi.org/10.1016/j.bmc.2018.05.014] [PMID: 29807699]
[55]
Deng, X.; Qiu, Q.; Wang, X.; Huang, W.; Qian, H. Design, synthesis, and biological evaluation of novel cholesteryl peptides with anticancer and multidrug resistance-reversing activities. Chem. Biol. Drug Des., 2016, 87(3), 374-381.
[http://dx.doi.org/10.1111/cbdd.12667] [PMID: 26390861]
[56]
Li, S.; Zou, R.; Tu, Y.; Wu, J.; Landry, M.P. Cholesterol-directed nanoparticle assemblies based on single amino acid peptide mutations activate cellular uptake and decrease tumor volume. Chem. Sci., 2017, 8(11), 7552-7559.
[http://dx.doi.org/10.1039/C7SC02616A] [PMID: 29163910]
[57]
Wu, M.; Ai, S.; Chen, Q.; Chen, X.; Li, H.; Li, Y.; Zhao, X. Effects of glycosylation and d-amino acid substitution on the antitumor and antibacterial activities of bee venom peptide HYL. Bioconjug. Chem., 2020, 31(10), 2293-2302.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00355] [PMID: 32786366]
[58]
Brinckerhoff, L.H.; Kalashnikov, V.V.; Thompson, L.W.; Yamshchikov, G.V.; Pierce, R.A.; Galavotti, H.S.; Engelhard, V.H.; Slingluff, C.L., Jr Terminal modifications inhibit proteolytic degradation of an immunogenic MART-1(27-35) peptide: Implications for peptide vaccines. Int. J. Cancer, 1999, 83(3), 326-334.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19991029)83:3<326::AID-IJC7>3.0.CO;2-X] [PMID: 10495424]
[59]
Jian, C.; Zhang, P.; Ma, J.; Jian, S.; Zhang, Q.; Liu, B.; Liang, S.; Liu, M.; Zeng, Y.; Liu, Z. The roles of fatty-acid modification in the activity of the anticancer peptide R-Lycosin-I. Mol. Pharm., 2018, 15(10), 4612-4620.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00605] [PMID: 30183307]
[60]
Sinthuvanich, C.; Veiga, A.S.; Gupta, K.; Gaspar, D.; Blumenthal, R.; Schneider, J.P. Anticancer β-hairpin peptides: Membrane-induced folding triggers activity. J. Am. Chem. Soc., 2012, 134(14), 6210-6217.
[http://dx.doi.org/10.1021/ja210569f] [PMID: 22413859]
[61]
Hao, X.; Yan, Q.; Zhao, J.; Wang, W.; Huang, Y.; Chen, Y. TAT modification of alpha-helical anticancer peptides to improve specificity and efficacy. PLoS One, 2015, 10(9), e0138911.
[http://dx.doi.org/10.1371/journal.pone.0138911] [PMID: 26405806]
[62]
Coiffier, B.; Pro, B.; Prince, H.M.; Foss, F.; Sokol, L.; Greenwood, M.; Caballero, D.; Borchmann, P.; Morschhauser, F.; Wilhelm, M.; Pinter-Brown, L.; Padmanabhan, S.; Shustov, A.; Nichols, J.; Carroll, S.; Balser, J.; Balser, B.; Horwitz, S. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T- cell lymphoma after prior systemic therapy. J. Clin. Oncol., 2012, 30(6), 631-636.
[http://dx.doi.org/10.1200/JCO.2011.37.4223] [PMID: 22271479]
[63]
Lopez, J.A.V.; Al-Lihaibi, S.S.; Alarif, W.M.; Abdel-Lateff, A.; Nogata, Y.; Washio, K.; Morikawa, M.; Okino, T. Wewakazole B, a cytotoxic cyanobactin from the Cyanobacterium Moorea producens collected in the red sea. J. Nat. Prod., 2016, 79(4), 1213-1218.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00051] [PMID: 26980238]
[64]
Kuroda, K.; Fukuda, T.; Krstic-Demonacos, M.; Demonacos, C.; Okumura, K.; Isogai, H.; Hayashi, M.; Saito, K.; Isogai, E. miR-663a regulates growth of colon cancer cells, after administration of antimicrobial peptides, by targeting CXCR4-p21 pathway. BMC Cancer, 2017, 17(1), 33.
[http://dx.doi.org/10.1186/s12885-016-3003-9] [PMID: 28061765]
[65]
Niemirowicz, K.; Prokop, I.; Wilczewska, A.; Wnorowska, U.; Piktel, E.; Wątek, M.; Savage, P.; Bucki, R. Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL-37 peptide against colon cancer cells. Int. J. Nanomedicine, 2015, 10, 3843-3853.
[http://dx.doi.org/10.2147/IJN.S76104] [PMID: 26082634]
[66]
Kaas, Q.; Craik, D. Bioinformatics-aided venomics. Toxins, 2015, 7(6), 2159-2187.
[http://dx.doi.org/10.3390/toxins7062159] [PMID: 26110505]
[67]
Andreev, Y.A.; Kozlov, S.A.; Koshelev, S.G.; Ivanova, E.A.; Monastyrnaya, M.M.; Kozlovskaya, E.P.; Grishin, E.V. Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid receptor 1 (TRPV1). J. Biol. Chem., 2008, 283(35), 23914-23921.
[http://dx.doi.org/10.1074/jbc.M800776200] [PMID: 18579526]
[68]
Madio, B.; Peigneur, S.; Chin, Y.K.Y.; Hamilton, B.R.; Henriques, S.T.; Smith, J.J.; Cristofori-Armstrong, B.; Dekan, Z.; Boughton, B.A.; Alewood, P.F.; Tytgat, J.; King, G.F.; Undheim, E.A.B. PHAB toxins: A unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cell. Mol. Life Sci., 2018, 75(24), 4511-4524.
[http://dx.doi.org/10.1007/s00018-018-2897-6] [PMID: 30109357]
[69]
Himaya, S.W.A.; Jin, A.H.; Dutertre, S.; Giacomotto, J.; Mohialdeen, H.; Vetter, I.; Alewood, P.F.; Lewis, R.J. Comparative venomics reveals the complex prey capture strategy of the piscivorous cone snail conus catus. J. Proteome Res., 2015, 14(10), 4372-4381.
[http://dx.doi.org/10.1021/acs.jproteome.5b00630] [PMID: 26322961]
[70]
Campos, P.F.; Andrade-Silva, D.; Zelanis, A.; Paes Leme, A.F.; Rocha, M.M.T.; Menezes, M.C.; Serrano, S.M.T.; Junqueira-de-Azevedo, I.L.M. Trends in the evolution of snake toxins underscored by an integrative omics approach to profile the venom of the colubrid phalotris mertensi. Genome Biol. Evol., 2016, 8(8), 2266-2287.
[http://dx.doi.org/10.1093/gbe/evw149] [PMID: 27412610]
[71]
Madio, B.; Undheim, E.A.B.; King, G.F. Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus. J. Proteomics, 2017, 166, 83-92.
[http://dx.doi.org/10.1016/j.jprot.2017.07.007] [PMID: 28739511]
[72]
Huang, Y.; Wiedmann, M.M.; Suga, H. RNA display methods for the discovery of bioactive macrocycles. Chem. Rev., 2019, 119(17), 10360-10391.
[http://dx.doi.org/10.1021/acs.chemrev.8b00430] [PMID: 30395448]
[73]
Smith, G.P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228(4705), 1315-1317.
[http://dx.doi.org/10.1126/science.4001944] [PMID: 4001944]
[74]
Rahbarnia, L.; Farajnia, S.; Babaei, H.; Majidi, J.; Veisi, K.; Ahmadzadeh, V.; Akbari, B. Evolution of phage display technology: From discovery to application. J. Drug Target., 2017, 25(3), 216-224.
[http://dx.doi.org/10.1080/1061186X.2016.1258570] [PMID: 27819143]
[75]
Saw, P.E.; Song, E.W. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell, 2019, 10(11), 787-807.
[http://dx.doi.org/10.1007/s13238-019-0639-7] [PMID: 31140150]
[76]
Hamzeh-Mivehroud, M.; Alizadeh, A.A.; Morris, M.B.; Bret Church, W.; Dastmalchi, S. Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov. Today, 2013, 18(23-24), 1144-1157.
[http://dx.doi.org/10.1016/j.drudis.2013.09.001] [PMID: 24051398]
[77]
Omidfar, K.; Daneshpour, M. Advances in phage display technology for drug discovery. Expert Opin. Drug Discov., 2015, 10(6), 651-669.
[http://dx.doi.org/10.1517/17460441.2015.1037738] [PMID: 25910798]
[78]
Heinis, C.; Winter, G. Encoded libraries of chemically modified peptides. Curr. Opin. Chem. Biol., 2015, 26, 89-98.
[http://dx.doi.org/10.1016/j.cbpa.2015.02.008] [PMID: 25768886]
[79]
Schumacher, T.N.M.; Mayr, L.M.; Minor, D.L., Jr; Milhollen, M.A.; Burgess, M.W.; Kim, P.S. Identification of D-peptide ligands through mirror-image phage display. Science, 1996, 271(5257), 1854-1857.
[http://dx.doi.org/10.1126/science.271.5257.1854] [PMID: 8596952]
[80]
Roberts, R.W.; Szostak, J.W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci., 1997, 94(23), 12297-12302.
[http://dx.doi.org/10.1073/pnas.94.23.12297] [PMID: 9356443]
[81]
Goto, Y.; Katoh, T.; Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc., 2011, 6(6), 779-790.
[http://dx.doi.org/10.1038/nprot.2011.331] [PMID: 21637198]
[82]
Murakami, H.; Ohta, A.; Ashigai, H.; Suga, H. A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat. Methods, 2006, 3(5), 357-359.
[http://dx.doi.org/10.1038/nmeth877] [PMID: 16628205]
[83]
Nawatha, M.; Rogers, J.M.; Bonn, S.M.; Livneh, I.; Lemma, B.; Mali, S.M.; Vamisetti, G.B.; Sun, H.; Bercovich, B.; Huang, Y.; Ciechanover, A.; Fushman, D.; Suga, H.; Brik, A. De novo macrocyclic peptides that specifically modulate Lys48-linked ubiquitin chains. Nat. Chem., 2019, 11(7), 644-652.
[http://dx.doi.org/10.1038/s41557-019-0278-x] [PMID: 31182821]
[84]
Lam, K.S.; Salmon, S.E.; Hersh, E.M.; Hruby, V.J.; Kazmierski, W.M.; Knapp, R.J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature, 1991, 354(6348), 82-84.
[http://dx.doi.org/10.1038/354082a0] [PMID: 1944576]
[85]
Elashal, H.E.; Cohen, R.D.; Elashal, H.E.; Raj, M. Oxazolidinone-mediated sequence determination of one-bead one-compound cyclic peptide libraries. Org. Lett., 2018, 20(8), 2374-2377.
[http://dx.doi.org/10.1021/acs.orglett.8b00717] [PMID: 29617143]
[86]
Yang, P.P.; Li, Y.J.; Cao, Y.; Zhang, L.; Wang, J.Q.; Lai, Z.; Zhang, K.; Shorty, D.; Xiao, W.; Cao, H.; Wang, L.; Wang, H.; Liu, R.; Lam, K.S. Rapid discovery of self- assembling peptides with one-bead one-compound peptide library. Nat. Commun., 2021, 12(1), 4494.
[http://dx.doi.org/10.1038/s41467-021-24597-5] [PMID: 34301935]
[87]
Singh, Y.; Rodriguez Benavente, M.C.; Al-Huniti, M.H.; Beckwith, D.; Ayyalasomayajula, R.; Patino, E.; Miranda, W.S.; Wade, A.; Cudic, M. Positional scanning MUC1 glycopeptide library reveals the importance of PDTR epitope glycosylation for lectin binding. J. Org. Chem., 2020, 85(3), 1434-1445.
[http://dx.doi.org/10.1021/acs.joc.9b02396] [PMID: 31799848]
[88]
Pinilla, C.; Appel, J.R.; Borràs, E.; Houghten, R.A. Advances in the use of synthetic combinatorial chemistry: Mixture-based libraries. Nat. Med., 2003, 9(1), 118-122.
[http://dx.doi.org/10.1038/nm0103-118] [PMID: 12514724]
[89]
Sun, Z.G.; Zhou, X.J.; Zhu, M.L.; Ding, W.Z.; Li, Z.; Zhu, H.L. Synthesis and biological evaluation of novel aryl-2H-pyrazole derivatives as potent non-purine xanthine oxidase inhibitors. Chem. Pharm. Bull., 2015, 63(8), 603-607.
[http://dx.doi.org/10.1248/cpb.c15-00282] [PMID: 26040271]
[90]
Sun, Z.G.; Yang, Y.A.; Zhang, Z.G.; Zhu, H.L. Optimization techniques for novel c-Met kinase inhibitors. Expert Opin. Drug Discov., 2019, 14(1), 59-69.
[http://dx.doi.org/10.1080/17460441.2019.1551355] [PMID: 30518273]
[91]
Xu, J.F.; Wang, T.T.; Yuan, Q.; Duan, Y.T.; Xu, Y.J.; Lv, P.C.; Wang, X.M.; Yang, Y.S.; Zhu, H.L. Discovery and development of novel rhodanine derivatives targeting enoyl-acyl carrier protein reductase. Bioorg. Med. Chem., 2019, 27(8), 1509-1516.
[http://dx.doi.org/10.1016/j.bmc.2019.02.043] [PMID: 30846404]
[92]
London, N.; Raveh, B.; Cohen, E.; Fathi, G.; Schueler-Furman, O. Rosetta FlexPepDock web server-high resolution modeling of peptide–protein interactions. Nucleic Acids Res., 2011, 39(Web Server issue)(Suppl. 2), W249-W253.
[http://dx.doi.org/10.1093/nar/gkr431] [PMID: 21622962]
[93]
Raveh, B.; London, N.; Zimmerman, L.; Schueler-Furman, O. Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One, 2011, 6(4), e18934.
[http://dx.doi.org/10.1371/journal.pone.0018934] [PMID: 21572516]
[94]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinf., 2016, 54(1), 5-6.
[95]
Lee, H.; Heo, L.; Lee, M.S.; Seok, C. GalaxyPepDock: A protein–peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res., 2015, 43(W1), W431-W435.
[http://dx.doi.org/10.1093/nar/gkv495] [PMID: 25969449]
[96]
Kurcinski, M.; Jamroz, M.; Blaszczyk, M.; Kolinski, A.; Kmiecik, S. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res., 2015, 43(W1), W419-W424.
[http://dx.doi.org/10.1093/nar/gkv456] [PMID: 25943545]
[97]
Wang, S.H.; Yu, J. Structure-based design for binding peptides in anti-cancer therapy. Biomaterials, 2018, 156, 1-15.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.024] [PMID: 29182932]
[98]
Chen, X.; Zhang, W.; Yang, X.; Li, C.; Chen, H. ACP-DA: improving the prediction of anticancer peptides using data augmentation. Front. Genet., 2021, 12, 698477.
[http://dx.doi.org/10.3389/fgene.2021.698477] [PMID: 34276801]
[99]
Boopathi, V.; Subramaniyam, S.; Malik, A.; Lee, G.; Manavalan, B.; Yang, D.C. mACPpred: a support vector machine-based meta-predictor for identification of anticancer peptides. Int. J. Mol. Sci., 2019, 20(8), 1964.
[http://dx.doi.org/10.3390/ijms20081964] [PMID: 31013619]
[100]
Tyagi, A.; Kapoor, P.; Kumar, R.; Chaudhary, K.; Gautam, A.; Raghava, G.P.S. In silico models for designing and discovering novel anticancer peptides. Sci. Rep., 2013, 3(1), 2984.
[http://dx.doi.org/10.1038/srep02984] [PMID: 24136089]
[101]
Chen, W.; Ding, H.; Feng, P.; Lin, H.; Chou, K.C. iACP: A sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7(13), 16895-16909.
[http://dx.doi.org/10.18632/oncotarget.7815] [PMID: 26942877]
[102]
Wei, L.; Zhou, C.; Chen, H.; Song, J.; Su, R. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics, 2018, 34(23), 4007-4016.
[http://dx.doi.org/10.1093/bioinformatics/bty451] [PMID: 29868903]
[103]
Schaduangrat, N.; Nantasenamat, C.; Prachayasittikul, V.; Shoombuatong, W. ACPred: a computational tool for the prediction and analysis of anticancer peptides. Molecules, 2019, 24(10), 1973.
[http://dx.doi.org/10.3390/molecules24101973] [PMID: 31121946]
[104]
Ahmed, S.; Muhammod, R.; Khan, Z.H.; Adilina, S.; Sharma, A.; Shatabda, S.; Dehzangi, A. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides. Sci. Rep., 2021, 11(1), 23676.
[http://dx.doi.org/10.1038/s41598-021-02703-3] [PMID: 34880291]
[105]
Vijayakumar, S.; Ptv, L. ACPP: a web server for prediction and design of anti-cancer peptides. Int. J. Pept. Res. Ther., 2015, 21(1), 99-106.
[http://dx.doi.org/10.1007/s10989-014-9435-7]
[106]
Yi, H.C.; You, Z.H.; Zhou, X.; Cheng, L.; Li, X.; Jiang, T.H.; Chen, Z.H. ACP-DL: a deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation. Mol. Ther. Nucleic Acids, 2019, 17, 1-9.
[http://dx.doi.org/10.1016/j.omtn.2019.04.025] [PMID: 31173946]
[107]
Ge, R.; Feng, G.; Jing, X.; Zhang, R.; Wang, P.; Wu, Q. EnACP: an ensemble learning model for identification of anticancer peptides. Front. Genet., 2020, 11, 760.
[http://dx.doi.org/10.3389/fgene.2020.00760] [PMID: 32903636]
[108]
Rao, B.; Zhou, C.; Zhang, G.; Su, R.; Wei, L. ACPred- Fuse: fusing multi-view information improves the prediction of anticancer peptides. Brief. Bioinform., 2020, 21(5), 1846-1855.
[http://dx.doi.org/10.1093/bib/bbz088] [PMID: 31729528]
[109]
Xu, D.; Wu, Y.; Cheng, Z.; Yang, J.; Ding, Y. ACHP: a web server for predicting anti-cancer peptide and anti-hypertensive peptide. Int. J. Pept. Res. Ther., 2021, 27(3), 1933-1944.
[http://dx.doi.org/10.1007/s10989-021-10222-y]
[110]
Cao, R.; Wang, M.; Bin, Y.; Zheng, C. DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion. PeerJ, 2021, 9, e11906.
[http://dx.doi.org/10.7717/peerj.11906] [PMID: 34414035]
[111]
E-kobon, T.; Thongararm, P.; Roytrakul, S.; Meesuk, L.; Chumnanpuen, P. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions. Comput. Struct. Biotechnol. J., 2016, 14, 49-57.
[http://dx.doi.org/10.1016/j.csbj.2015.11.005]
[112]
Xu, L.; Li, C.; An, L.; Dai, Z.; Chen, X.; You, Q.; Hu, C.; Di, B. Selective apoptosis-inducing activity of synthetic hydrocarbon-stapled SOS1 helix with d-amino acids in H358 cancer cells expressing KRASG12C. Eur. J. Med. Chem., 2020, 185, 111844.
[http://dx.doi.org/10.1016/j.ejmech.2019.111844] [PMID: 31706640]
[113]
Henninot, A.; Collins, J.C.; Nuss, J.M. The current state of peptide drug discovery: Back to the future? J. Med. Chem., 2018, 61(4), 1382-1414.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00318] [PMID: 28737935]
[114]
Dai, Y.; Cai, X.; Shi, W.; Bi, X.; Su, X.; Pan, M.; Li, H.; Lin, H.; Huang, W.; Qian, H. Pro-apoptotic cationic host defense peptides rich in lysine or arginine to reverse drug resistance by disrupting tumor cell membrane. Amino Acids, 2017, 49(9), 1601-1610.
[http://dx.doi.org/10.1007/s00726-017-2453-y] [PMID: 28664269]
[115]
Harris, F.; Dennison, S.R.; Singh, J.; Phoenix, D.A. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med. Res. Rev., 2013, 33(1), 190-234.
[http://dx.doi.org/10.1002/med.20252] [PMID: 21922503]
[116]
Johansson, A.C.V.; Lindahl, E. Position-resolved free energy of solvation for amino acids in lipid membranes from molecular dynamics simulations. Proteins, 2008, 70(4), 1332-1344.
[http://dx.doi.org/10.1002/prot.21629] [PMID: 17876818]
[117]
Yamaguchi, Y.; Yamamoto, K.; Sato, Y.; Inoue, S.; Morinaga, T.; Hirano, E. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferatio. Biomed. Res., 2016, 37(2), 153-159.
[http://dx.doi.org/10.2220/biomedres.37.153] [PMID: 27108884]
[118]
Yang, B.; Zhang, C.; Li, X.; Yan, S.; Wei, W.; Wang, X.; Deng, X.; Huang, W.; Qian, H. Design, synthesis, and biological evaluation of novel peptide Gly(3)-MC62 analogues as potential antidiabetic agents. Chem. Biol. Drug Des., 2015, 86(5), 979-989.
[http://dx.doi.org/10.1111/cbdd.12564] [PMID: 25845421]
[119]
Bhunia, D.; Mondal, P.; Das, G.; Saha, A.; Sengupta, P.; Jana, J.; Mohapatra, S.; Chatterjee, S.; Ghosh, S. Spatial position regulates power of tryptophan: discovery of a major- groove-specific nuclear-localizing, cell-penetrating tetrapeptide. J. Am. Chem. Soc., 2018, 140(5), 1697-1714.
[http://dx.doi.org/10.1021/jacs.7b10254] [PMID: 29283563]
[120]
Hilchie, A.L.; Haney, E.F.; Pinto, D.M.; Hancock, R.E.W.; Hoskin, D.W. Enhanced killing of breast cancer cells by a d-amino acid analog of the winter flounder-derived pleurocidin NRC-03. Exp. Mol. Pathol., 2015, 99(3), 426-434.
[http://dx.doi.org/10.1016/j.yexmp.2015.08.021] [PMID: 26344617]
[121]
Grishin, D.V.; Zhdanov, D.D.; Pokrovskaya, M.V.; Sokolov, N.N. D-amino acids in nature, agriculture and biomedicine. All Life, 2020, 13(1), 11-22.
[http://dx.doi.org/10.1080/21553769.2019.1622596]
[122]
Li, C.; Pazgier, M.; Li, J.; Li, C.; Liu, M.; Zou, G.; Li, Z.; Chen, J.; Tarasov, S.G.; Lu, W.Y.; Lu, W. Limitations of peptide retro-inverso isomerization in molecular mimicry. J. Biol. Chem., 2010, 285(25), 19572-19581.
[http://dx.doi.org/10.1074/jbc.M110.116814] [PMID: 20382735]
[123]
Doti, N.; Mardirossian, M.; Sandomenico, A.; Ruvo, M.; Caporale, A. Recent applications of retro-inverso peptides. Int. J. Mol. Sci., 2021, 22(16), 8677.
[http://dx.doi.org/10.3390/ijms22168677] [PMID: 34445382]
[124]
Chen, Y.; Mant, C.T.; Hodges, R.S. Determination of stereochemistry stability coefficients of amino acid side-chains in an amphipathic α-helix. J. Pept. Res., 2002, 59(1), 18-33.
[http://dx.doi.org/10.1046/j.1397-002x.2001.10994.x] [PMID: 11906604]
[125]
Najjar, K.; Erazo-Oliveras, A.; Brock, D.J.; Wang, T.Y.; Pellois, J.P. An l- to d-amino acid conversion in an endosomolytic analog of the cell-penetrating peptide TAT influences proteolytic stability, endocytic uptake, and endosomal escape. J. Biol. Chem., 2017, 292(3), 847-861.
[http://dx.doi.org/10.1074/jbc.M116.759837] [PMID: 27923812]
[126]
Papo, N.; Shahar, M.; Eisenbach, L.; Shai, Y. A novel lytic peptide composed of DL-amino acids selectively kills cancer cells in culture and in mice. J. Biol. Chem., 2003, 278(23), 21018-21023.
[http://dx.doi.org/10.1074/jbc.M211204200] [PMID: 12646578]
[127]
Papo, N.; Shai, Y. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry, 2003, 42(31), 9346-9354.
[http://dx.doi.org/10.1021/bi027212o] [PMID: 12899621]
[128]
Abdel Monaim, S.A.H.; Jad, Y.E.; El-Faham, A.; de la Torre, B.G.; Albericio, F. Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorg. Med. Chem., 2018, 26(10), 2788-2796.
[http://dx.doi.org/10.1016/j.bmc.2017.09.040] [PMID: 29029900]
[129]
Wiśniewski, K.; Galyean, R.; Tariga, H.; Alagarsamy, S.; Croston, G.; Heitzmann, J.; Kohan, A.; Wiśniewska, H.; Laporte, R.; Rivière, P.J.M.; Schteingart, C.D. New, potent, selective, and short-acting peptidic V1a receptor agonists. J. Med. Chem., 2011, 54(13), 4388-4398.
[http://dx.doi.org/10.1021/jm200278m] [PMID: 21688787]
[130]
Frey, V.; Viaud, J.; Subra, G.; Cauquil, N.; Guichou, J.F.; Casara, P.; Grassy, G.; Chavanieu, A. Structure–activity relationships of Bak derived peptides: Affinity and specificity modulations by amino acid replacement. Eur. J. Med. Chem., 2008, 43(5), 966-972.
[http://dx.doi.org/10.1016/j.ejmech.2007.06.008] [PMID: 17692431]
[131]
Malakoutikhah, M.; Teixidó, M.; Giralt, E. Toward an optimal blood-brain barrier shuttle by synthesis and evaluation of peptide libraries. J. Med. Chem., 2008, 51(16), 4881-4889.
[http://dx.doi.org/10.1021/jm800156z] [PMID: 18666771]
[132]
Huhmann, S.; Koksch, B. Fine-tuning the proteolytic stability of peptides with fluorinated amino acids. Eur. J. Org. Chem., 2018, 2018(27-28), 3667-3679.
[http://dx.doi.org/10.1002/ejoc.201800803]
[133]
Hicks, R.P. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted Cα amino acids. Bioorg. Med. Chem., 2016, 24(18), 4056-4065.
[http://dx.doi.org/10.1016/j.bmc.2016.06.048] [PMID: 27387357]
[134]
Cabrele, C.; Martinek, T.A.; Reiser, O.; Berlicki, Ł. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J. Med. Chem., 2014, 57(23), 9718-9739.
[http://dx.doi.org/10.1021/jm5010896] [PMID: 25207470]
[135]
Montero, A.; Beierle, J.M.; Olsen, C.A.; Ghadiri, M.R. Design, synthesis, biological evaluation, and structural characterization of potent histone deacetylase inhibitors based on cyclic α/β-tetrapeptide architectures. J. Am. Chem. Soc., 2009, 131(8), 3033-3041.
[http://dx.doi.org/10.1021/ja809508f] [PMID: 19239270]
[136]
Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J., 2015, 17(1), 134-143.
[http://dx.doi.org/10.1208/s12248-014-9687-3] [PMID: 25366889]
[137]
White, C.J.; Yudin, A.K. Contemporary strategies for peptide macrocyclization. Nat. Chem., 2011, 3(7), 509-524.
[http://dx.doi.org/10.1038/nchem.1062] [PMID: 21697871]
[138]
Schafmeister, C.E.; Po, J.; Verdine, G.L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc., 2000, 122(24), 5891-5892.
[http://dx.doi.org/10.1021/ja000563a]
[139]
Carvajal, L.A.; Neriah, D.B.; Senecal, A.; Benard, L.; Thiruthuvanathan, V.; Yatsenko, T.; Narayanagari, S.R.; Wheat, J.C.; Todorova, T.I.; Mitchell, K.; Kenworthy, C.; Guerlavais, V.; Annis, D.A.; Bartholdy, B.; Will, B.; Anampa, J.D.; Mantzaris, I.; Aivado, M.; Singer, R.H.; Coleman, R.A.; Verma, A.; Steidl, U. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci. Transl. Med., 2018, 10(436), eaao3003.
[http://dx.doi.org/10.1126/scitranslmed.aao3003] [PMID: 29643228]
[140]
Fadnes, B.; Uhlin-Hansen, L.; Lindin, I.; Rekdal, Ø. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells. BMC Cancer, 2011, 11(1), 116.
[http://dx.doi.org/10.1186/1471-2407-11-116] [PMID: 21453492]
[141]
Sanyal, A.; Dutta, S.; Camara, A.; Chandran, A.; Koller, A.; Watson, B.G.; Sengupta, R.; Ysselstein, D.; Montenegro, P.; Cannon, J.; Rochet, J.C.; Mattoo, S. Alpha-synuclein is a target of Fic-mediated adenylylation/AMPylation: Possible implications for Parkinson’s disease. J. Mol. Biol., 2019, 431(12), 2266-2282.
[http://dx.doi.org/10.1016/j.jmb.2019.04.026] [PMID: 31034889]
[142]
H, M.; J, F.G. Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr. Pharm. Des., 2003, 9(16), 1289-1295.
[http://dx.doi.org/10.2174/1381612033454847] [PMID: 12769737]
[143]
Kelly, G.J.; Kia, A.F.A.; Hassan, F.; O’Grady, S.; Morgan, M.P.; Creaven, B.S.; McClean, S.; Harmey, J.H.; Devocelle, M. Polymeric prodrug combination to exploit the therapeutic potential of antimicrobial peptides against cancer cells. Org. Biomol. Chem., 2016, 14(39), 9278-9286.
[http://dx.doi.org/10.1039/C6OB01815G] [PMID: 27722734]
[144]
Belén, L.H.; Rangel-Yagui, C.O.; Beltrán Lissabet, J.F.; Effer, B.; Lee-Estevez, M.; Pessoa, A.; Castillo, R.L.; Farías, J.G. From synthesis to characterization of site-selective PEGylated proteins. Front. Pharmacol., 2019, 10, 1450.
[http://dx.doi.org/10.3389/fphar.2019.01450] [PMID: 31920645]
[145]
Milla, P.; Dosio, F.; Cattel, L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab., 2012, 13(1), 105-119.
[http://dx.doi.org/10.2174/138920012798356934] [PMID: 21892917]
[146]
Ginn, C.; Khalili, H.; Lever, R.; Brocchini, S. PEGylation and its impact on the design of new protein-based medicines. Future Med. Chem., 2014, 6(16), 1829-1846.
[http://dx.doi.org/10.4155/fmc.14.125] [PMID: 25407370]
[147]
Shiraishi, K.; Yokoyama, M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci. Technol. Adv. Mater., 2019, 20(1), 324-336.
[http://dx.doi.org/10.1080/14686996.2019.1590126] [PMID: 31068982]
[148]
Narwal, V.; Deswal, R.; Batra, B.; Kalra, V.; Hooda, R.; Sharma, M.; Rana, J.S. Cholesterol biosensors: A review. Steroids, 2019, 143, 6-17.
[http://dx.doi.org/10.1016/j.steroids.2018.12.003] [PMID: 30543816]
[149]
Moremen, K.W.; Tiemeyer, M.; Nairn, A.V. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol., 2012, 13(7), 448-462.
[http://dx.doi.org/10.1038/nrm3383] [PMID: 22722607]
[150]
Pocheć, E.; Lityńska, A.; Bubka, M.; Amoresano, A.; Casbarra, A. Characterization of the oligosaccharide component of α3β1 integrin from human bladder carcinoma cell line T24 and its role in adhesion and migration. Eur. J. Cell Biol., 2006, 85(1), 47-57.
[http://dx.doi.org/10.1016/j.ejcb.2005.08.010] [PMID: 16373174]
[151]
Moradi, S.V.; Hussein, W.M.; Varamini, P.; Simerska, P.; Toth, I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem. Sci. (Camb.), 2016, 7(4), 2492-2500.
[http://dx.doi.org/10.1039/C5SC04392A] [PMID: 28660018]
[152]
Zhang, P.; Ma, J.; Zhang, Q.; Jian, S.; Sun, X.; Liu, B.; Nie, L.; Liu, M.; Liang, S.; Zeng, Y.; Liu, Z. Monosaccharide analogues of anticancer peptide R-Lycosin-I: Role of monosaccharide conjugation in complexation and the potential of lung cancer targeting and therapy. J. Med. Chem., 2019, 62(17), 7857-7873.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00634] [PMID: 31276399]
[153]
Huang, C.Y.; Hsu, J.T.; Chung, P.H.; Cheng, W.T.K.; Jiang, Y.N.; Ju, Y.T. Site-specific N-glycosylation of caprine lysostaphin restricts its bacteriolytic activity toward Staphylococcus aureus. Anim. Biotechnol., 2013, 24(2), 129-147.
[http://dx.doi.org/10.1080/10495398.2012.760469] [PMID: 23534959]
[154]
Lai, X.; Tang, J.; ElSayed, M.E.H. Recent advances in proteolytic stability for peptide, protein, and antibody drug discovery. Expert Opin. Drug Discov., 2021, 16(12), 1467-1482.
[http://dx.doi.org/10.1080/17460441.2021.1942837] [PMID: 34187273]
[155]
Hilchie, A.L.; Sharon, A.J.; Haney, E.F.; Hoskin, D.W.; Bally, M.B.; Franco, O.L.; Corcoran, J.A.; Hancock, R.E.W. Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma. Biochim. Biophys. Acta Biomembr., 2016, 1858(12), 3195-3204.
[http://dx.doi.org/10.1016/j.bbamem.2016.09.021] [PMID: 27693190]
[156]
Zhang, L.; Bulaj, G. Converting peptides into drug leads by lipidation. Curr. Med. Chem., 2012, 19(11), 1602-1618.
[http://dx.doi.org/10.2174/092986712799945003] [PMID: 22376031]
[157]
Macquaire, F.; Baleux, F.; Giaccobi, E.; Neumann, J.M.; Sanson, A.; Sanson, A. Peptide secondary structure induced by a micellar phospholipidic interface: proton NMR conformational study of a lipopeptide. Biochemistry, 1992, 31(9), 2576-2582.
[http://dx.doi.org/10.1021/bi00124a018] [PMID: 1547240]
[158]
Aicart-Ramos, C.; Valero, R.A.; Rodriguez-Crespo, I. Protein palmitoylation and subcellular trafficking. Biochim. Biophys. Acta Biomembr., 2011, 1808(12), 2981-2994.
[http://dx.doi.org/10.1016/j.bbamem.2011.07.009] [PMID: 21819967]
[159]
Jiang, H.; Zhang, X.; Chen, X.; Aramsangtienchai, P.; Tong, Z.; Lin, H. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev., 2018, 118(3), 919-988.
[http://dx.doi.org/10.1021/acs.chemrev.6b00750] [PMID: 29292991]
[160]
Roxin, Á.; Zheng, G. Flexible or fixed: a comparative review of linear and cyclic cancer-targeting peptides. Future Med. Chem., 2012, 4(12), 1601-1618.
[http://dx.doi.org/10.4155/fmc.12.75] [PMID: 22917248]
[161]
Chatterjee, J.; Rechenmacher, F.; Kessler, H. N-methylation of peptides and proteins: an important element for modulating biological functions. Angew. Chem. Int. Ed., 2013, 52(1), 254-269.
[http://dx.doi.org/10.1002/anie.201205674] [PMID: 23161799]
[162]
Ványolós, A.; Dékány, M.; Kovács, B.; Krámos, B.; Bérdi, P.; Zupkó, I.; Hohmann, J.; Béni, Z. Gymnopeptides A and B, cyclic octadecapeptides from the mushroom gymnopus fusipes. Org. Lett., 2016, 18(11), 2688-2691.
[http://dx.doi.org/10.1021/acs.orglett.6b01158] [PMID: 27194202]
[163]
Pan, Z.; Wu, C.; Wang, W.; Cheng, Z.; Yao, G.; Liu, K.; Li, H.; Fang, L.; Su, W. Total synthesis and stereochemical assignment of gymnopeptides A and B. Org. Lett., 2017, 19(17), 4420-4423.
[http://dx.doi.org/10.1021/acs.orglett.7b01742] [PMID: 28799768]
[164]
Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73.
[http://dx.doi.org/10.3389/fnins.2017.00073] [PMID: 28261050]
[165]
Klimpel, A.; Lützenburg, T.; Neundorf, I. Recent advances of anti-cancer therapies including the use of cell-penetrating peptides. Curr. Opin. Pharmacol., 2019, 47, 8-13.
[http://dx.doi.org/10.1016/j.coph.2019.01.003] [PMID: 30771730]
[166]
El-Sayed, A.; Futaki, S.; Harashima, H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J., 2009, 11(1), 13-22.
[http://dx.doi.org/10.1208/s12248-008-9071-2] [PMID: 19125334]
[167]
Regberg, J.; Srimanee, A.; Langel, Ü. Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals (Basel), 2012, 5(9), 991-1007.
[http://dx.doi.org/10.3390/ph5090991] [PMID: 24280701]
[168]
Dokka, S.; Toledo-Velasquez, D.; Shi, X.; Wang, L.; Rojanasakul, Y. Cellular delivery of oligonucleotides by synthetic import peptide carrier. Pharm. Res., 1997, 14(12), 1759-1764.
[http://dx.doi.org/10.1023/A:1012188014919] [PMID: 9453065]
[169]
Nakayama, F.; Yasuda, T.; Umeda, S.; Asada, M.; Imamura, T.; Meineke, V.; Akashi, M. Fibroblast growth factor-12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain: involvement of internalization in the in vivo role of exogenous FGF12. J. Biol. Chem., 2011, 286(29), 25823-25834.
[http://dx.doi.org/10.1074/jbc.M110.198267] [PMID: 21518765]
[170]
Tian, H.; Lin, L.; Chen, J.; Chen, X.; Park, T.G.; Maruyama, A. RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. J. Control. Release, 2011, 155(1), 47-53.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.025] [PMID: 21281679]
[171]
Tang, B.; Zaro, J.L.; Shen, Y.; Chen, Q.; Yu, Y.; Sun, P.; Wang, Y.; Shen, W.C.; Tu, J.; Sun, C. Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. J. Control. Release, 2018, 279, 147-156.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.016] [PMID: 29653223]
[172]
Hogervorst, T.P.; Li, R.J.E.; Marino, L.; Bruijns, S.C.M.; Meeuwenoord, N.J.; Filippov, D.V.; Overkleeft, H.S.; van der Marel, G.A.; van Vliet, S.J.; van Kooyk, Y.; Codée, J.D.C. C-mannosyl lysine for solid phase assembly of mannosylated peptide conjugate cancer vaccines. ACS Chem. Biol., 2020, 15(3), 728-739.
[http://dx.doi.org/10.1021/acschembio.9b00987] [PMID: 32045202]
[173]
Habault, J.; Kaci, A.; Pasquereau-Kotula, E.; Fraser, C.; Chomienne, C.; Dombret, H.; Braun, T.; Pla, M.; Poyet, J.L. Prophylactic and therapeutic antileukemic effects induced by the AAC-11-derived Peptide RT53. OncoImmunology, 2020, 9(1), 1728871.
[http://dx.doi.org/10.1080/2162402X.2020.1728871] [PMID: 32158621]
[174]
Noguchi, M.; Arai, G.; Matsumoto, K.; Naito, S.; Moriya, F.; Suekane, S.; Komatsu, N.; Matsueda, S.; Sasada, T.; Yamada, A.; Kakuma, T.; Itoh, K. Phase I trial of a cancer vaccine consisting of 20 mixed peptides in patients with castration-resistant prostate cancer: dose-related immune boosting and suppression. Cancer Immunol. Immunother., 2015, 64(4), 493-505.
[http://dx.doi.org/10.1007/s00262-015-1660-1] [PMID: 25662406]
[175]
Noguchi, M.; Arai, G.; Egawa, S.; Ohyama, C.; Naito, S.; Matsumoto, K.; Uemura, H.; Nakagawa, M.; Nasu, Y.; Eto, M.; Suekane, S.; Sasada, T.; Shichijo, S.; Yamada, A.; Kakuma, T.; Itoh, K. Mixed 20-peptide cancer vaccine in combination with docetaxel and dexamethasone for castration-resistant prostate cancer: a randomized phase II trial. Cancer Immunol. Immunother., 2020, 69(5), 847-857.
[http://dx.doi.org/10.1007/s00262-020-02498-8] [PMID: 32025848]
[176]
Murahashi, M.; Hijikata, Y.; Yamada, K.; Tanaka, Y.; Kishimoto, J.; Inoue, H.; Marumoto, T.; Takahashi, A.; Okazaki, T.; Takeda, K.; Hirakawa, M.; Fujii, H.; Okano, S.; Morita, M.; Baba, E.; Mizumoto, K.; Maehara, Y.; Tanaka, M.; Akashi, K.; Nakanishi, Y.; Yoshida, K.; Tsunoda, T.; Tamura, K.; Nakamura, Y.; Tani, K. Phase I clinical trial of a five-peptide cancer vaccine combined with cyclophosphamide in advanced solid tumors. Clin. Immunol., 2016, 166-167, 48-58.
[http://dx.doi.org/10.1016/j.clim.2016.03.015] [PMID: 27072896]
[177]
Nishida, S.; Morimoto, S.; Oji, Y.; Morita, S.; Shirakata, T.; Enomoto, T.; Tsuboi, A.; Ueda, Y.; Yoshino, K.; Shouq, A.; Kanegae, M.; Ohno, S.; Fujiki, F.; Nakajima, H.; Nakae, Y.; Nakata, J.; Hosen, N.; Kumanogoh, A.; Oka, Y.; Kimura, T.; Sugiyama, H. Cellular and humoral immune responses induced by an HLA class I-restricted peptide cancer vaccine targeting WT1 are associated with favorable clinical outcomes in advanced ovarian cancer. J. Immunother., 2022, 45(1), 56-66.
[http://dx.doi.org/10.1097/CJI.0000000000000405] [PMID: 34874330]
[178]
Zhang, Y.; He, P.; Zhang, P.; Yi, X.; Xiao, C.; Chen, X. Polypeptides–drug conjugates for anticancer therapy. Adv. Healthc. Mater., 2021, 10(11), 2001974.
[http://dx.doi.org/10.1002/adhm.202001974] [PMID: 33929786]
[179]
Fan, R.; Tong, A.; Li, X.; Gao, X.; Mei, L.; Zhou, L.; Zhang, X.; You, C.; Guo, G. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer. Int. J. Nanomed., 2015, 10, 7291-7305.
[PMID: 26664119]
[180]
Hassanvand Jamadi, R.; Asadi, A.; Yaghoubi, H.; Goudarzi, F. Investigation into the anticancer activity and apoptosis induction of Brevinin-2R and Brevinin-2R-conjugated PLA-PEG-PLA nanoparticles and strong cell cycle arrest in AGS, HepG2 and KYSE-30 cell lines. Int. J. Pept. Res. Ther., 2019, 25(3), 1225-1239.
[http://dx.doi.org/10.1007/s10989-018-9772-z]
[181]
Li, G.; Lei, Q.; Wang, F.; Deng, D.; Wang, S.; Tian, L.; Shen, W.; Cheng, Y.; Liu, Z.; Wu, S. Fluorinated polymer mediated transmucosal peptide delivery for intravesical instillation therapy of bladder cancer. Small, 2019, 15(25), 1900936.
[http://dx.doi.org/10.1002/smll.201900936] [PMID: 31074941]
[182]
Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide J. Am. Chem. Soc., 1963, 85(14), 2149-2154.
[http://dx.doi.org/10.1021/ja00897a025]
[183]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[184]
Komin, A.; Russell, L.M.; Hristova, K.A.; Searson, P.C. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges. Adv. Drug Deliv. Rev., 2017, 110-111, 52-64.
[http://dx.doi.org/10.1016/j.addr.2016.06.002] [PMID: 27313077]
[185]
Conibear, A.C.; Watson, E.E.; Payne, R.J.; Becker, C.F.W. Native chemical ligation in protein synthesis and semi-synthesis. Chem. Soc. Rev., 2018, 47(24), 9046-9068.
[http://dx.doi.org/10.1039/C8CS00573G] [PMID: 30418441]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy