Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Advancing Tissue Factor-targeted Therapy for Osteosarcoma via Understanding its Role in the Tumor Microenvironment

Author(s): Jiro Ichikawa*, Jonathan G. Schoenecker, Rikito Tatsuno, Tomonori Kawasaki, Katsue Suzuki-Inoue and Hirotaka Haro

Volume 29, Issue 13, 2023

Published on: 27 April, 2023

Page: [1009 - 1012] Pages: 4

DOI: 10.2174/1381612829666230413094242

Price: $65

conference banner
Abstract

Coagulation activation is associated with cancer progression and morbidity. Recently, mechanisms through which coagulation proteases drive the tumor microenvironment (TME) have been elucidated. This review aims to develop a new strategy dependent on the coagulation system for treating osteosarcoma (OS). We focused on tissue factor (TF), the main initiator of the extrinsic coagulant pathway, as a target for OS treatment. It was found that cell surface-TF, TF-positive extracellular vesicles, and TF-positive circulating tumor cells could drive progression, metastasis, and TME in carcinomas, including OS. Thus, targeting tumor-associated coagulation by focusing on TF, the principle catalyst of the extrinsic pathway, TF is a promising target for OS.

Keywords: Osteosarcoma, tissue factor, tumor microenvironment, chemotherapy, antibody-drug-conjugate, heparin, low molecular weight heparin.

[1]
Yu L, Zhang J, Li Y. Effects of microenvironment in osteosarcoma on chemoresistance and the promise of immunotherapy as an osteosarcoma therapeutic modality. Front Immunol 2022; 13: 871076.
[http://dx.doi.org/10.3389/fimmu.2022.871076] [PMID: 36311748]
[2]
Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004. Cancer 2009; 115(7): 1531-43.
[http://dx.doi.org/10.1002/cncr.24121] [PMID: 19197972]
[3]
Whelan JS, Davis LE. Osteosarcoma, chondrosarcoma, and chordoma. J Clin Oncol 2018; 36(2): 188-93.
[http://dx.doi.org/10.1200/JCO.2017.75.1743] [PMID: 29220289]
[4]
Ichikawa J, Ando T, Kawasaki T, et al. Role of platelet C-type lectin-like receptor 2 in promoting lung metastasis in osteosarcoma. J Bone Miner Res 2020; 35(9): 1738-50.
[http://dx.doi.org/10.1002/jbmr.4045] [PMID: 32479683]
[5]
Ando T, Ichikawa J, Fujimaki T, Taniguchi N, Takayama Y, Haro H. Gemcitabine and rapamycin exhibit additive effect against osteosarcoma by targeting autophagy and apoptosis. Cancers 2020; 12(11): 3097.
[http://dx.doi.org/10.3390/cancers12113097] [PMID: 33114161]
[6]
Ichikawa J, Cole HA, Magnussen RA, et al. Thrombin induces osteosarcoma growth, a function inhibited by low molecular weight heparin in vitro and in vivo. Cancer 2012; 118(9): 2494-506.
[http://dx.doi.org/10.1002/cncr.26518] [PMID: 21953059]
[7]
Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett 2017; 387: 61-8.
[http://dx.doi.org/10.1016/j.canlet.2016.01.043] [PMID: 26845449]
[8]
Deyell M, Garris CS, Laughney AM. Cancer metastasis as a non-healing wound. Br J Cancer 2021; 124(9): 1491-502.
[http://dx.doi.org/10.1038/s41416-021-01309-w] [PMID: 33731858]
[9]
Baker CE, Moore-Lotridge SN, Hysong AA, et al. Bone fracture acute phase response-a unifying theory of fracture repair: Clinical and scientific implications. Clin Rev Bone Miner Metab 2018; 16(4): 142-58.
[http://dx.doi.org/10.1007/s12018-018-9256-x] [PMID: 30930699]
[10]
Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019; 133(6): 511-20.
[http://dx.doi.org/10.1182/blood-2018-07-818211] [PMID: 30523120]
[11]
Galmiche A, Rak J, Roumenina LT, Saidak Z. Coagulome and the tumor microenvironment: An actionable interplay. Trends Cancer 2022; 8(5): 369-83.
[http://dx.doi.org/10.1016/j.trecan.2021.12.008] [PMID: 35027336]
[12]
Farge D, Frere C, Connors JM, et al. 2019 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol 2019; 20(10): e566-81.
[http://dx.doi.org/10.1016/S1470-2045(19)30336-5] [PMID: 31492632]
[13]
Unruh D, Horbinski C. Beyond thrombosis: The impact of tissue factor signaling in cancer. J Hematol Oncol 2020; 13(1): 93.
[http://dx.doi.org/10.1186/s13045-020-00932-z] [PMID: 32665005]
[14]
Li H, Yu Y, Gao L, Zheng P, Liu X, Chen H. Tissue factor: A neglected role in cancer biology. J Thromb Thrombolysis 2022; 54(1): 97-108.
[http://dx.doi.org/10.1007/s11239-022-02662-0] [PMID: 35763169]
[15]
Isakoff MS, Bielack SS, Meltzer P, Gorlick R. Osteosarcoma: Current treatment and a collaborative pathway to success. J Clin Oncol 2015; 33(27): 3029-35.
[http://dx.doi.org/10.1200/JCO.2014.59.4895] [PMID: 26304877]
[16]
Martins-Neves SR, Sampaio-Ribeiro G, Gomes CMF. Chemoresistance-related stem cell signaling in osteosarcoma and its plausible contribution to poor therapeutic response: A discussion that still matters. Int J Mol Sci 2022; 23(19): 11416.
[http://dx.doi.org/10.3390/ijms231911416] [PMID: 36232719]
[17]
Tsuchiya H, Kanazawa Y, Abdel-Wanis ME, et al. Effect of timing of pulmonary metastases identification on prognosis of patients with osteosarcoma: The Japanese Musculoskeletal Oncology Group study. J Clin Oncol 2002; 20(16): 3470-7.
[http://dx.doi.org/10.1200/JCO.2002.11.028] [PMID: 12177108]
[18]
Gao X, Gao B, Li S. Extracellular vesicles: A new diagnostic biomarker and targeted drug in osteosarcoma. Front Immunol 2022; 13: 1002742.
[http://dx.doi.org/10.3389/fimmu.2022.1002742] [PMID: 36211364]
[19]
Wen Y, Tang F, Tu C, Hornicek F, Duan Z, Min L. Immune checkpoints in osteosarcoma: Recent advances and therapeutic potential. Cancer Lett 2022; 547: 215887.
[http://dx.doi.org/10.1016/j.canlet.2022.215887] [PMID: 35995141]
[20]
Hu Z, Wen S, Huo Z, et al. Current status and prospects of targeted therapy for osteosarcoma. Cells 2022; 11(21): 3507.
[http://dx.doi.org/10.3390/cells11213507] [PMID: 36359903]
[21]
Grover SP, Mackman N. Tissue factor. Arterioscler Thromb Vasc Biol 2018; 38(4): 709-25.
[http://dx.doi.org/10.1161/ATVBAHA.117.309846] [PMID: 29437578]
[22]
Arakaki A, Pan WA, Trejo J. GPCRs in Cancer: Protease-activated receptors, endocytic adaptors and signaling. Int J Mol Sci 2018; 19(7): 1886.
[http://dx.doi.org/10.3390/ijms19071886] [PMID: 29954076]
[23]
Covic L, Kuliopulos A. Protease-activated receptor 1 as therapeutic target in breast, lung, and ovarian cancer: Pepducin approach. Int J Mol Sci 2018; 19(8): 2237.
[http://dx.doi.org/10.3390/ijms19082237] [PMID: 30065181]
[24]
Radjabi AR, Sawada K, Jagadeeswaran S, et al. Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and beta1-integrin on the cell surface. J Biol Chem 2008; 283(5): 2822-34.
[http://dx.doi.org/10.1074/jbc.M704855200] [PMID: 18048360]
[25]
McAuley JR, Bailey KM, Ekambaram P, et al. MALT1 is a critical mediator of PAR1-driven NF-κB activation and metastasis in multiple tumor types. Oncogene 2019; 38(49): 7384-98.
[http://dx.doi.org/10.1038/s41388-019-0958-4] [PMID: 31420608]
[26]
Tieken C, Verboom MC, Ruf W, et al. Tissue factor associates with survival and regulates tumour progression in osteosarcoma. Thromb Haemost 2016; 115(5): 1025-33.
[http://dx.doi.org/10.1160/TH15-07-0541] [PMID: 26763081]
[27]
Jacobsen C, Oechsle K, Hauschild J, et al. Regulation of tissue factor in NT2 germ cell tumor cells by cisplatin chemotherapy. Thromb Res 2015; 136(3): 673-81.
[http://dx.doi.org/10.1016/j.thromres.2015.07.002] [PMID: 26205155]
[28]
Saito M, Ichikawa J, Ando T, et al. Platelet-derived TGF-β induces tissue factor expression via the Smad3 pathway in osteosarcoma cells. J Bone Miner Res 2018; 33(11): 2048-58.
[http://dx.doi.org/10.1002/jbmr.3537] [PMID: 29949655]
[29]
Stegner D, Dütting S, Nieswandt B. Mechanistic explanation for platelet contribution to cancer metastasis. Thromb Res 2014; 133(Suppl. 2): S149-57.
[http://dx.doi.org/10.1016/S0049-3848(14)50025-4] [PMID: 24862136]
[30]
Lacroix R, Vallier L, Bonifay A, et al. Microvesicles and cancer associated thrombosis. Semin Thromb Hemost 2019; 45(6): 593-603.
[http://dx.doi.org/10.1055/s-0039-1693476] [PMID: 31430786]
[31]
Wojtukiewicz MZ, Mysliwiec M, Sierko E, et al. Elevated microparticles, thrombin-antithrombin and VEGF levels in colorectal cancer patients undergoing chemotherapy. Pathol Oncol Res 2020; 26(4): 2499-507.
[http://dx.doi.org/10.1007/s12253-020-00854-8] [PMID: 32583332]
[32]
Hisada Y, Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017; 130(13): 1499-506.
[http://dx.doi.org/10.1182/blood-2017-03-743211] [PMID: 28807983]
[33]
Thaler J, Ay C, MacKman N, et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J Thromb Haemost 2012; 10(7): 1363-70.
[http://dx.doi.org/10.1111/j.1538-7836.2012.04754.x] [PMID: 22520016]
[34]
Jerez S, Araya H, Hevia D, et al. Extracellular vesicles from osteosarcoma cell lines contain miRNAs associated with cell adhesion and apoptosis. Gene 2019; 710: 246-57.
[http://dx.doi.org/10.1016/j.gene.2019.06.005] [PMID: 31176732]
[35]
Pan Y, Lin Y, Mi C. Cisplatin-resistant osteosarcoma cell-derived exosomes confer cisplatin resistance to recipient cells in an exosomal circ_103801-dependent manner. Cell Biol Int 2021; 45(4): 858-68.
[http://dx.doi.org/10.1002/cbin.11532] [PMID: 33325136]
[36]
Ahlbrecht J, Dickmann B, Ay C, et al. Tumor grade is associated with venous thromboembolism in patients with cancer: Results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2012; 30(31): 3870-5.
[http://dx.doi.org/10.1200/JCO.2011.40.1810] [PMID: 23008313]
[37]
Iwata S, Kawai A, Ueda T, et al. Symptomatic venous thromboembolism in patients with malignant bone and soft tissue tumors: A prospective multicenter cohort study. Ann Surg Oncol 2021; 28(7): 3919-27.
[http://dx.doi.org/10.1245/s10434-020-09308-6] [PMID: 33165723]
[38]
Liu Z, Li Y, Zhao X, et al. Renal cell carcinoma with tumor thrombus growing against the direction of venous return: An indicator of complicated surgery and poor prognosis. BMC Surg 2021; 21(1): 443.
[http://dx.doi.org/10.1186/s12893-021-01448-0] [PMID: 34963464]
[39]
Yin J, Bo WT, Sun J, et al. New evidence and perspectives on the management of hepatocellular carcinoma with portal vein tumor thrombus. J Clin Transl Hepatol 2017; 5(2): 169-76.
[PMID: 28660155]
[40]
Kawasaki T, Bussolati G, Marchiò C, et al. Well-differentiated neuroendocrine tumour of the breast showing peculiar endovascular spread. Histopathology 2014; 64(4): 597-600.
[http://dx.doi.org/10.1111/his.12276] [PMID: 24215290]
[41]
Chauhan A, Garg N, Menias CO, Devine CE, Bhosale PR, Balachandran A. Tumor thrombus as a rare presentation of lymphoma: A case series of 14 patients. AJR Am J Roentgenol 2015; 204(4): W398-404.
[http://dx.doi.org/10.2214/AJR.14.12782] [PMID: 25794089]
[42]
Navalkele P, Jones SM, Jones JK, et al. Osteosarcoma tumor thrombus: A case report with a review of the literature. Tex Heart Inst J 2013; 40(1): 75-8.
[PMID: 23466623]
[43]
Liang H, Guo W, Tang X, et al. Venous tumor thrombus in primary bone sarcomas in the pelvis. J Bone Joint Surg Am 2021; 103(16): 1510-20.
[http://dx.doi.org/10.2106/JBJS.20.00569] [PMID: 33857031]
[44]
Versteeg HH, Schaffner F, Kerver M, et al. Inhibition of tissue factor signaling suppresses tumor growth. Blood 2008; 111(1): 190-9.
[http://dx.doi.org/10.1182/blood-2007-07-101048] [PMID: 17901245]
[45]
Hong DS, Concin N, Vergote I, et al. Tisotumab vedotin in previously treated recurrent or metastatic cervical cancer. Clin Cancer Res 2020; 26(6): 1220-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2962] [PMID: 31796521]
[46]
Tsumura R, Anzai T, Manabe S, et al. Antitumor effect of humanized anti-tissue factor antibody-drug conjugate in a model of peritoneal disseminated pancreatic cancer. Oncol Rep 2020; 45(1): 329-36.
[http://dx.doi.org/10.3892/or.2020.7850] [PMID: 33200231]
[47]
Theunissen JW, Cai AG, Bhatti MM, et al. Treating tissue factor- positive cancers with antibody-drug conjugates that do not affect blood clotting. Mol Cancer Ther 2018; 17(11): 2412-26.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0471] [PMID: 30126944]
[48]
Franchini M, Mannucci PM. Low-molecular-weight heparins and cancer: Focus on antitumoral effect. Ann Med 2015; 47(2): 116-21.
[http://dx.doi.org/10.3109/07853890.2015.1004361] [PMID: 25766973]
[49]
Alturkistani A, Ghonem N, Power-Charnitsky VA, Pino-Figueroa A, Migliore MM. Inhibition of PAR-1 receptor signaling by enoxaparin reduces cell proliferation and migration in A549 Cells. Anticancer Res 2019; 39(10): 5297-310.
[http://dx.doi.org/10.21873/anticanres.13723] [PMID: 31570424]
[50]
Ma L, Qiao H, He C, et al. Modulating the interaction of CXCR4 and CXCL12 by low-molecular-weight heparin inhibits hepatic metastasis of colon cancer. Invest New Drugs 2012; 30(2): 508-17.
[http://dx.doi.org/10.1007/s10637-010-9578-0] [PMID: 21080209]
[51]
Dhami SPS, Patmore S, Comerford C, et al. Breast cancer cells mediate endothelial cell activation, promoting von Willebrand factor release, tumor adhesion, and transendothelial migration. J Thromb Haemost 2022; 20(10): 2350-65.
[http://dx.doi.org/10.1111/jth.15794] [PMID: 35722954]
[52]
Ettelaie C, Fountain D, Collier MEW, ElKeeb AM, Xiao YP, Maraveyas A. Low molecular weight heparin downregulates tissue factor expression and activity by modulating growth factor receptor- mediated induction of nuclear factor-κB. Biochim Biophys Acta Mol Basis Dis 2011; 1812(12): 1591-600.
[http://dx.doi.org/10.1016/j.bbadis.2011.09.007] [PMID: 21946214]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy