Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Plant Flavonoids as Reservoirs of Therapeutics against Microbial Virulence Traits: A Comprehensive Review Update

Author(s): Tamara Carević, Dejan Stojković and Marija Ivanov*

Volume 29, Issue 12, 2023

Published on: 18 April, 2023

Page: [914 - 927] Pages: 14

DOI: 10.2174/1381612829666230413085029

Price: $65

conference banner
Abstract

Flavonoids are secondary metabolites abundantly present in plants and, in most cases, essential contributors to plants bioactivity. They have been studied so far for a range of possible health-beneficial effects, including antioxidant, cardioprotective, and cytotoxic. Therefore, there are data on the antimicrobial potential of a significant number of flavonoids. However, less is known regarding their antivirulence traits. Trending antimicrobial research worldwide has pointed out the promising effects of antimicrobial strategies based on the antivirulence principle, so this review aims to present the newest research regarding the antivirulence effects of flavonoids. Articles on antivirulence flavonoids published from 2015 until now were selected. A range of molecules from this class has been studied up to date, with the most abundant data for quercetin and myricetin, while the most studied organism is Pseudomonas aeruginosa. The antivirulence attributes studied included antibiofilm assessment, followed by data on the inhibition of virulence pigments (pyocyanin, violacein, and staphyloxanthin) and virulence enzyme production (such as sortase A and elastase). Less information is collected on the inhibition of morphological transition, motility, and molecular mechanisms underlying the antivirulence properties of flavonoids and in vivo research. Flavonoids are a group of compounds with a wide range of antivirulence traits and might be further developed into essential parts of novel antimicrobial strategies.

Keywords: Flavonoids, antivirulence, antibiofilm, antimicrobial, hyphal development, pyocyanin inhibition, Pseudomonas aeruginosa.

[1]
Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM. Flavonoids: A review of probable mechanisms of action and potential applications. Am J Clin Nutr 2001; 74(4): 418-25.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[2]
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem 2022; 383: 132531.
[http://dx.doi.org/10.1016/j.foodchem.2022.132531] [PMID: 35413752]
[3]
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, et al. The flavonoid biosynthesis network in plants. Int J Mol Sci 2021; 22: 12824.
[http://dx.doi.org/10.3390/ijms222312824]
[4]
Alseekh S, Perez de Souza L, Benina M, Fernie AR. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry 2020; 174: 112347.
[http://dx.doi.org/10.1016/j.phytochem.2020.112347] [PMID: 32203741]
[5]
Wang T, Li Q, Bi K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. As. J Pharm Sci 2018; 13(1): 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[6]
Basli A, Soulet S, Chaher N, et al. Wine polyphenols: Potential agents in neuroprotection. Oxid Med Cell Longev 2012; 2012: 1-14.
[http://dx.doi.org/10.1155/2012/805762] [PMID: 22829964]
[7]
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[8]
Dwyer JT, Peterson J. Tea and flavonoids: Where we are, where to go next. Am J Clin Nutr 2013; 98 (Suppl. 6): S1611-8.
[http://dx.doi.org/10.3945/ajcn.113.059584] [PMID: 24172298]
[9]
Peterson JJ, Beecher GR, Bhagwat SA, et al. Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature. J Food Compos Anal 2006; 19: S74-80.
[http://dx.doi.org/10.1016/j.jfca.2005.12.009]
[10]
Khan MK. Zill-E-Huma, Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. J Food Compos Anal 2014; 33(1): 85-104.
[http://dx.doi.org/10.1016/j.jfca.2013.11.004]
[11]
Fenger JA, Sigurdson GT, Robbins RJ, Collins TM, Giusti MM, Dangles O. Acylated anthocyanins from red cabbage and purple sweet potato can bind metal ions and produce stable blue colors. Int J Mol Sci 2021; 22(9): 4551.
[http://dx.doi.org/10.3390/ijms22094551] [PMID: 33925312]
[12]
Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: A mini-review. Front Nutr 2018; 5: 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[13]
Zhang PY. Polyphenols in health and disease. Cell Biochem Biophys 2015; 73(3): 649-64.
[http://dx.doi.org/10.1007/s12013-015-0558-z] [PMID: 27259307]
[14]
Singh A, Holvoet S, Mercenier A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy 2011; 41(10): 1346-59.
[http://dx.doi.org/10.1111/j.1365-2222.2011.03773.x] [PMID: 21623967]
[15]
Pérez-Jiménez J, Neveu V, Vos F, Scalbert A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-explorer database. Eur J Clin Nutr 2010; 64 (Suppl. 3): S112-20.
[http://dx.doi.org/10.1038/ejcn.2010.221] [PMID: 21045839]
[16]
Lecour S, Lamont KT. Natural polyphenols and cardioprotection. Mini Rev Med Chem 2011; 11(14): 1191-9.
[http://dx.doi.org/10.2174/13895575111091191] [PMID: 22070680]
[17]
Carocho M, Ferreira ICFR. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 2013; 51: 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021] [PMID: 23017782]
[18]
Abou Baker DH. An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: A comprehensive review based on up to date knowledge. Toxicol Rep 2022; 9: 445-69.
[http://dx.doi.org/10.1016/j.toxrep.2022.03.011] [PMID: 35340621]
[19]
Dias MC, Pinto DCGA, Silva AMS. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021; 26(17): 5377.
[http://dx.doi.org/10.3390/molecules26175377] [PMID: 34500810]
[20]
Mitra S, Nguyen LN, Akter M, Park G, Choi EH, Kaushik NK. Impact of ROS generated by chemical, physical, and plasma techniques on cancer attenuation. Cancers 2019; 11(7): 1030.
[http://dx.doi.org/10.3390/cancers11071030] [PMID: 31336648]
[21]
Ravishankar D, Rajora AK, Greco F, Osborn HMI. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 2013; 45(12): 2821-31.
[http://dx.doi.org/10.1016/j.biocel.2013.10.004] [PMID: 24128857]
[22]
Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000; 63(7): 1035-42.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[23]
Ziberna L, Fornasaro S, Čvorović J, Tramer F, Passamonti S. Bioavailability of flavonoids Polyphenols Hum Heal Dis 2014; 1: 489-511.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00037-2]
[24]
Adedeji WA. The treasure called antibiotics Ann Ib Postgrad Med 2016; 14(2): 56-7.
[PMID: 28337088]
[25]
Cassini A, Högberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect Dis 2019; 19(1): 56-66.
[http://dx.doi.org/10.1016/S1473-3099(18)30605-4] [PMID: 30409683]
[26]
Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother Res 2019; 33(1): 13-40.
[http://dx.doi.org/10.1002/ptr.6208] [PMID: 30346068]
[27]
Yuan G, Guan Y, Yi H, Lai S, Sun Y, Cao S. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci Rep 2021; 11: 1-15.
[http://dx.doi.org/10.1038/s41598-021-90035-7]
[28]
Gupta T, Kataria R, Sardana S. A comprehensive review on current perspectives of flavonoids as antimicrobial agent. Curr Top Med Chem 2022; 22(6): 425-34.
[http://dx.doi.org/10.2174/1568026622666220117104709] [PMID: 35040402]
[29]
Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr Med Chem 2014; 22(1): 132-49.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[30]
Arora A, Byrem TM, Nair MG, Strasburg GM. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 2000; 373(1): 102-9.
[http://dx.doi.org/10.1006/abbi.1999.1525] [PMID: 10620328]
[31]
Tsuchiya H, Iinuma M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine 2000; 7(2): 161-5.
[http://dx.doi.org/10.1016/S0944-7113(00)80089-6] [PMID: 10839220]
[32]
Budzynska A. ckowska-Szakiel M, Sadowska B, Rozalska B, Rozalski M, Karolczak W. Synthetic 3-Arylideneflavanones as inhibitors of the initial stages of biofilm formation by Staphylococcus aureus and Enterococcus faecalis. Zeitschrift Fur Naturforsch - Sect C. J Biosci 2011; 66: 104-14.
[http://dx.doi.org/10.1515/ZNC-2011-3-403/MACHINEREADABLECITATION/RIS]
[33]
Singh SP, Konwarh R, Konwar BK, Karak N. Molecular docking studies on analogues of quercetin with d-alanine: D-alanine ligase of Helicobacter pylori. Med Chem Res 2013; 22(5): 2139-50.
[http://dx.doi.org/10.1007/s00044-012-0207-7]
[34]
Al Aboody MS, Mickymaray S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics 2020; 9(2): 45.
[http://dx.doi.org/10.3390/antibiotics9020045] [PMID: 31991883]
[35]
Biharee A, Sharma A, Kumar A, Jaitak V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia 2020; 146: 104720.
[http://dx.doi.org/10.1016/j.fitote.2020.104720] [PMID: 32910994]
[36]
Clatworthy AE, Pierson E, Hung DT. Targeting virulence: A new paradigm for antimicrobial therapy. Nat Chem Biol 2007; 39: 541-8.
[http://dx.doi.org/10.1038/nchembio.2007.24]
[37]
Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol 2019; 9: 74.
[http://dx.doi.org/10.3389/fcimb.2019.00074] [PMID: 31001485]
[38]
Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 2010; 9: 117-28.
[http://dx.doi.org/10.1038/nrd3013]
[39]
Totsika M. Benefits and challenges of antivirulence antimicrobials at the dawn of the post-antibiotic era. Drug Deliv Lett 2016; 6(1): 30-7.
[http://dx.doi.org/10.2174/2210303106666160506120057]
[40]
Rezzoagli C, Archetti M, Mignot I, Baumgartner M, Kümmerli R. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol 2020; 18(8): e3000805.
[http://dx.doi.org/10.1371/journal.pbio.3000805] [PMID: 32810152]
[41]
Guzzo F, Scognamiglio M, Fiorentino A, Buommino E, D’Abrosca B. Plant derived natural products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm activity and molecular mechanisms. Molecules 2020; 25(21): 5024.
[http://dx.doi.org/10.3390/molecules25215024] [PMID: 33138250]
[42]
Memariani H, Memariani M, Ghasemian A. An overview on anti-biofilm properties of quercetin against bacterial pathogens. World J Microbiol Biotechnol 2019; 35: 1-16.
[http://dx.doi.org/10.1007/s11274-019-2719-5]
[43]
Mu Y, Zeng H, Chen W. Quercetin inhibits biofilm formation by decreasing the production of EPS and altering the composition of EPS in Staphylococcus epidermidis. Front Microbiol 2021; 12: 631058.
[http://dx.doi.org/10.3389/fmicb.2021.631058] [PMID: 33763049]
[44]
Matilla-Cuenca L, Gil C, Cuesta S, Rapún-Araiz B. Žiemytė M, Mira A. Antibiofilm activity of flavonoids on staphylococcal biofilms through targeting BAP amyloids. Sci Rep 2020; 10: 1-12.
[http://dx.doi.org/10.1038/s41598-020-75929-2]
[45]
Gao M, Wang H, Zhu L. Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant Candida albicans in in vitro and in vivo antifungal managements of vulvovaginal candidiasis. Cell Physiol Biochem 2016; 40(3-4): 727-42.
[http://dx.doi.org/10.1159/000453134] [PMID: 27915337]
[46]
Krzyżek P, Migdał P, Paluch E, Karwańska M, Wieliczko A, Gościniak G. Myricetin as an antivirulence compound interfering with a morphological transformation into coccoid forms and potentiating activity of antibiotics against Helicobacter pylori. Int J Mol Sci 2021; 22: 2695.
[http://dx.doi.org/10.3390/ijms22052695]
[47]
Lobo CIV, Lopes ACUA, Klein MI. Compounds with distinct targets present diverse antimicrobial and antibiofilm efficacy against Candida albicans and Streptococcus mutans, and combinations of compounds potentiate their effect. J Fungi 2021; 7(5): 340.
[http://dx.doi.org/10.3390/jof7050340] [PMID: 33924814]
[48]
Silva LN, Da Hora GCA, Soares TA, et al. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Sci Rep 2017; 7(1): 2823.
[http://dx.doi.org/10.1038/s41598-017-02712-1] [PMID: 28588273]
[49]
Pinto HB, Brust FR, Macedo AJ, Trentin DS. The antivirulence compound myricetin possesses remarkable synergistic effect with antibacterials upon multidrug resistant Staphylococcus aureus. Microb Pathog 2020; 149: 104571.
[http://dx.doi.org/10.1016/j.micpath.2020.104571] [PMID: 33075517]
[50]
Arita-Morioka KI, Yamanaka K, Mizunoe Y, Tanaka Y, Ogura T, Sugimoto S. Inhibitory effects of Myricetin derivatives on curli-dependent biofilm formation in Escherichia coli. Sci Rep 2018; 2018: 81-11.
[http://dx.doi.org/10.1038/s41598-018-26748-z]
[51]
Mo F, Ma J, Yang X, Zhang P, Li Q, Zhang J. In vitro and in vivo effects of the combination of myricetin and miconazole nitrate incorporated to thermosensitive hydrogels, on C. albicans biofilms. Phytomedicine 2020; 71: 153223.
[http://dx.doi.org/10.1016/j.phymed.2020.153223] [PMID: 32460204]
[52]
Ivanov M, Novović K, Malešević M, et al. Polyphenols as inhibitors of antibiotic resistant bacteria-mechanisms underlying rutin interference with bacterial virulence. Pharm 2022; 15(3): 385.
[http://dx.doi.org/10.3390/ph15030385]
[53]
Sathiya Deepika M, Thangam R, Sakthidhasan P, Arun S, Sivasubramanian S, Thirumurugan R. Combined effect of a natural flavonoid rutin from Citrus sinensis and conventional antibiotic gentamicin on Pseudomonas aeruginosa biofilm formation. Food Control 2018; 90: 282-94.
[http://dx.doi.org/10.1016/j.foodcont.2018.02.044]
[54]
Wang Z, Ding Z, Li Z, Ding Y, Jiang F, Liu J. Antioxidant and antibacterial study of 10 flavonoids revealed rutin as a potential antibiofilm agent in Klebsiella pneumoniae strains isolated from hospitalized patients. Microb Pathog 2021; 159: 105121.
[http://dx.doi.org/10.1016/j.micpath.2021.105121] [PMID: 34343655]
[55]
Qu Q, Cui W, Xing X, et al. Rutin, a natural inhibitor of IGPD protein, partially inhibits biofilm formation in Staphylococcus xylosus ATCC700404 in vitro and in vivo. Front Pharmacol 2021; 12: 728354.
[http://dx.doi.org/10.3389/fphar.2021.728354] [PMID: 34456739]
[56]
Wang L, Wang G, Qu H, et al. Taxifolin, an inhibitor of Sortase A, interferes with the adhesion of methicillin-resistant Staphylococcal aureus. Front Microbiol 2021; 12: 686864.
[http://dx.doi.org/10.3389/fmicb.2021.686864] [PMID: 34295320]
[57]
Wang S, Feng Y, Han X, et al. Inhibition of virulence factors and biofilm formation by wogonin attenuates pathogenicity of Pseudomonas aeruginosa PAO1 via targeting pqs quorum-sensing system. Int J Mol Sci 2021; 22(23): 12699.
[http://dx.doi.org/10.3390/ijms222312699] [PMID: 34884499]
[58]
Chemmugil P, Lakshmi PTV, Annamalai A. Exploring Morin as an anti-quorum sensing agent (anti-QSA) against resistant strains of Staphylococcus aureus. Microb Pathog 2019; 127: 304-15.
[http://dx.doi.org/10.1016/j.micpath.2018.12.007] [PMID: 30529513]
[59]
Abirami G, Alexpandi R, Durgadevi R, Kannappan A, Veera Ravi A. Inhibitory effect of morin against Candida albicans pathogenicity and virulence factor production: An in vitro and in vivo approaches. Front Microbiol 2020; 11: 561298.
[http://dx.doi.org/10.3389/fmicb.2020.561298] [PMID: 33193145]
[60]
Sivaranjani M, Gowrishankar S, Kamaladevi A, Pandian SK, Balamurugan K, Ravi AV. Morin inhibits biofilm production and reduces the virulence of Listeria monocytogenes-An in vitro and in vivo approach. Int J Food Microbiol 2016; 237: 73-82.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.08.021] [PMID: 27543817]
[61]
Qian W, Fu Y, Liu M, et al. Mechanisms of action of luteolin against single- and dual-species of Escherichia coli and enterobacter cloacae and its antibiofilm activities. Appl Biochem Biotechnol 2021; 193(5): 1397-414.
[http://dx.doi.org/10.1007/s12010-020-03330-w] [PMID: 33009585]
[62]
Fu Y, Wang W, Zeng Q, Wang T, Qian W. Antibiofilm efficacy of luteolin against single and dual species of Candida albicans and Enterococcus faecalis. Front Microbiol 2021; 12: 715156.
[http://dx.doi.org/10.3389/FMICB.2021.715156] [PMID: 34721318]
[63]
Geng YF, Yang C, Zhang Y, et al. An innovative role for luteolin as a natural quorum sensing inhibitor in Pseudomonas aeruginosa. Life Sci 2021; 274: 119325.
[http://dx.doi.org/10.1016/j.lfs.2021.119325] [PMID: 33713665]
[64]
Manner S, Fallarero A. Screening of natural product derivatives identifies two structurally related flavonoids as potent quorum sensing inhibitors against gram-negative bacteria. Int J Mol Sci 2018; 19(5): 1346.
[http://dx.doi.org/10.3390/ijms19051346] [PMID: 29751512]
[65]
Zhong L, Ravichandran V, Zhang N, et al. Attenuation of Pseudomonas aeruginosa quorum sensing by natural products: Virtual screening, evaluation and biomolecular interactions. Int J Mol Sci 2020; 21(6): 2190.
[http://dx.doi.org/10.3390/ijms21062190] [PMID: 32235775]
[66]
Wen QH, Wang R, Zhao SQ, Chen BR, Zeng XA. Inhibition of biofilm formation of foodborne Staphylococcus aureus by the citrus flavonoid naringenin. Foods 2021; 10(11): 2614.
[http://dx.doi.org/10.3390/foods10112614] [PMID: 34828898]
[67]
Dey P, Parai D, Banerjee M, Hossain ST, Mukherjee SK. Naringin sensitizes the antibiofilm effect of ciprofloxacin and tetracycline against Pseudomonas aeruginosa biofilm. Int J Med Microbiol 2020; 310(3): 151410.
[http://dx.doi.org/10.1016/j.ijmm.2020.151410] [PMID: 32057619]
[68]
Mu D, Xiang H, Dong H, Wang D, Wang T. Isovitexin, a potential candidate inhibitor of Sortase A of Staphylococcus aureus USA300. J Microbiol Biotechnol 2018; 28(9): 1426-32.
[http://dx.doi.org/10.4014/jmb.1802.02014] [PMID: 30369109]
[69]
Das MC, Sandhu P, Gupta P, Rudrapaul P, De UC, Tribedi P. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin. Sci Rep 2016; 6: 1-13.
[http://dx.doi.org/10.1038/srep23347]
[70]
Ivanov M, Kannan A, Stojković DS, et al. Flavones, flavonols, and glycosylated derivatives-impact on candida albicans growth and virulence, expression of cdr1 and erg11, cytotoxicity. Pharmaceuticals 2020; 14(1): 27.
[http://dx.doi.org/10.3390/ph14010027] [PMID: 33396973]
[71]
Abinaya M, Gayathri M. Inhibition of biofilm formation, quorum sensing activity and molecular docking study of isolated 3, 5, 7-Trihydroxyflavone from Alstonia scholaris leaf against P. aeruginosa. Bioorg Chem 2019; 87: 291-301.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.050] [PMID: 30913464]
[72]
Hnamte S, Parasuraman P, Ranganathan S, et al. Mosloflavone attenuates the quorum sensing controlled virulence phenotypes and biofilm formation in Pseudomonas aeruginosa PAO1: In vitro, in vivo and in silico approach. Microb Pathog 2019; 131: 128-34.
[http://dx.doi.org/10.1016/j.micpath.2019.04.005] [PMID: 30959097]
[73]
Hu P, Lv B, Yang K, Lu Z, Ma J. Discovery of myricetin as an inhibitor against Streptococcus mutans and an anti-adhesion approach to biofilm formation. Int J Med Microbiol 2021; 311(4): 151512.
[http://dx.doi.org/10.1016/j.ijmm.2021.151512] [PMID: 33971542]
[74]
Liu N, Zhang N, Zhang S, Zhang L, Liu Q. Phloretin inhibited the pathogenicity and virulence factors against Candida albicans. Bioengineered 2021; 12(1): 2420-31.
[http://dx.doi.org/10.1080/21655979.2021.1933824] [PMID: 34167447]
[75]
Pejin B, Ciric A, Markovic J, et al. Quercetin potently reduces biofilm formation of the strain Pseudomonas aeruginosa PAO1 in vitro. Curr Pharm Biotechnol 2015; 16(8): 733-7.
[http://dx.doi.org/10.2174/1389201016666150505121951] [PMID: 25941888]
[76]
Vipin C, Mujeeburahiman M, Ashwini P, Arun AB, Rekha PD. Anti‐biofilm and cytoprotective activities of quercetin against Pseudomonas aeruginosa isolates. Lett Appl Microbiol 2019; 68(5): 464-71.
[http://dx.doi.org/10.1111/lam.13129] [PMID: 30762887]
[77]
Liu GY, Nizet V. Color me bad: Microbial pigments as virulence factors. Trends Microbiol 2009; 17(9): 406-13.
[http://dx.doi.org/10.1016/j.tim.2009.06.006] [PMID: 19726196]
[78]
Castañeda-Tamez P, Ramírez-Peris J, Pérez-Velázquez J, et al. Pyocyanin restricts social cheating in Pseudomonas aeruginosa. Front Microbiol 2018; 9: 1348.
[http://dx.doi.org/10.3389/fmicb.2018.01348] [PMID: 29997585]
[79]
Rada B, Leto TL. Pyocyanin effects on respiratory epithelium: Relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol 2013; 21(2): 73-81.
[http://dx.doi.org/10.1016/j.tim.2012.10.004] [PMID: 23140890]
[80]
Kothari V, Sharma S, Padia D. Recent research advances on Chromobacterium violaceum. Asian Pac J Trop Med 2017; 10(8): 744-52.
[http://dx.doi.org/10.1016/j.apjtm.2017.07.022] [PMID: 28942822]
[81]
Xue L, Chen YY, Yan Z, Lu W, Wan D, Zhu H. Staphyloxanthin: A potential target for antivirulence therapy. Infect Drug Resist 2019; 12: 2151-60.
[http://dx.doi.org/10.2147/IDR.S193649] [PMID: 31410034]
[82]
Elmesseri RA, Saleh SE, Elsherif HM, Yahia IS, Aboshanab KM. Staphyloxanthin as a potential novel target for deciphering promising anti-Staphylococcus aureus agents. Antibiotics 2022; 11(3): 298.
[http://dx.doi.org/10.3390/antibiotics11030298] [PMID: 35326762]
[83]
Zhang J, Suo Y, Zhang D, Jin F, Zhao H, Shi C. Genetic and virulent difference between pigmented and non-pigmented Staphylococcus aureus. Front Microbiol 2018; 9: 598.
[http://dx.doi.org/10.3389/fmicb.2018.00598] [PMID: 29666612]
[84]
Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, et al. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 2011; 157(7): 2120-32.
[http://dx.doi.org/10.1099/mic.0.049338-0] [PMID: 21546585]
[85]
Chang A, He Q, Li L, Yu X, Sun S, Zhu H. Exploring the quorum sensing inhibition of isolated chrysin from Penicillium chrysogenum DXY-1. Bioorg Chem 2021; 111: 104894.
[http://dx.doi.org/10.1016/j.bioorg.2021.104894] [PMID: 33865054]
[86]
Luo J, Dong B, Wang K, et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One 2017; 12(4): e0176883.
[http://dx.doi.org/10.1371/journal.pone.0176883] [PMID: 28453568]
[87]
Froes TQ, Nicastro GG, de Oliveira Pereira T, et al. Calycopterin, a major flavonoid from Marcetia latifolia, modulates virulence-related traits in Pseudomonas aeruginosa. Microb Pathog 2020; 144: 104142.
[http://dx.doi.org/10.1016/j.micpath.2020.104142] [PMID: 32173496]
[88]
Gopu V, Meena CK, Shetty PH. Quercetin influences quorum sensing in food borne bacteria: In-vitro and in-silico evidence. PLoS One 2015; 10(8): e0134684.
[http://dx.doi.org/10.1371/journal.pone.0134684] [PMID: 26248208]
[89]
Bodede O, Shaik S, Chenia H, Singh P, Moodley R. Quorum sensing inhibitory potential and in silico molecular docking of flavonoids and novel terpenoids from Senegalia nigrescens. J Ethnopharmacol 2018; 216: 134-46.
[http://dx.doi.org/10.1016/j.jep.2018.01.031] [PMID: 29408657]
[90]
Skogman M, Kanerva S, Manner S, Vuorela P, Fallarero A. Flavones as quorum sensing inhibitors identified by a newly optimized screening platform using Chromobacterium violaceum as reporter bacteria. Molecules 2016; 21(9): 1211.
[http://dx.doi.org/10.3390/molecules21091211] [PMID: 27626397]
[91]
Vasavi HS, Arun AB, Rekha PD. Inhibition of quorum sensing in Chromobacterium violaceum by Syzygium cumini L. and Pimenta dioica L. Asian Pac J Trop Biomed 2013; 3(12): 954-9.
[http://dx.doi.org/10.1016/S2221-1691(13)60185-9] [PMID: 24093786]
[92]
Castellanos L, Naranjo-Gaybor SJ, Forero AM, et al. Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity. Phytochemistry 2020; 172: 112272.
[http://dx.doi.org/10.1016/j.phytochem.2020.112272] [PMID: 32032827]
[93]
Mu Y, Zeng H, Chen W. Okanin in Coreopsis tinctoria Nutt is a major quorum-sensing inhibitor against Chromobacterium violaceum. J Ethnopharmacol 2020; 260: 113017.
[http://dx.doi.org/10.1016/j.jep.2020.113017] [PMID: 32464313]
[94]
Bali EB, Erkan Türkmen K, Erdönmez D. Sağlam N. Comparative study of inhibitory potential of dietary phytochemicals against quorum sensing activity of and biofilm formation by Chromobacterium violaceum 12472, and swimming and swarming behaviour of Pseudomonas aeruginosa PAO1. Food Technol Biotechnol 2019; 57(2): 212-21.
[http://dx.doi.org/10.17113/ftb.57.02.19.5823] [PMID: 31537970]
[95]
Vijayakumar K, Muhilvannan S. Hesperidin inhibits biofilm formation, virulence and staphyloxanthin synthesis in methicillin resistant Staphylococcus aureus by targeting SarA and CrtM: An in vitro and in silico approach. World J Microbiol Biotechnol 2022; 38(3): 44.
[http://dx.doi.org/10.1007/s11274-022-03232-5]
[96]
Lei S, Hu Y, Yuan C, et al. Discovery of Sortase A covalent inhibitors with benzofuranene cyanide structures as potential antibacterial agents against Staphylococcus aureus. Eur J Med Chem 2022; 229: 114032.
[http://dx.doi.org/10.1016/j.ejmech.2021.114032] [PMID: 34954590]
[97]
Galdino ACM, Viganor L, de Castro AA, et al. Disarming Pseudomonas aeruginosa Virulence by the inhibitory action of 1,10-Phenanthroline-5,6-Dione-based compounds: Elastase B (LasB) as a chemotherapeutic target. Front Microbiol 2019; 10: 1701.
[http://dx.doi.org/10.3389/fmicb.2019.01701] [PMID: 31428062]
[98]
Han M, Wang X, Ding H, et al. The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris. Enzyme Microb Technol 2014; 54: 32-7.
[http://dx.doi.org/10.1016/j.enzmictec.2013.09.014] [PMID: 24267565]
[99]
Yang J, Zhao HL, Ran LY, Li CY, Zhang XY, Su HN. Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. Sci Rep 2015; 5: 1-7.
[http://dx.doi.org/10.1038/srep09936]
[100]
Suarez-Cuartin G, Smith A, Abo-Leyah H, et al. Anti-pseudomonas aeruginosa IgG antibodies and chronic airway infection in bronchiectasis. Respir Med 2017; 128: 1-6.
[http://dx.doi.org/10.1016/j.rmed.2017.05.001] [PMID: 28610665]
[101]
Park W, Ahn CH, Cho H, Kim CK, Shin J, Oh KB. Inhibitory effects of flavonoids from Spatholobus suberectus on Sortase A and Sortase A-Mediated aggregation of Streptococcus mutans. J Microbiol Biotechnol 2017; 27(8): 1457-60.
[http://dx.doi.org/10.4014/jmb.1704.04001] [PMID: 28621108]
[102]
Bi C, Dong X, Zhong X, Cai H, Wang D, Wang L. Acacetin protects mice from Staphylococcus aureus bloodstream infection by inhibiting the activity of Sortase A. Molecules 2016; 21(10): 1285.
[http://dx.doi.org/10.3390/molecules21101285] [PMID: 27681715]
[103]
Yang WY, Kim CK, Ahn CH, Kim H, Shin J, Oh KB. Flavonoid glycosides inhibit Sortase A and Sortase A-Mediated aggregation of Streptococcus mutans, an oral bacterium responsible for human dental caries. J Microbiol Biotechnol 2016; 26(9): 1566-9.
[http://dx.doi.org/10.4014/jmb.1605.05005] [PMID: 27291675]
[104]
Zhang B, Wang X, Wang L, Chen S, Shi D, Wang H. Molecular mechanism of the flavonoid natural product dryocrassin ABBA against Staphylococcus aureus Sortase A. Molecules 2016; 21(11): 1428.
[http://dx.doi.org/10.3390/molecules21111428] [PMID: 27792196]
[105]
Wang L, Li Q, Li J, et al. Eriodictyol as a potential candidate inhibitor of sortase a protects mice from methicillin-resistant Staphylococcus aureus-induced pneumonia. Front Microbiol 2021; 12: 635710.
[http://dx.doi.org/10.3389/fmicb.2021.635710] [PMID: 33679670]
[106]
Zhang P, Guo Q, Wei Z, et al. Baicalin represses type three secretion system of Pseudomonas aeruginosa through PQS system. Molecules 2021; 26(6): 1497.
[http://dx.doi.org/10.3390/molecules26061497] [PMID: 33801847]
[107]
Ramos LS, Barbedo LS, Braga-Silva LA, Santos ALS, Pinto MR, Sgarbi DBG. Protease and phospholipase activities of Candida spp. isolated from cutaneous candidiasis. Rev Iberoam Micol 2015; 32(2): 122-5.
[http://dx.doi.org/10.1016/j.riam.2014.01.003] [PMID: 24853474]
[108]
Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 2005; 48(6): 365-77.
[http://dx.doi.org/10.1111/j.1439-0507.2005.01165.x] [PMID: 16262871]
[109]
Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 2000; 13(1): 122-43.
[http://dx.doi.org/10.1128/CMR.13.1.122] [PMID: 10627494]
[110]
Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003; 67(3): 400-28.
[http://dx.doi.org/10.1128/MMBR.67.3.400-428.2003] [PMID: 12966142]
[111]
Djordjevic JT. Role of phospholipases in fungal fitness, pathogenicity, and drug development-lessons from Cryptococcus neoformans. Front Microbiol 2010; 1: 125.
[http://dx.doi.org/10.3389/fmicb.2010.00125] [PMID: 21687772]
[112]
Monika S. Małgorzata B, Zbigniew O. Contribution of aspartic proteases in candida virulence. Protease inhibitors against candida infections. Curr Protein Pept Sci 2017; 18(10): 1050-62.
[http://dx.doi.org/10.2174/1389203717666160809155749] [PMID: 27514853]
[113]
Singh BN, Upreti DK, Singh BR, et al. Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob Agents Chemother 2015; 59(4): 2153-68.
[http://dx.doi.org/10.1128/AAC.03599-14] [PMID: 25645848]
[114]
Yordanov M, Dimitrova P, Patkar S, Saso L, Ivanovska N. Inhibition of Candida albicans extracellular enzyme activity by selected natural substances and their application in Candida infection. Can J Microbiol 2008; 54(6): 435-40.
[http://dx.doi.org/10.1139/W08-029] [PMID: 18535628]
[115]
Oh I, Yang WY, Chung SC, Kim TY, Oh KB, Shin J. In vitro sortase a inhibitory and antimicrobial activity of flavonoids isolated from the roots of Sophora flavescens. Arch Pharm Res 2011; 34: 217-22.
[http://dx.doi.org/10.1007/s12272-011-0206-0]
[116]
Li Z, Nielsen K. Morphology changes in human fungal pathogens upon interaction with the host. J Fungi 2017; 3(4): 66.
[http://dx.doi.org/10.3390/jof3040066] [PMID: 29333431]
[117]
Thomas G, Bain JM, Budge S, Brown AJP, Ames RM. Identifying Candida albicans gene networks involved in pathogenicity. Front Genet 2020; 11: 375.
[http://dx.doi.org/10.3389/fgene.2020.00375] [PMID: 32391057]
[118]
Ivanov M, Kannan A, Stojković D, et al. Revealing the astragalin mode of anticandidal action. EXCLI J 2020; 19: 1436-45.
[http://dx.doi.org/10.17179/excli2020-2987] [PMID: 33312106]
[119]
Zolfaghar I, Evans DJ, Fleiszig SMJ. Twitching motility contributes to the role of pili in corneal infection caused by Pseudomonas aeruginosa. Infect Immun 2003; 71(9): 5389-93.
[http://dx.doi.org/10.1128/IAI.71.9.5389-5393.2003] [PMID: 12933890]
[120]
Di Lodovico S, Bacchetti T, D’Ercole S, et al. Complex chronic wound biofilms are inhibited in vitro by the natural extract of Capparis spinose. Front Microbiol 2022; 13: 832919.
[http://dx.doi.org/10.3389/fmicb.2022.832919] [PMID: 35479636]
[121]
O’Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol Microbiol 1998; 28(3): 449-61.
[http://dx.doi.org/10.1046/j.1365-2958.1998.00797.x] [PMID: 9632250]
[122]
Köhler T, Curty LK, Barja F, van Delden C, Pechère JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 2000; 182(21): 5990-6.
[http://dx.doi.org/10.1128/JB.182.21.5990-5996.2000] [PMID: 11029417]
[123]
Yeung ATY, Torfs ECW, Jamshidi F, et al. Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J Bacteriol 2009; 191(18): 5592-602.
[http://dx.doi.org/10.1128/JB.00157-09] [PMID: 19592586]
[124]
Hernando-Amado S, Alcalde-Rico M, Gil-Gil T, Valverde JR, Martínez JL. Naringenin inhibition of the Pseudomonas aeruginosa quorum sensing response is based on its time-dependent competition with N-(3-Oxo-dodecanoyl)-L-homoserine lactone for LasR binding. Front Mol Biosci 2020; 7: 25.
[http://dx.doi.org/10.3389/fmolb.2020.00025] [PMID: 32181260]
[125]
Wu SC, Chu XL, Su JQ, et al. Baicalin protects mice against Salmonella typhimurium infection via the modulation of both bacterial virulence and host response. Phytomedicine 2018; 48: 21-31.
[http://dx.doi.org/10.1016/j.phymed.2018.04.063] [PMID: 30195877]
[126]
Song M, Li L, Li M, Cha Y, Deng X, Wang J. Apigenin protects mice from pneumococcal pneumonia by inhibiting the cytolytic activity of pneumolysin. Fitoterapia 2016; 115: 31-6.
[http://dx.doi.org/10.1016/j.fitote.2016.09.017] [PMID: 27693741]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy