Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Drug-gut Microbiome Interaction in Atherosclerosis Therapeutics

Author(s): Hao-Jian Zhang, Yan Wang* and Jian-Dong Jiang*

Volume 24, Issue 7, 2023

Published on: 03 May, 2023

Page: [482 - 492] Pages: 11

DOI: 10.2174/1389200224666230410094806

Price: $65

conference banner
Abstract

Atherosclerosis (AS) is one of the major risk factors for cardiovascular disease pathogenesis, and current studies have found that the development of atherosclerosis is closely related to the intestinal microbiome. This review describes the relationship between the development of atherosclerosis and the gut microbiome with its metabolites and reviews the interactions between atherosclerosis-related drugs and the intestinal microbiome, especially the in vivo metabolic effects of the intestinal microbiome on drugs related to the treatment of atherosclerosis, to provide further understanding for the development of drugs based on the intestinal microbiome to treat atherosclerosis.

Keywords: Atherosclerosis, gut microbiome, metabolites, cardiovascular disease, intestinal microbiome, drug interaction.

Graphical Abstract
[1]
Maguire, E.M.; Pearce, S.W.A.; Xiao, Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul. Pharmacol., 2019, 112, 54-71.
[http://dx.doi.org/10.1016/j.vph.2018.08.002] [PMID: 30115528]
[2]
Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; Michos, E.D.; Miedema, M.D.; Muñoz, D.; Smith, S.C., Jr; Virani, S.S.; Williams, K.A., Sr; Yeboah, J.; Ziaeian, B. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation, 2019, 140(11), e596-e646.
[http://dx.doi.org/10.1161/CIR.0000000000000678] [PMID: 30879355]
[3]
Sittipo, P.; Shim, J.; Lee, Y. Microbial metabolites determine host health and the status of some diseases. Int. J. Mol. Sci., 2019, 20(21), 5296.
[http://dx.doi.org/10.3390/ijms20215296] [PMID: 31653062]
[4]
Alam, A.; Neish, A. Role of gut microbiota in intestinal wound healing and barrier function. Tissue Barriers, 2018, 6(3), 1539595.
[http://dx.doi.org/10.1080/21688370.2018.1539595] [PMID: 30404570]
[5]
Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and human health: Prevention of dis-ease and mechanisms of action. Nutrients, 2010, 2(11), 1106-1131.
[http://dx.doi.org/10.3390/nu2111106] [PMID: 22254000]
[6]
Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr., 2018, 57(1), 1-24.
[http://dx.doi.org/10.1007/s00394-017-1445-8] [PMID: 28393285]
[7]
Jie, Z.; Xia, H.; Zhong, S.L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H.; Zhang, D.; Su, Z.; Fang, Z.; Lan, Z.; Li, J.; Xiao, L.; Li, J.; Li, R.; Li, X.; Li, F.; Ren, H.; Huang, Y.; Peng, Y.; Li, G.; Wen, B.; Dong, B.; Chen, J.Y.; Geng, Q.S.; Zhang, Z.W.; Yang, H.; Wang, J.; Wang, J.; Zhang, X.; Madsen, L.; Brix, S.; Ning, G.; Xu, X.; Liu, X.; Hou, Y.; Jia, H.; He, K.; Kristiansen, K. The gut micro-biome in atherosclerotic cardiovascular disease. Nat. Commun., 2017, 8(1), 845.
[http://dx.doi.org/10.1038/s41467-017-00900-1] [PMID: 29018189]
[8]
Pernigoni, N.; Zagato, E.; Calcinotto, A.; Troiani, M.; Mestre, R.P.; Calì, B.; Attanasio, G.; Troisi, J.; Minini, M.; Mosole, S.; Revandkar, A.; Pasquini, E.; Elia, A.R.; Bossi, D.; Rinaldi, A.; Rescigno, P.; Flohr, P.; Hunt, J.; Neeb, A.; Buroni, L.; Guo, C.; Welti, J.; Ferrari, M.; Grioni, M.; Gauthier, J.; Gharaibeh, R.Z.; Palmisano, A.; Lucchini, G.M.; D’Antonio, E.; Merler, S.; Bolis, M.; Grassi, F.; Esposito, A.; Bellone, M.; Briganti, A.; Rescigno, M.; Theurillat, J.P.; Jobin, C.; Gillessen, S.; de Bono, J.; Alimonti, A. Commensal bacteria promote en-docrine resistance in prostate cancer through androgen biosynthesis. Science, 2021, 374(6564), 216-224.
[http://dx.doi.org/10.1126/science.abf8403] [PMID: 34618582]
[9]
Liang, W.; Yang, Y.; Wang, H.; Wang, H.; Yu, X.; Lu, Y.; Shen, S.; Teng, L. Gut microbiota shifts in patients with gastric cancer in perioperative period. Medicine, 2019, 98(35), e16626.
[http://dx.doi.org/10.1097/MD.0000000000016626] [PMID: 31464899]
[10]
Zhang, X.; Coker, O.O.; Chu, E.S.H.; Fu, K.; Lau, H.C.H.; Wang, Y.X.; Chan, A.W.H.; Wei, H.; Yang, X.; Sung, J.J.Y.; Yu, J. Dietary cho-lesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut, 2021, 70(4), 761-774.
[http://dx.doi.org/10.1136/gutjnl-2019-319664] [PMID: 32694178]
[11]
Halfvarson, J.; Brislawn, C.J.; Lamendella, R.; Vázquez-Baeza, Y.; Walters, W.A.; Bramer, L.M.; D’Amato, M.; Bonfiglio, F.; McDonald, D.; Gonzalez, A.; McClure, E.E.; Dunklebarger, M.F.; Knight, R.; Jansson, J.K. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol., 2017, 2(5), 17004.
[http://dx.doi.org/10.1038/nmicrobiol.2017.4] [PMID: 28191884]
[12]
Imhann, F.; Vich Vila, A.; Bonder, M.J.; Fu, J.; Gevers, D.; Visschedijk, M.C.; Spekhorst, L.M.; Alberts, R.; Franke, L.; van Dullemen, H.M.; Ter Steege, R.W.F.; Huttenhower, C.; Dijkstra, G.; Xavier, R.J.; Festen, E.A.M.; Wijmenga, C.; Zhernakova, A.; Weersma, R.K. In-terplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut, 2018, 67(1), 108-119.
[http://dx.doi.org/10.1136/gutjnl-2016-312135] [PMID: 27802154]
[13]
Franzosa, E.A.; Sirota-Madi, A.; Avila-Pacheco, J.; Fornelos, N.; Haiser, H.J.; Reinker, S.; Vatanen, T.; Hall, A.B.; Mallick, H.; McIver, L.J.; Sauk, J.S.; Wilson, R.G.; Stevens, B.W.; Scott, J.M.; Pierce, K.; Deik, A.A.; Bullock, K.; Imhann, F.; Porter, J.A.; Zhernakova, A.; Fu, J.; Weersma, R.K.; Wijmenga, C.; Clish, C.B.; Vlamakis, H.; Huttenhower, C.; Xavier, R.J. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol., 2018, 4(2), 293-305.
[http://dx.doi.org/10.1038/s41564-018-0306-4] [PMID: 30531976]
[14]
Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; Chesselet, M.F.; Keshavarzian, A.; Shannon, K.M.; Krajmalnik-Brown, R.; Wittung-Stafshede, P.; Knight, R.; Mazmanian, S.K. Gut micro-biota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell, 2016, 167(6), 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[15]
Kim, M.S.; Kim, Y.; Choi, H.; Kim, W.; Park, S.; Lee, D.; Kim, D.K.; Kim, H.J.; Choi, H.; Hyun, D.W.; Lee, J.Y.; Choi, E.Y.; Lee, D.S.; Bae, J.W.; Mook-Jung, I. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut, 2020, 69(2), 283-294.
[http://dx.doi.org/10.1136/gutjnl-2018-317431] [PMID: 31471351]
[16]
Chen, C.; Liao, J.; Xia, Y.; Liu, X.; Jones, R.; Haran, J.; McCormick, B.; Sampson, T.R.; Alam, A.; Ye, K. Gut microbiota regulate Alz-heimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut, 2022, 71(11), 2233-2252.
[http://dx.doi.org/10.1136/gutjnl-2021-326269] [PMID: 35017199]
[17]
Brandsma, E.; Kloosterhuis, N.J.; Koster, M.; Dekker, D.C.; Gijbels, M.J.J.; van der Velden, S.; Ríos-Morales, M.; van Faassen, M.J.R.; Loreti, M.G.; de Bruin, A.; Fu, J.; Kuipers, F.; Bakker, B.M.; Westerterp, M.; de Winther, M.P.J.; Hofker, M.H.; van de Sluis, B.; Koonen, D.P.Y. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ. Res., 2019, 124(1), 94-100.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313234] [PMID: 30582442]
[18]
Jiang, S.; Shui, Y.; Cui, Y.; Tang, C.; Wang, X.; Qiu, X.; Hu, W.; Fei, L.; Li, Y.; Zhang, S.; Zhao, L.; Xu, N.; Dong, F.; Ren, X.; Liu, R.; Persson, P.B.; Patzak, A.; Lai, E.Y.; Wei, Q.; Zheng, Z. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II–induced hypertension. Redox Biol., 2021, 46, 102115.
[http://dx.doi.org/10.1016/j.redox.2021.102115] [PMID: 34474396]
[19]
Liu, H.; Chen, X.; Hu, X.; Niu, H.; Tian, R.; Wang, H.; Pang, H.; Jiang, L.; Qiu, B.; Chen, X.; Zhang, Y.; Ma, Y.; Tang, S.; Li, H.; Feng, S.; Zhang, S.; Zhang, C. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome, 2019, 7(1), 68.
[http://dx.doi.org/10.1186/s40168-019-0683-9] [PMID: 31027508]
[20]
Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; Sahay, B.; Pep-ine, C.J.; Raizada, M.K.; Mohamadzadeh, M. Gut dysbiosis is linked to hypertension. Hypertension, 2015, 65(6), 1331-1340.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05315] [PMID: 25870193]
[21]
Adnan, S.; Nelson, J.W.; Ajami, N.J.; Venna, V.R.; Petrosino, J.F.; Bryan, R.M., Jr; Durgan, D.J. Alterations in the gut microbiota can elicit hypertension in rats. Physiol. Genomics, 2017, 49(2), 96-104.
[http://dx.doi.org/10.1152/physiolgenomics.00081.2016] [PMID: 28011881]
[22]
Kasahara, K.; Tanoue, T.; Yamashita, T.; Yodoi, K.; Matsumoto, T.; Emoto, T.; Mizoguchi, T.; Hayashi, T.; Kitano, N.; Sasaki, N.; Ata-rashi, K.; Honda, K.; Hirata, K. Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in ather-osclerosis. J. Lipid Res., 2017, 58(3), 519-528.
[http://dx.doi.org/10.1194/jlr.M072165] [PMID: 28130274]
[23]
Stepankova, R.; Tonar, Z.; Bartova, J.; Nedorost, L.; Rossman, P.; Poledne, R.; Schwarzer, M.; Tlaskalova-Hogenova, H. Absence of mi-crobiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J. Atheroscler. Thromb., 2010, 17(8), 796-804.
[http://dx.doi.org/10.5551/jat.3285] [PMID: 20379054]
[24]
Lindskog Jonsson, A.; Caesar, R.; Akrami, R.; Reinhardt, C.; Fåk Hållenius, F.; Borén, J.; Bäckhed, F. Impact of gut microbiota and diet on the development of atherosclerosis in Apoe−/− Mice. Arterioscler. Thromb. Vasc. Biol., 2018, 38(10), 2318-2326.
[http://dx.doi.org/10.1161/ATVBAHA.118.311233] [PMID: 29903735]
[25]
Guzmán-Castañeda, S.J.; Ortega-Vega, E.L.; de la Cuesta-Zuluaga, J.; Velásquez-Mejía, E.P.; Rojas, W.; Bedoya, G.; Escobar, J.S. Gut microbiota composition explains more variance in the host cardiometabolic risk than genetic ancestry. Gut Microbes, 2020, 11(2), 191-204.
[http://dx.doi.org/10.1080/19490976.2019.1634416] [PMID: 31311405]
[26]
Kelly, T.N.; Bazzano, L.A.; Ajami, N.J.; He, H.; Zhao, J.; Petrosino, J.F.; Correa, A.; He, J. Gut microbiome associates with lifetime cardi-ovascular disease risk profile among bogalusa heart study participants. Circ. Res., 2016, 119(8), 956-964.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309219] [PMID: 27507222]
[27]
Pasini, E.; Aquilani, R.; Testa, C.; Baiardi, P.; Angioletti, S.; Boschi, F.; Verri, M.; Dioguardi, F. Pathogenic gut flora in patients with chron-ic heart failure. JACC Heart Fail., 2016, 4(3), 220-227.
[http://dx.doi.org/10.1016/j.jchf.2015.10.009] [PMID: 26682791]
[28]
Zhao, H.; Chen, L.; He, C.; Li, S.; Yang, H.; Xu, X.; Hu, F.; Cui, Z.; Liu, Q. Chronic Staphylococcus aureus superantigen toxic shock syn-drome toxin-1 exposure accelerates the progression of atherosclerosis in rabbits. Zhonghua Minguo Xinzangxue Hui Zazhi, 2020, 36(1), 24-32.
[PMID: 31903005]
[29]
Kiouptsi, K.; Jäckel, S.; Pontarollo, G.; Grill, A.; Kuijpers, M.J.E.; Wilms, E.; Weber, C.; Sommer, F.; Nagy, M.; Neideck, C.; Jansen, Y.; Ascher, S.; Formes, H.; Karwot, C.; Bayer, F.; Kollar, B.; Subramaniam, S.; Molitor, M.; Wenzel, P.; Rosenstiel, P.; Todorov, H.; Gerber, S.; Walter, U.; Jurk, K.; Heemskerk, J.W.M.; van der Vorst, E.P.C.; Döring, Y.; Reinhardt, C. The microbiota promotes arterial thrombosis in low-density lipoprotein receptor-deficient mice. MBio, 2019, 10(5), e02298-e19.
[http://dx.doi.org/10.1128/mBio.02298-19] [PMID: 31641089]
[30]
Zhang, X.; Zhu, X.; Wang, C.; Zhang, H.; Cai, Z. Non-targeted and targeted metabolomics approaches to diagnosing lung cancer and pre-dicting patient prognosis. Oncotarget, 2016, 7(39), 63437-63448.
[http://dx.doi.org/10.18632/oncotarget.11521] [PMID: 27566571]
[31]
Wang, Z.; Tang, W.H.W.; Buffa, J.A.; Fu, X.; Britt, E.B.; Koeth, R.A.; Levison, B.S.; Fan, Y.; Wu, Y.; Hazen, S.L. Prognostic value of cho-line and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J., 2014, 35(14), 904-910.
[http://dx.doi.org/10.1093/eurheartj/ehu002] [PMID: 24497336]
[32]
Wang, Z.; Roberts, A.B.; Buffa, J.A.; Levison, B.S.; Zhu, W.; Org, E.; Gu, X.; Huang, Y.; Zamanian-Daryoush, M.; Culley, M.K.; DiDona-to, A.J.; Fu, X.; Hazen, J.E.; Krajcik, D.; DiDonato, J.A.; Lusis, A.J.; Hazen, S.L. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell, 2015, 163(7), 1585-1595.
[http://dx.doi.org/10.1016/j.cell.2015.11.055] [PMID: 26687352]
[33]
Craciun, S.; Marks, J.A.; Balskus, E.P. Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes. ACS Chem. Biol., 2014, 9(7), 1408-1413.
[http://dx.doi.org/10.1021/cb500113p] [PMID: 24854437]
[34]
Zhu, Y.; Jameson, E.; Crosatti, M.; Schäfer, H.; Rajakumar, K.; Bugg, T.D.H.; Chen, Y. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc. Natl. Acad. Sci., 2014, 111(11), 4268-4273.
[http://dx.doi.org/10.1073/pnas.1316569111] [PMID: 24591617]
[35]
Andreesen, J.R. Glycine metabolism in anaerobes. Antonie van Leeuwenhoek, 1994, 66(1-3), 223-237.
[http://dx.doi.org/10.1007/BF00871641] [PMID: 7747933]
[36]
Pascal, M.C.; Burini, J.F.; Chippaux, M. Regulation of the trimethylamine N-oxide (TMAO) reductase in Escherichia coli: Analysis of tor:Mud1 operon fusion. Mol. Gen. Genet., 1984, 195(1-2), 351-355.
[http://dx.doi.org/10.1007/BF00332770] [PMID: 6387391]
[37]
Koeth, R.A.; Levison, B.S.; Culley, M.K.; Buffa, J.A.; Wang, Z.; Gregory, J.C.; Org, E.; Wu, Y.; Li, L.; Smith, J.D.; Tang, W.H.W.; DiDona-to, J.A.; Lusis, A.J.; Hazen, S.L. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab., 2014, 20(5), 799-812.
[http://dx.doi.org/10.1016/j.cmet.2014.10.006] [PMID: 25440057]
[38]
Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; Smith, J.D.; DiDonato, J.A.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Warrier, M.; Brown, J.M.; Krauss, R.M.; Tang, W.H.W.; Bushman, F.D.; Lusis, A.J.; Hazen, S.L. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med., 2013, 19(5), 576-585.
[http://dx.doi.org/10.1038/nm.3145] [PMID: 23563705]
[39]
Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; Wu, Y.; Schau-er, P.; Smith, J.D.; Allayee, H.; Tang, W.H.W.; DiDonato, J.A.; Lusis, A.J.; Hazen, S.L. Gut flora metabolism of phosphatidylcholine pro-motes cardiovascular disease. Nature, 2011, 472(7341), 57-63.
[http://dx.doi.org/10.1038/nature09922] [PMID: 21475195]
[40]
Romano, K.A.; Vivas, E.I.; Amador-Noguez, D.; Rey, F.E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio, 2015, 6(2), e02481-e14.
[http://dx.doi.org/10.1128/mBio.02481-14] [PMID: 25784704]
[41]
Oellgaard, J.; Winther, S.A.; Hansen, T.S.; Rossing, P.; von Scholten, B.J. Trimethylamine N-oxide (TMAO) as a new potential therapeutic target for insulin resistance and cancer. Curr. Pharm. Des., 2017, 23(25), 3699-3712.
[PMID: 28641532]
[42]
Trøseid, M.; Ueland, T.; Hov, J.R.; Svardal, A.; Gregersen, I.; Dahl, C.P.; Aakhus, S.; Gude, E.; Bjørndal, B.; Halvorsen, B.; Karlsen, T.H.; Aukrust, P.; Gullestad, L.; Berge, R.K.; Yndestad, A. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J. Intern. Med., 2015, 277(6), 717-726.
[http://dx.doi.org/10.1111/joim.12328] [PMID: 25382824]
[43]
Mohammadi, A.; Najar, A.G.; Yaghoobi, M.M.; Jahani, Y.; Vahabzadeh, Z. Trimethylamine-N-oxide treatment induces changes in the ATP-binding cassette transporter A1 and scavenger receptor A1 in murine macrophage J774A.1 cells. Inflammation, 2016, 39(1), 393-404.
[http://dx.doi.org/10.1007/s10753-015-0261-7] [PMID: 26412259]
[44]
Warrier, M.; Shih, D.M.; Burrows, A.C.; Ferguson, D.; Gromovsky, A.D.; Brown, A.L.; Marshall, S.; McDaniel, A.; Schugar, R.C.; Wang, Z.; Sacks, J.; Rong, X.; Vallim, T.A.; Chou, J.; Ivanova, P.T.; Myers, D.S.; Brown, H.A.; Lee, R.G.; Crooke, R.M.; Graham, M.J.; Liu, X.; Parini, P.; Tontonoz, P.; Lusis, A.J.; Hazen, S.L.; Temel, R.E.; Brown, J.M. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep., 2015, 10(3), 326-338.
[http://dx.doi.org/10.1016/j.celrep.2014.12.036] [PMID: 25600868]
[45]
Brunt, V.E.; Gioscia-Ryan, R.A.; Casso, A.G.; VanDongen, N.S.; Ziemba, B.P.; Sapinsley, Z.J.; Richey, J.J.; Zigler, M.C.; Neilson, A.P.; Davy, K.P.; Seals, D.R. Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension, 2020, 76(1), 101-112.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.14759] [PMID: 32520619]
[46]
Chen, M.; Zhu, X.; Ran, L.; Lang, H.; Yi, L.; Mi, M. Trimethylamine‐N‐oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3‐SOD2‐mtROS signaling pathway. J. Am. Heart Assoc., 2017, 6(9), e006347.
[http://dx.doi.org/10.1161/JAHA.117.006347] [PMID: 28871042]
[47]
Seldin, M.M.; Meng, Y.; Qi, H.; Zhu, W.; Wang, Z.; Hazen, S.L.; Lusis, A.J.; Shih, D.M. Trimethylamine N‐Oxide promotes vascular in-flammation through signaling of mitogen‐activated protein kinase and nuclear factor‐κB. J. Am. Heart Assoc., 2016, 5(2), e002767.
[http://dx.doi.org/10.1161/JAHA.115.002767] [PMID: 26903003]
[48]
Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol., 2016, 16(6), 341-352.
[http://dx.doi.org/10.1038/nri.2016.42] [PMID: 27231050]
[49]
Hu, Z.B.; Lu, J.; Chen, P.P.; Lu, C.C.; Zhang, J.X.; Li, X.Q.; Yuan, B.Y.; Huang, S.J.; Ruan, X.Z.; Liu, B.C.; Ma, K.L. Dysbiosis of intesti-nal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis. Theranostics, 2020, 10(6), 2803-2816.
[http://dx.doi.org/10.7150/thno.40571] [PMID: 32194836]
[50]
Haghikia, A.; Zimmermann, F.; Schumann, P.; Jasina, A.; Roessler, J.; Schmidt, D.; Heinze, P.; Kaisler, J.; Nageswaran, V.; Aigner, A.; Ceglarek, U.; Cineus, R.; Hegazy, A.N.; van der Vorst, E.P.C.; Döring, Y.; Strauch, C.M.; Nemet, I.; Tremaroli, V.; Dwibedi, C.; Kränkel, N.; Leistner, D.M.; Heimesaat, M.M.; Bereswill, S.; Rauch, G.; Seeland, U.; Soehnlein, O.; Müller, D.N.; Gold, R.; Bäckhed, F.; Hazen, S.L.; Haghikia, A.; Landmesser, U. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metab-olism. Eur. Heart J., 2022, 43(6), 518-533.
[http://dx.doi.org/10.1093/eurheartj/ehab644] [PMID: 34597388]
[51]
Aguilar, E.C.; Leonel, A.J.; Teixeira, L.G.; Silva, A.R.; Silva, J.F.; Pelaez, J.M.N.; Capettini, L.S.A.; Lemos, V.S.; Santos, R.A.S.; Alvarez-Leite, J.I. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr. Metab. Cardiovasc. Dis., 2014, 24(6), 606-613.
[http://dx.doi.org/10.1016/j.numecd.2014.01.002] [PMID: 24602606]
[52]
Aguilar, E.C.; Santos, L.C.; Leonel, A.J.; de Oliveira, J.S.; Santos, E.A.; Navia-Pelaez, J.M.; da Silva, J.F.; Mendes, B.P.; Capettini, L.S.A.; Teixeira, L.G.; Lemos, V.S.; Alvarez-Leite, J.I. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism in-volving NADPH oxidase down-regulation in endothelial cells. J. Nutr. Biochem., 2016, 34, 99-105.
[http://dx.doi.org/10.1016/j.jnutbio.2016.05.002] [PMID: 27261536]
[53]
Tang, T.W.H.; Chen, H.C.; Chen, C.Y.; Yen, C.Y.T.; Lin, C.J.; Prajnamitra, R.P.; Chen, L.L.; Ruan, S.C.; Lin, J.H.; Lin, P.J.; Lu, H.H.; Kuo, C.W.; Chang, C.M.; Hall, A.D.; Vivas, E.I.; Shui, J.W.; Chen, P.; Hacker, T.A.; Rey, F.E.; Kamp, T.J.; Hsieh, P.C.H. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation, 2019, 139(5), 647-659.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035235] [PMID: 30586712]
[54]
Neijat, M.; Habtewold, J.; Shirley, R.B.; Welsher, A.; Barton, J.; Thiery, P.; Kiarie, E. Bacillus subtilis strain DSM 29784 modulates the cecal microbiome, concentration of short-chain fatty acids, and apparent retention of dietary components in shaver white chickens during grower, developer, and laying phases. Appl. Environ. Microbiol., 2019, 85(14), e00402-e00419.
[http://dx.doi.org/10.1128/AEM.00402-19] [PMID: 31076425]
[55]
Chen, R.; Xu, Y.; Wu, P.; Zhou, H.; Lasanajak, Y.; Fang, Y.; Tang, L.; Ye, L.; Li, X.; Cai, Z.; Zhao, J. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol. Res., 2019, 148, 104403.
[http://dx.doi.org/10.1016/j.phrs.2019.104403] [PMID: 31425750]
[56]
Chiang, J.Y.L. Bile acids: Regulation of synthesis. J. Lipid Res., 2009, 50(10), 1955-1966.
[http://dx.doi.org/10.1194/jlr.R900010-JLR200] [PMID: 19346330]
[57]
Li, T.; Chiang, J.Y.L. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev., 2014, 66(4), 948-983.
[http://dx.doi.org/10.1124/pr.113.008201] [PMID: 25073467]
[58]
Ridlon, J.M.; Kang, D.J.; Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res., 2006, 47(2), 241-259.
[http://dx.doi.org/10.1194/jlr.R500013-JLR200] [PMID: 16299351]
[59]
Patel, A.K.; Singhania, R.R.; Pandey, A.; Chincholkar, S.B. Probiotic bile salt hydrolase: Current developments and perspectives. Appl. Biochem. Biotechnol., 2010, 162(1), 166-180.
[http://dx.doi.org/10.1007/s12010-009-8738-1] [PMID: 19669939]
[60]
Yao, L.; Seaton, S.C.; Ndousse-Fetter, S.; Adhikari, A.A.; DiBenedetto, N.; Mina, A.I.; Banks, A.S.; Bry, L.; Devlin, A.S. A selective gut bacterial bile salt hydrolase alters host metabolism. eLife, 2018, 7, e37182.
[http://dx.doi.org/10.7554/eLife.37182] [PMID: 30014852]
[61]
Kim, K.H.; Choi, S.; Zhou, Y.; Kim, E.Y.; Lee, J.M.; Saha, P.K.; Anakk, S.; Moore, D.D. Hepatic FXR/SHP axis modulates systemic glu-cose and fatty acid homeostasis in aged mice. Hepatology, 2017, 66(2), 498-509.
[http://dx.doi.org/10.1002/hep.29199] [PMID: 28378930]
[62]
Guan, B.; Tong, J.; Hao, H.; Yang, Z.; Chen, K.; Xu, H.; Wang, A. Bile acid coordinates microbiota homeostasis and systemic immunome-tabolism in cardiometabolic diseases. Acta Pharm. Sin. B, 2022, 12(5), 2129-2149.
[http://dx.doi.org/10.1016/j.apsb.2021.12.011] [PMID: 35646540]
[63]
Wu, Q.; Sun, L.; Hu, X.; Wang, X.; Xu, F.; Chen, B.; Liang, X.; Xia, J.; Wang, P.; Aibara, D.; Zhang, S.; Zeng, G.; Yun, C.; Yan, Y.; Zhu, Y.; Bustin, M.; Zhang, S.; Gonzalez, F.J.; Jiang, C. Suppressing the intestinal farnesoid X receptor/sphingomyelin phosphodiesterase 3 axis decreases atherosclerosis. J. Clin. Invest., 2021, 131(9), e142865.
[http://dx.doi.org/10.1172/JCI142865] [PMID: 33938457]
[64]
Schumacher, J.D.; Kong, B.; Wu, J.; Rizzolo, D.; Armstrong, L.E.; Chow, M.D.; Goedken, M.; Lee, Y.H.; Guo, G.L. Direct and indirect effects of fibroblast growth factor (FGF) 15 and FGF19 on liver fibrosis development. Hepatology, 2020, 71(2), 670-685.
[http://dx.doi.org/10.1002/hep.30810] [PMID: 31206730]
[65]
Xu, Y.; Li, F.; Zalzala, M.; Xu, J.; Gonzalez, F.J.; Adorini, L.; Lee, Y.K.; Yin, L.; Zhang, Y. Farnesoid X receptor activation increases re-verse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology, 2016, 64(4), 1072-1085.
[http://dx.doi.org/10.1002/hep.28712] [PMID: 27359351]
[66]
Huang, F.; Zheng, X.; Ma, X.; Jiang, R.; Zhou, W.; Zhou, S.; Zhang, Y.; Lei, S.; Wang, S.; Kuang, J.; Han, X.; Wei, M.; You, Y.; Li, M.; Li, Y.; Liang, D.; Liu, J.; Chen, T.; Yan, C.; Wei, R.; Rajani, C.; Shen, C.; Xie, G.; Bian, Z.; Li, H.; Zhao, A.; Jia, W. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat. Commun., 2019, 10(1), 4971.
[http://dx.doi.org/10.1038/s41467-019-12896-x] [PMID: 31672964]
[67]
Sayin, S.I.; Wahlström, A.; Felin, J.; Jäntti, S.; Marschall, H.U.; Bamberg, K.; Angelin, B.; Hyötyläinen, T.; Orešič, M.; Bäckhed, F. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab., 2013, 17(2), 225-235.
[http://dx.doi.org/10.1016/j.cmet.2013.01.003] [PMID: 23395169]
[68]
Raetz, C.R.H.; Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem., 2002, 71(1), 635-700.
[http://dx.doi.org/10.1146/annurev.biochem.71.110601.135414] [PMID: 12045108]
[69]
Michelsen, K.S.; Wong, M.H.; Shah, P.K.; Zhang, W.; Yano, J.; Doherty, T.M.; Akira, S.; Rajavashisth, T.B.; Arditi, M. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl. Acad. Sci., 2004, 101(29), 10679-10684.
[http://dx.doi.org/10.1073/pnas.0403249101] [PMID: 15249654]
[70]
Saad, M.J.A.; Santos, A.; Prada, P.O. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda), 2016, 31(4), 283-293.
[http://dx.doi.org/10.1152/physiol.00041.2015] [PMID: 27252163]
[71]
Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine, 2008, 42(2), 145-151.
[http://dx.doi.org/10.1016/j.cyto.2008.01.006] [PMID: 18304834]
[72]
Niebauer, J.; Volk, H.D.; Kemp, M.; Dominguez, M.; Schumann, R.R.; Rauchhaus, M.; Poole-Wilson, P.A.; Coats, A.J.S.; Anker, S.D. Endotoxin and immune activation in chronic heart failure: A prospective cohort study. Lancet, 1999, 353(9167), 1838-1842.
[http://dx.doi.org/10.1016/S0140-6736(98)09286-1] [PMID: 10359409]
[73]
Pastori, D.; Carnevale, R.; Nocella, C.; Novo, M.; Santulli, M.; Cammisotto, V.; Menichelli, D.; Pignatelli, P.; Violi, F. Gut‐derived serum lipopolysaccharide is associated with enhanced risk of major adverse cardiovascular events in atrial fibrillation: Effect of adherence to mediterranean diet. J. Am. Heart Assoc., 2017, 6(6), e005784.
[http://dx.doi.org/10.1161/JAHA.117.005784] [PMID: 28584074]
[74]
Webster, L.T.; Siddiqui, U.A.; Lucas, S.V.; Strong, J.M.; Mieyal, J.J. Identification of separate acyl- CoA:glycine and acyl-CoA:L-glutamine N-acyltransferase activities in mitochondrial fractions from liver of rhesus monkey and man. J. Biol. Chem., 1976, 251(11), 3352-3358.
[http://dx.doi.org/10.1016/S0021-9258(17)33444-0] [PMID: 931988]
[75]
Dodd, D.; Spitzer, M.H.; Van Treuren, W.; Merrill, B.D.; Hryckowian, A.J.; Higginbottom, S.K.; Le, A.; Cowan, T.M.; Nolan, G.P.; Fisch-bach, M.A.; Sonnenburg, J.L. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature, 2017, 551(7682), 648-652.
[http://dx.doi.org/10.1038/nature24661] [PMID: 29168502]
[76]
Nemet, I.; Saha, P.P.; Gupta, N.; Zhu, W.; Romano, K.A.; Skye, S.M.; Cajka, T.; Mohan, M.L.; Li, L.; Wu, Y.; Funabashi, M.; Ramer-Tait, A.E.; Naga Prasad, S.V.; Fiehn, O.; Rey, F.E.; Tang, W.H.W.; Fischbach, M.A.; DiDonato, J.A.; Hazen, S.L. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell, 2020, 180(5), 862-877.e22.
[http://dx.doi.org/10.1016/j.cell.2020.02.016] [PMID: 32142679]
[77]
Smits, L.P.; Kootte, R.S.; Levin, E.; Prodan, A.; Fuentes, S.; Zoetendal, E.G.; Wang, Z.; Levison, B.S.; Cleophas, M.C.P.; Kemper, E.M.; Dallinga-Thie, G.M.; Groen, A.K.; Joosten, L.A.B.; Netea, M.G.; Stroes, E.S.G.; de Vos, W.M.; Hazen, S.L.; Nieuwdorp, M. Effect of ve-gan fecal microbiota transplantation on carnitine‐ and choline‐derived trimethylamine‐n‐oxide production and vascular inflammation in patients with metabolic syndrome. J. Am. Heart Assoc., 2018, 7(7), e008342.
[http://dx.doi.org/10.1161/JAHA.117.008342] [PMID: 29581220]
[78]
Chen, P.B.; Black, A.S.; Sobel, A.L.; Zhao, Y.; Mukherjee, P.; Molparia, B.; Moore, N.E.; Aleman Muench, G.R.; Wu, J.; Chen, W.; Pinto, A.F.M.; Maryanoff, B.E.; Saghatelian, A.; Soroosh, P.; Torkamani, A.; Leman, L.J.; Ghadiri, M.R. Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis. Nat. Biotechnol., 2020, 38(11), 1288-1297.
[http://dx.doi.org/10.1038/s41587-020-0549-5] [PMID: 32541956]
[79]
Andraws, R.; Berger, J.S.; Brown, D.L. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: A meta-analysis of randomized controlled trials. JAMA, 2005, 293(21), 2641-2647.
[http://dx.doi.org/10.1001/jama.293.21.2641] [PMID: 15928286]
[80]
Cannon, C.P.; Braunwald, E.; McCabe, C.H.; Grayston, J.T.; Muhlestein, B.; Giugliano, R.P.; Cairns, R.; Skene, A.M. Antibiotic treatment of Chlamydia pneumoniae after acute coronary syndrome. N. Engl. J. Med., 2005, 352(16), 1646-1654.
[http://dx.doi.org/10.1056/NEJMoa043528] [PMID: 15843667]
[81]
Patel, R.; DuPont, H.L. New approaches for bacteriotherapy: Prebiotics, new-generation probiotics, and synbiotics. Clin. Infect. Dis., 2015, 60(S2), S108-S121.
[http://dx.doi.org/10.1093/cid/civ177] [PMID: 25922396]
[82]
Hiippala, K.; Jouhten, H.; Ronkainen, A.; Hartikainen, A.; Kainulainen, V.; Jalanka, J.; Satokari, R. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients, 2018, 10(8), 988.
[http://dx.doi.org/10.3390/nu10080988] [PMID: 30060606]
[83]
Lam, V.; Su, J.; Koprowski, S.; Hsu, A.; Tweddell, J.S.; Rafiee, P.; Gross, G.J.; Salzman, N.H.; Baker, J.E. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J., 2012, 26(4), 1727-1735.
[http://dx.doi.org/10.1096/fj.11-197921] [PMID: 22247331]
[84]
Kadooka, Y.; Sato, M.; Ogawa, A.; Miyoshi, M.; Uenishi, H.; Ogawa, H.; Ikuyama, K.; Kagoshima, M.; Tsuchida, T. Effect of Lactobacil-lus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Br. J. Nutr., 2013, 110(9), 1696-1703.
[http://dx.doi.org/10.1017/S0007114513001037] [PMID: 23614897]
[85]
Kadooka, Y.; Sato, M.; Imaizumi, K.; Ogawa, A.; Ikuyama, K.; Akai, Y.; Okano, M.; Kagoshima, M.; Tsuchida, T. Regulation of ab-dominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr., 2010, 64(6), 636-643.
[http://dx.doi.org/10.1038/ejcn.2010.19] [PMID: 20216555]
[86]
Ahn, H.Y.; Kim, M.; Chae, J.S.; Ahn, Y.T.; Sim, J.H.; Choi, I.D.; Lee, S.H.; Lee, J.H. Supplementation with two probiotic strains, Lactoba-cillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduces fasting triglycerides and enhances apolipoprotein A-V levels in non-diabetic subjects with hypertriglyceridemia. Atherosclerosis, 2015, 241(2), 649-656.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.06.030] [PMID: 26117402]
[87]
Jones, M.L.; Martoni, C.J.; Parent, M.; Prakash, S. Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lacto-bacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br. J. Nutr., 2012, 107(10), 1505-1513.
[http://dx.doi.org/10.1017/S0007114511004703] [PMID: 22067612]
[88]
Marques, F.Z.; Nelson, E.; Chu, P.Y.; Horlock, D.; Fiedler, A.; Ziemann, M.; Tan, J.K.; Kuruppu, S.; Rajapakse, N.W.; El-Osta, A.; Mac-kay, C.R.; Kaye, D.M. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation, 2017, 135(10), 964-977.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024545] [PMID: 27927713]
[89]
Catry, E.; Bindels, L.B.; Tailleux, A.; Lestavel, S.; Neyrinck, A.M.; Goossens, J.F.; Lobysheva, I.; Plovier, H.; Essaghir, A.; Demoulin, J.B.; Bouzin, C.; Pachikian, B.D.; Cani, P.D.; Staels, B.; Dessy, C.; Delzenne, N.M. Targeting the gut microbiota with inulin-type fructans: Preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut, 2018, 67(2), 271-283.
[http://dx.doi.org/10.1136/gutjnl-2016-313316] [PMID: 28377388]
[90]
Dewulf, E.M.; Cani, P.D.; Claus, S.P.; Fuentes, S.; Puylaert, P.G.B.; Neyrinck, A.M.; Bindels, L.B.; de Vos, W.M.; Gibson, G.R.; Thissen, J.P.; Delzenne, N.M. Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013, 62(8), 1112-1121.
[http://dx.doi.org/10.1136/gutjnl-2012-303304] [PMID: 23135760]
[91]
Zhou, Q.; Deng, J.; Pan, X.; Meng, D.; Zhu, Y.; Bai, Y.; Shi, C.; Duan, Y.; Wang, T.; Li, X.; Sluijter, J.P.G.; Xiao, J. Gut microbiome medi-ates the protective effects of exercise after myocardial infarction. Microbiome, 2022, 10(1), 82.
[http://dx.doi.org/10.1186/s40168-022-01271-6] [PMID: 35637497]
[92]
Wang, Z.; Zhao, Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell, 2018, 9(5), 416-431.
[http://dx.doi.org/10.1007/s13238-018-0549-0] [PMID: 29725935]
[93]
Hu, X.; Li, H.; Zhao, X.; Zhou, R.; Liu, H.; Sun, Y.; Fan, Y.; Shi, Y.; Qiao, S.; Liu, S.; Liu, H.; Zhang, S. Multi-omics study reveals that statin therapy is associated with restoration of gut microbiota homeostasis and improvement in outcomes in patients with acute coronary syndrome. Theranostics, 2021, 11(12), 5778-5793.
[http://dx.doi.org/10.7150/thno.55946] [PMID: 33897881]
[94]
Sun, B.; Li, L.; Zhou, X. Comparative analysis of the gut microbiota in distinct statin response patients in East China. J. Microbiol., 2018, 56(12), 886-892.
[http://dx.doi.org/10.1007/s12275-018-8152-x] [PMID: 30484158]
[95]
Liu, Y.; Song, X.; Zhou, H.; Zhou, X.; Xia, Y.; Dong, X.; Zhong, W.; Tang, S.; Wang, L.; Wen, S.; Xiao, J.; Tang, L. Gut microbiome asso-ciates with lipid-lowering effect of rosuvastatin in vivo. Front. Microbiol., 2018, 9, 530.
[http://dx.doi.org/10.3389/fmicb.2018.00530] [PMID: 29623075]
[96]
Li, D.Y.; Wang, Z.; Li, X.S.; Hazen, S.L.; Tang, W.H.W. Relationship between statin use and trimethylamine n-oxide in cardiovascular risk assessment. J. Am. Coll. Cardiol., 2018, 71(11), A115.
[http://dx.doi.org/10.1016/S0735-1097(18)30656-9]
[97]
Kong, W.; Wei, J.; Abidi, P.; Lin, M.; Inaba, S.; Li, C.; Wang, Y.; Wang, Z.; Si, S.; Pan, H.; Wang, S.; Wu, J.; Wang, Y.; Li, Z.; Liu, J.; Jiang, J.D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med., 2004, 10(12), 1344-1351.
[http://dx.doi.org/10.1038/nm1135] [PMID: 15531889]
[98]
Brusq, J.M.; Ancellin, N.; Grondin, P.; Guillard, R.; Martin, S.; Saintillan, Y.; Issandou, M. Inhibition of lipid synthesis through activation of AMP kinase: An additional mechanism for the hypolipidemic effects of berberine. J. Lipid Res., 2006, 47(6), 1281-1288.
[http://dx.doi.org/10.1194/jlr.M600020-JLR200] [PMID: 16508037]
[99]
Derosa, G.; D’Angelo, A.; Bonaventura, A.; Bianchi, L.; Romano, D.; Maffioli, P. Effects of berberine on lipid profile in subjects with low cardiovascular risk. Expert Opin. Biol. Ther., 2013, 13(4), 475-482.
[http://dx.doi.org/10.1517/14712598.2013.776037] [PMID: 23441841]
[100]
Li, X.Y.; Zhao, Z.X.; Huang, M.; Feng, R.; He, C.Y.; Ma, C.; Luo, S.H.; Fu, J.; Wen, B.Y.; Ren, L.; Shou, J.W.; Guo, F.; Chen, Y.; Gao, X.; Wang, Y.; Jiang, J.D. Effect of Berberine on promoting the excretion of cholesterol in high-fat diet-induced hyperlipidemic hamsters. J. Transl. Med., 2015, 13(1), 278.
[http://dx.doi.org/10.1186/s12967-015-0629-3] [PMID: 26310319]
[101]
Ma, S.R.; Tong, Q.; Lin, Y.; Pan, L.B.; Fu, J.; Peng, R.; Zhang, X.F.; Zhao, Z.X.; Li, Y.; Yu, J.B.; Cong, L.; Han, P.; Zhang, Z.W.; Yu, H.; Wang, Y.; Jiang, J.D. Berberine treats atherosclerosis via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway in gut microbiota. Signal Transduct. Target. Ther., 2022, 7(1), 207.
[http://dx.doi.org/10.1038/s41392-022-01027-6] [PMID: 35794102]
[102]
Wu, M.; Yang, S.; Wang, S.; Cao, Y.; Zhao, R.; Li, X.; Xing, Y.; Liu, L. Effect of berberine on atherosclerosis and gut microbiota modula-tion and their correlation in high-fat diet-fed ApoE−/− Mice. Front. Pharmacol., 2020, 11, 223.
[http://dx.doi.org/10.3389/fphar.2020.00223]
[103]
Zhu, L.; Zhang, D.; Zhu, H.; Zhu, J.; Weng, S.; Dong, L.; Liu, T.; Hu, Y.; Shen, X. Berberine treatment increases akkermansia in the gut and improves high-fat diet-induced atherosclerosis in apoe−/− mice. Atherosclerosis, 2018, 268, 117-126.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.11.023] [PMID: 29202334]
[104]
Sun, R.; Yang, N.; Kong, B.; Cao, B.; Feng, D.; Yu, X.; Ge, C.; Huang, J.; Shen, J.; Wang, P.; Feng, S.; Fei, F.; Guo, J.; He, J.; Aa, N.; Chen, Q.; Pan, Y.; Schumacher, J.D.; Yang, C.S.; Guo, G.L.; Aa, J.; Wang, G. Orally administered berberine modulates hepatic lipid metabolism by altering microbial bile acid metabolism and the intestinal FXR signaling pathway. Mol. Pharmacol., 2017, 91(2), 110-122.
[http://dx.doi.org/10.1124/mol.116.106617] [PMID: 27932556]
[105]
Li, X.; Su, C.; Jiang, Z.; Yang, Y.; Zhang, Y.; Yang, M.; Zhang, X.; Du, Y.; Zhang, J.; Wang, L.; Jiang, J.; Hong, B. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbi-ome. NPJ Biofilms Microbiomes, 2021, 7(1), 36.
[http://dx.doi.org/10.1038/s41522-021-00205-8] [PMID: 33863898]
[106]
Wang, Y.; Shou, J.W.; Li, X.Y.; Zhao, Z.X.; Fu, J.; He, C.Y.; Feng, R.; Ma, C.; Wen, B.Y.; Guo, F.; Yang, X.Y.; Han, Y.X.; Wang, L.L.; Tong, Q.; You, X.F.; Lin, Y.; Kong, W.J.; Si, S.Y.; Jiang, J.D. Berberine-induced bioactive metabolites of the gut microbiota improve ener-gy metabolism. Metabolism, 2017, 70, 72-84.
[http://dx.doi.org/10.1016/j.metabol.2017.02.003] [PMID: 28403947]
[107]
Ma, S.R.; Tong, Q.; Zhao, Z.X.; Cong, L.; Yu, J.B.; Fu, J.; Han, P.; Pan, L.B.; Gu, R.; Peng, R.; Zhang, Z.W.; Wang, Y.; Jiang, J.D. Determi-nation of berberine-upregulated endogenous short-chain fatty acids through derivatization by 2-bromoacetophenone. Anal. Bioanal. Chem., 2019, 411(14), 3191-3207.
[http://dx.doi.org/10.1007/s00216-019-01793-3] [PMID: 30972469]
[108]
Shang, J.; Ma, S.; Zang, C.; Bao, X.; Wang, Y.; Zhang, D. Gut microbiota mediates the absorption of FLZ, a new drug for Parkinson’s dis-ease treatment. Acta Pharm. Sin. B, 2021, 11(5), 1213-1226.
[http://dx.doi.org/10.1016/j.apsb.2021.01.009] [PMID: 34094829]
[109]
Zhang, Z.W.; Cong, L.; Peng, R.; Han, P.; Ma, S.R.; Pan, L.B.; Fu, J.; Yu, H.; Wang, Y.; Jiang, J.D. Transformation of berberine to its de-methylated metabolites by the CYP51 enzyme in the gut microbiota. J. Pharm. Anal., 2021, 11(5), 628-637.
[http://dx.doi.org/10.1016/j.jpha.2020.10.001] [PMID: 34765276]
[110]
Zhang, X.; Han, Y.; Huang, W.; Jin, M.; Gao, Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm. Sin. B, 2021, 11(7), 1789-1812.
[http://dx.doi.org/10.1016/j.apsb.2020.09.013] [PMID: 34386321]
[111]
Vick, R.L.; Kahn, J.B., Jr; Acheson, G.H. Effects of dihydro-ouabain, dihydrodigoxin and dihydrodigitoxin on the heart-lung preparation of the dog. J. Pharmacol. Exp. Ther., 1957, 121(3), 330-339.
[PMID: 13481854]
[112]
Lindenbaum, J.; Rund, D.G.; Butler, V.P., Jr; Tse-Eng, D.; Saha, J.R. Inactivation of digoxin by the gut flora: Reversal by antibiotic thera-py. N. Engl. J. Med., 1981, 305(14), 789-794.
[http://dx.doi.org/10.1056/NEJM198110013051403] [PMID: 7266632]
[113]
Smetanová, L.; Štětinová, V.; Kholová, D.; Kuneš, M.; Nobilis, M.; Svoboda, Z.; Květina, J. Transintestinal transport mechanisms of 5-aminosalicylic acid (in situ rat intestine perfusion, Caco-2 cells) and Biopharmaceutics Classification System. Gen. Physiol. Biophys., 2014, 32(3), 361-369.
[http://dx.doi.org/10.4149/gpb_2013034] [PMID: 23846255]
[114]
Sousa, T.; Yadav, V.; Zann, V.; Borde, A.; Abrahamsson, B.; Basit, A.W. On the colonic bacterial metabolism of azo-bonded prodrugsof 5-aminosalicylic acid. J. Pharm. Sci., 2014, 103(10), 3171-3175.
[http://dx.doi.org/10.1002/jps.24103] [PMID: 25091594]
[115]
Chen, W.; Miao, Y.Q.; Fan, D.J.; Yang, S.S.; Lin, X.; Meng, L.K.; Tang, X. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech, 2011, 12(2), 705-711.
[http://dx.doi.org/10.1208/s12249-011-9632-z] [PMID: 21637946]
[116]
Feng, R.; Shou, J.W.; Zhao, Z.X.; He, C.Y.; Ma, C.; Huang, M. Transforming berberine into its intestine-absorbable form by the gut micro-biota. Sci. Rep., 2015, 5, 12155.
[http://dx.doi.org/10.1038/srep12155] [PMID: 26174047]
[117]
Wang, Y.; Tong, Q.; Shou, J.W.; Zhao, Z.X.; Li, X.Y.; Zhang, X.F.; Ma, S.R.; He, C.Y.; Lin, Y.; Wen, B.Y.; Guo, F.; Fu, J.; Jiang, J.D. Gut microbiota-mediated personalized treatment of hyperlipidemia using berberine. Theranostics, 2017, 7(9), 2443-2451.
[http://dx.doi.org/10.7150/thno.18290] [PMID: 28744326]
[118]
Demonfort Nkamga, V.; Armstrong, N.; Drancourt, M. In vitro susceptibility of cultured human methanogens to lovastatin. Int. J. Antimicrob. Agents, 2017, 49(2), 176-182.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.09.026] [PMID: 27955920]
[119]
Yoo, D.H.; Kim, I.S.; Van Le, T.K.; Jung, I.H.; Yoo, H.H.; Kim, D.H. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab. Dispos., 2014, 42(9), 1508-1513.
[http://dx.doi.org/10.1124/dmd.114.058354] [PMID: 24947972]
[120]
Li, H.; He, J.; Jia, W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin. Drug Metab. Toxicol., 2016, 12(1), 31-40.
[http://dx.doi.org/10.1517/17425255.2016.1121234] [PMID: 26569070]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy