Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Early-Life Lead Exposure: Risks and Neurotoxic Consequences

Author(s): Geir Bjørklund*, Torsak Tippairote, Tony Hangan*, Salvatore Chirumbolo and Massimiliano Peana

Volume 31, Issue 13, 2024

Published on: 15 May, 2023

Page: [1620 - 1633] Pages: 14

DOI: 10.2174/0929867330666230409135310

Price: $65

Abstract

Background: Lead (Pb) does not have any biological function in a human, and it is likely no safe level of Pb in the human body. The Pb exposure impacts are a global concern for their potential neurotoxic consequences. Despite decreasing both the environmental Pb levels and the average blood Pb levels in the survey populations, the lifetime redistribution from the tissues-stored Pb still poses neurotoxic risks from the low-level exposure in later life. The growing fetus and children hold their innate high-susceptible to these Pb-induced neurodevelopmental and neurobehavioral effects.

Objective: This article aims to evaluate cumulative studies and insights on the topic of Pb neurotoxicology while assessing the emerging trends in the field.

Results: The Pb-induced neurochemical and neuro-immunological mechanisms are likely responsible for the high-level Pb exposure with the neurodevelopmental and neurobehavioral impacts at the initial stages. Early-life Pb exposure can still produce neurodegenerative consequences in later life due to the altered epigenetic imprints and the ongoing endogenous Pb exposure. Several mechanisms contribute to the Pb-induced neurotoxic impacts, including the direct neurochemical effects, the induction of oxidative stress and inflammation through immunologic activations, and epigenetic alterations. Furthermore, the individual nutritional status, such as macro-, micro-, or antioxidant nutrients, can significantly influence the neurotoxic impacts even at low-level exposure to Pb.

Conclusion: The prevention of early-life Pb exposure is, therefore, the critical determinant for alleviating various Pb-induced neurotoxic impacts across the different age groups.

Keywords: Lead, low-level exposure, neurotoxic, neurodevelopmental, neurobehavioral, neurodegenerative, epigenetic alterations.

[1]
Mugahi, M.N.; Heidari, Z.; Sagheb, H.M.; Barbarestani, M. Effects of chronic lead acetate intoxication on blood indices of male adult rat. Daru, 2003, 11(4), 147-141.
[2]
Suradkar, S.; Ghodasara, D.; Vihol, P.; Patel, J.; Jaiswal, V.; Prajapati, K. Haemato-biochemical alterations induced by lead acetate toxicity in wistar rats. Vet. World, 2009, 2(11), 429-431.
[3]
Nordberg, G.F.; Fowler, B.A.; Nordberg, M. Handbook on the Toxicology of Metals, 4th ed; Elsevier, 2015, pp. 1-12.
[4]
Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol., 2012, 5(2), 47-58.
[http://dx.doi.org/10.2478/v10102-012-0009-2] [PMID: 23118587]
[5]
Chen, Z.; Huo, X.; Chen, G.; Luo, X.; Xu, X. Lead (Pb) exposure and heart failure risk. Environ. Sci. Pollut. Res. Int., 2021, 28(23), 28833-28847.
[http://dx.doi.org/10.1007/s11356-021-13725-9] [PMID: 33840028]
[6]
Karadas, S.; Sayın, R.; Aslan, M.; Gonullu, H.; Katı, C.; Dursun, R.; Duran, L.; Gonullu, E.; Demir, H. Serum levels of trace elements and heavy metals in patients with acute hemorrhagic stroke. J. Membr. Biol., 2014, 247(2), 175-180.
[http://dx.doi.org/10.1007/s00232-013-9621-0] [PMID: 24346187]
[7]
Virgolini, M.B.; Aschner, M. Molecular mechanisms of lead neurotoxicity. Adv. Neurotoxicol., 2021, 5, 159-213.
[http://dx.doi.org/10.1016/bs.ant.2020.11.002] [PMID: 34263090]
[8]
Zimet, Z.; Bilban, M.; Fabjan, T.; Suhadolc, K.; Poljšak, B.; Osredkar, J. Lead exposure and oxidative stress in coal miners. Biomed. Environ. Sci., 2017, 30(11), 841-845.
[http://dx.doi.org/10.3967/bes2017.113] [PMID: 29216962]
[10]
Maas, R.P.; Patch, S.C.; Pandolfo, T.J.; Druhan, J.L.; Gandy, N.F. Lead content and exposure from children’s and adult’s jewelry products. Bull. Environ. Contam. Toxicol., 2005, 74(3), 437-444.
[http://dx.doi.org/10.1007/s00128-005-0605-3] [PMID: 15903176]
[11]
Mielke, H.W.; Gonzales, C.R.; Powell, E.T.; Laidlaw, M.A.S.; Berry, K.J.; Mielke, P.W., Jr; Egendorf, S.P. The concurrent decline of soil lead and children’s blood lead in New Orleans. Proc. Natl. Acad. Sci. USA, 2019, 116(44), 22058-22064.
[http://dx.doi.org/10.1073/pnas.1906092116] [PMID: 31611401]
[12]
Rieuwerts, J. The elements of environmental pollution; Routledge, 2017.
[http://dx.doi.org/10.4324/9780203798690]
[13]
Needleman, H. Lead poisoning. Annu. Rev. Med., 2004, 55(1), 209-222.
[http://dx.doi.org/10.1146/annurev.med.55.091902.103653] [PMID: 14746518]
[14]
Binns, H.J.; Campbell, C.; Brown, M.J. Interpreting and managing blood lead levels of less than 10 μg/dL in children and reducing childhood exposure to lead: Recommendations of the centers for disease control and prevention advisory committee on childhood lead poisoning prevention. Pediatrics, 2007, 120(5), e1285-e1298.
[http://dx.doi.org/10.1542/peds.2005-1770] [PMID: 17974722]
[15]
Raymond, J.; Brown, M.J. Childhood blood lead levels in children aged <5 Years — United States, 2009–2014. MMWR Surveill. Summ., 2017, 66(3), 1-10.
[http://dx.doi.org/10.15585/mmwr.ss6603a1] [PMID: 28103215]
[16]
CDC. Preventing lead poisoning in young children. Centers for Disease Control; CDC: Atlanta, 1991.
[17]
Muntner, P.; Menke, A.; DeSalvo, K.B.; Rabito, F.A.; Batuman, V. Continued decline in blood lead levels among adults in the United States: The national health and nutrition examination surveys. Arch. Intern. Med., 2005, 165(18), 2155-2161.
[http://dx.doi.org/10.1001/archinte.165.18.2155] [PMID: 16217007]
[18]
Grandjean, P.; Herz, K.T. Trace elements as paradigms of developmental neurotoxicants: Lead, methylmercury and arsenic. J. Trace Elem. Med. Biol., 2015, 31, 130-134.
[http://dx.doi.org/10.1016/j.jtemb.2014.07.023] [PMID: 25175507]
[19]
Koller, K.; Brown, T.; Spurgeon, A.; Levy, L. Recent developments in low-level lead exposure and intellectual impairment in children. Environ. Health Perspect., 2004, 112(9), 987-994.
[http://dx.doi.org/10.1289/ehp.6941] [PMID: 15198918]
[20]
[21]
WHO Ten chemicals of major public health concern; , 1991.
[22]
Surkan, P.; Zhang, A.; Trachtenberg, F.; Daniel, D.; McKinlay, S.; Bellinger, D. Neuropsychological function in children with blood lead levels <10μg/dL. Neurotoxicology, 2007, 28(6), 1170-1177.
[http://dx.doi.org/10.1016/j.neuro.2007.07.007] [PMID: 17868887]
[23]
Laksmidewi, A.A.A.P.; Suputra, G.; Widyadharma, I.P.E. High serum lead levels increase the incidence of cognitive impairment of public fueling station operators. Open Access Maced. J. Med. Sci., 2019, 7(4), 599-602.
[http://dx.doi.org/10.3889/oamjms.2019.127] [PMID: 30894919]
[24]
Reis, C.F.; de Souza, I.D.; Morais, D.A.A.; Oliveira, R.A.C.; Imparato, D.O.; de Almeida, R.M.C.; Dalmolin, R.J.S. Systems biology-based analysis indicates global transcriptional impairment in lead-treated human neural progenitor cells. Front. Genet., 2019, 10(791), 791.
[http://dx.doi.org/10.3389/fgene.2019.00791] [PMID: 31552095]
[25]
Stansfield, K.H.; Pilsner, J.R.; Lu, Q.; Wright, R.O.; Guilarte, T.R. Dysregulation of BDNF-TrkB signaling in developing hippocampal neurons by Pb(2+): Implications for an environmental basis of neurodevelopmental disorders. Toxicol. Sci., 2012, 127(1), 277-295.
[http://dx.doi.org/10.1093/toxsci/kfs090] [PMID: 22345308]
[26]
Ghareeb, D.A.; Hussien, H.M.; Khalil, A.A.; El-Saadani, M.A.; Ali, A.N. Toxic effects of lead exposure on the brain of rats: Involvement of oxidative stress, inflammation, acetylcholinesterase, and the beneficial role of flaxseed extract. Toxicol. Environ. Chem., 2010, 92(1), 187-195.
[http://dx.doi.org/10.1080/02772240902830631]
[27]
Bjørklund, G.; Tippairote, T.; Rahaman, M.S.; Aaseth, J. Developmental toxicity of arsenic: A drift from the classical dose–response relationship. Arch. Toxicol., 2019.
[http://dx.doi.org/10.1007/s00204-019-02628-x] [PMID: 31807801]
[28]
Dórea, G. Multiple low-level exposures: Hg interactions with co-occurring neurotoxic substances in early life. Biochim Biophys Acta Gen Subj, 2018, 1863(12), 129243.
[http://dx.doi.org/10.1016/j.bbagen.2018.10.015]
[29]
Mitchell, E.; Frisbie, S.; Sarkar, B. Exposure to multiple metals from groundwater-a global crisis: Geology, climate change, health effects, testing, and mitigation. Metallomics, 2011, 3(9), 874-908.
[http://dx.doi.org/10.1039/c1mt00052g] [PMID: 21766119]
[30]
Lidsky, T.I.; Schneider, J.S. Lead neurotoxicity in children: Basic mechanisms and clinical correlates. Brain, 2003, 126(1), 5-19.
[http://dx.doi.org/10.1093/brain/awg014] [PMID: 12477693]
[31]
Chua, R.X.Y.; Tay, M.J.Y.; Ooi, D.S.Q.; Siah, K.T.H.; Tham, E.H.; Shek, L.P.C.; Meaney, M.J.; Broekman, B.F.P.; Loo, E.X.L. Understanding the link between allergy and neurodevelopmental disorders: A current review of factors and mechanisms. Front. Neurol., 2021, 11, 603571.
[http://dx.doi.org/10.3389/fneur.2020.603571] [PMID: 33658968]
[32]
Allen, J.L.; Oberdorster, G.; Morris-Schaffer, K.; Wong, C.; Klocke, C.; Sobolewski, M.; Conrad, K.; Mayer-Proschel, M.; Cory-Slechta, D.A. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology, 2017, 59, 140-154.
[http://dx.doi.org/10.1016/j.neuro.2015.12.014] [PMID: 26721665]
[33]
Homberg, J.R.; Kyzar, E.J.; Scattoni, M.L.; Norton, W.H.; Pittman, J.; Gaikwad, S.; Nguyen, M.; Poudel, M.K.; Ullmann, J.F.P.; Diamond, D.M.; Kaluyeva, A.A.; Parker, M.O.; Brown, R.E.; Song, C.; Gainetdinov, R.R.; Gottesman, I.I.; Kalueff, A.V. Genetic and environmental modulation of neurodevelopmental disorders: Translational insights from labs to beds. Brain Res. Bull., 2016, 125, 79-91.
[http://dx.doi.org/10.1016/j.brainresbull.2016.04.015] [PMID: 27113433]
[34]
Maccari, S.; Krugers, H.J.; Morley-Fletcher, S.; Szyf, M.; Brunton, P.J. The consequences of early-life adversity: Neurobiological, behavioural and epigenetic adaptations. J. Neuroendocrinol., 2014, 26(10), 707-723.
[http://dx.doi.org/10.1111/jne.12175] [PMID: 25039443]
[35]
Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.03.013] [PMID: 30939379]
[36]
Luo, L.; Chu, B.; Liu, Y.; Wang, X.; Xu, T.; Bo, Y. Distribution, origin, and transformation of metal and metalloid pollution in vegetable fields, irrigation water, and aerosols near a Pb-Zn mine. Environ. Sci. Pollut. Res. Int., 2014, 21(13), 8242-8260.
[http://dx.doi.org/10.1007/s11356-014-2744-8] [PMID: 24687780]
[37]
Koh, D.H.; Locke, S.J.; Chen, Y.C.; Purdue, M.P.; Friesen, M.C. Lead exposure in US worksites: A literature review and development of an occupational lead exposure database from the published literature. Am. J. Ind. Med., 2015, 58(6), 605-616.
[http://dx.doi.org/10.1002/ajim.22448] [PMID: 25968240]
[38]
Alinejad, S.; Aaseth, J.; Abdollahi, M.; Hassanian-Moghaddam, H.; Mehrpour, O. Clinical aspects of opium adulterated with lead in iran: A review. Basic Clin. Pharmacol. Toxicol., 2018, 122(1), 56-64.
[http://dx.doi.org/10.1111/bcpt.12855] [PMID: 28802093]
[39]
Rădulescu, A.; Lundgren, S. A pharmacokinetic model of lead absorption and calcium competitive dynamics. Sci. Rep., 2019, 9(1), 14225.
[http://dx.doi.org/10.1038/s41598-019-50654-7] [PMID: 31578386]
[40]
Flanagan, P.R.; Haist, J.; Valberg, L.S. Comparative effects of iron deficiency induced by bleeding and a low-iron diet on the intestinal absorptive interactions of iron, cobalt, manganese, zinc, lead and cadmium. J. Nutr., 1980, 110(9), 1754-1763.
[http://dx.doi.org/10.1093/jn/110.9.1754] [PMID: 7411235]
[41]
Gerhardsson, L.; Englyst, V.; Lundström, N.G.; Nordberg, G.; Sandberg, S.; Steinvall, F. Lead in tissues of deceased lead smelter workers. J. Trace Elem. Med. Biol., 1995, 9(3), 136-143.
[http://dx.doi.org/10.1016/S0946-672X(11)80037-4] [PMID: 8605601]
[42]
Wittmers, L.E., Jr; Wallgren, J.; Alich, A.; Aufderheide, A.C.; Rapp, G., Jr Lead in bone. IV. Distribution of lead in the human skeleton. Arch. Environ. Health, 1988, 43(6), 381-391.
[http://dx.doi.org/10.1080/00039896.1988.9935855] [PMID: 3196073]
[43]
Fleming, D.E.; Boulay, D.; Richard, N.S.; Robin, J.P.; Gordon, C.L.; Webber, C.E.; Chettle, D.R. Accumulated body burden and endogenous release of lead in employees of a lead smelter. Environ. Health Perspect., 1997, 105(2), 224-233.
[http://dx.doi.org/10.1289/ehp.97105224] [PMID: 9105798]
[44]
Alissa, E.M.; Ferns, G.A. Heavy metal poisoning and cardiovascular disease. J. Toxicol., 2011, 2011, 870125.
[http://dx.doi.org/10.1155/2011/870125]
[45]
Brochin, R.; Leone, S.; Phillips, D.; Shepard, N.; Zisa, D. The cellular effect of lead poisoning and its clinical picture. Res. J. Health Sci., 2008, 5(2), 1-8.
[46]
Strużyńska, L.; Walski, M.; Gadamski, R.; Dabrowska-Bouta, B.; Rafałowska, U. Lead-induced abnormalities in blood-brain barrier permeability in experimental chronic toxicity. Mol. Chem. Neuropathol., 1997, 31(3), 207-224.
[http://dx.doi.org/10.1007/BF02815125] [PMID: 9336764]
[47]
Zheng, W.; Aschner, M.; Ghersi-Egea, J.F. Brain barrier systems: A new frontier in metal neurotoxicological research. Toxicol. Appl. Pharmacol., 2003, 192(1), 1-11.
[http://dx.doi.org/10.1016/S0041-008X(03)00251-5] [PMID: 14554098]
[48]
van de Haar, H.J.; Burgmans, S.; Jansen, J.F.A.; van Osch, M.J.P.; van Buchem, M.A.; Muller, M.; Hofman, P.A.M.; Verhey, F.R.J.; Backes, W.H. Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology, 2016, 281(2), 527-535.
[http://dx.doi.org/10.1148/radiol.2016152244] [PMID: 27243267]
[49]
Gupta, R.C.; Pitt, J.; Zaja-Milatovic, S. Handbook of Toxicology of Chemical Warfare Agents, 2nd ed; Gupta, R.C., Ed.; Academic Press: Boston, 2015, pp. 725-739.
[http://dx.doi.org/10.1016/B978-0-12-800159-2.00049-X]
[50]
Fang, Y.; Lu, L.; Liang, Y.; Peng, D.; Aschner, M.; Jiang, Y. Signal transduction associated with lead-induced neurological disorders: A review. Food Chem. Toxicol., 2021, 150, 112063.
[http://dx.doi.org/10.1016/j.fct.2021.112063] [PMID: 33596455]
[51]
Wang, T.; Zhang, J.; Xu, Y. Epigenetic basis of lead-induced neurological disorders. Int. J. Environ. Res. Public Health, 2020, 17(13), 4878.
[http://dx.doi.org/10.3390/ijerph17134878] [PMID: 32645824]
[52]
Ramírez Ortega, D.; González Esquivel, D.F.; Blanco Ayala, T.; Pineda, B.; Gómez Manzo, S.; Marcial Quino, J.; Carrillo Mora, P.; Pérez de la Cruz, V. Cognitive impairment induced by lead exposure during lifespan: Mechanisms of lead neurotoxicity. Toxics, 2021, 9(2), 23.
[http://dx.doi.org/10.3390/toxics9020023] [PMID: 33525464]
[53]
Schneider, J.S.; Anderson, D.W.; Kidd, S.K.; Sobolewski, M.; Cory-Slechta, D.A. Sex-dependent effects of lead and prenatal stress on post-translational histone modifications in frontal cortex and hippocampus in the early postnatal brain. Neurotoxicology, 2016, 54, 65-71.
[http://dx.doi.org/10.1016/j.neuro.2016.03.016] [PMID: 27018513]
[54]
Meng, Y.; Zhou, M.; Wang, T.; Zhang, G.; Tu, Y.; Gong, S.; Zhang, Y.; Christiani, D.C.; Au, W.; Liu, Y.; Xia, Z. Occupational lead exposure on genome-wide DNA methylation and DNA damage. Environ. Pollut., 2022, 304, 119252.
[http://dx.doi.org/10.1016/j.envpol.2022.119252] [PMID: 35385786]
[55]
Sanders, T.; Liu, Y.; Buchner, V.; Tchounwou, P.B. Neurotoxic effects and biomarkers of lead exposure: a review. Rev. Environ. Health, 2009, 24(1), 15-45.
[http://dx.doi.org/10.1515/REVEH.2009.24.1.15] [PMID: 19476290]
[56]
Jones, B.L.; Smith, S.M. Calcium-sensing receptor: A key target for extracellular calcium signaling in neurons. Front. Physiol., 2016, 7(116), 116.
[http://dx.doi.org/10.3389/fphys.2016.00116] [PMID: 27065884]
[57]
Mason, L.H.; Harp, J.P.; Han, D.Y. Pb neurotoxicity: Neuropsychological effects of lead toxicity. BioMed Res. Int., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/840547] [PMID: 24516855]
[58]
Kirberger, M.; Wong, H.C.; Jiang, J.; Yang, J.J. Metal toxicity and opportunistic binding of Pb2+ in proteins. J. Inorg. Biochem., 2013, 125, 40-49.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.04.002] [PMID: 23692958]
[59]
Knowles, S.O.; Donaldson, W.E. Dietary modification of lead toxicity: Effects on fatty acid and eicosanoid metabolism in chicks. Comp. Biochem. Physiol. C Comp. Pharmacol., 1990, 95(1), 99-104.
[http://dx.doi.org/10.1016/0742-8413(90)90088-Q] [PMID: 1971558]
[60]
Adonaylo, V.N.; Oteiza, P.I. Pb2+ promotes lipid oxidation and alterations in membrane physical properties. Toxicology, 1999, 132(1), 19-32.
[http://dx.doi.org/10.1016/S0300-483X(98)00134-6] [PMID: 10199578]
[61]
Chiba, M.; Shinohara, A.; Matsushita, K.; Watanabe, H.; Inaba, Y. Indices of lead-exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood. Tohoku J. Exp. Med., 1996, 178(1), 49-62.
[http://dx.doi.org/10.1620/tjem.178.49] [PMID: 8848789]
[62]
Oyagbemi, A.A.; Omobowale, T.O.; Akinrinde, A.S.; Saba, A.B.; Ogunpolu, B.S.; Daramola, O. Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats. Environ. Toxicol., 2015, 30(11), 1235-1243.
[http://dx.doi.org/10.1002/tox.21994] [PMID: 24706517]
[63]
Gurer, H.; Ercal, N. Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic. Biol. Med., 2000, 29(10), 927-945.
[http://dx.doi.org/10.1016/S0891-5849(00)00413-5] [PMID: 11084283]
[64]
Baranowska-Bosiacka, I.; Gutowska, I.; Marchetti, C.; Rutkowska, M.; Marchlewicz, M.; Kolasa, A.; Prokopowicz, A.; Wiernicki, I.; Piotrowska, K.; Baśkiewicz, M.; Safranow, K.; Wiszniewska, B.; Chlubek, D. Altered energy status of primary cerebellar granule neuronal cultures from rats exposed to lead in the pre- and neonatal period. Toxicology, 2011, 280(1-2), 24-32.
[http://dx.doi.org/10.1016/j.tox.2010.11.004] [PMID: 21108985]
[65]
Velaga, M.K.; Basuri, C.K.; Robinson Taylor, K.S.; Yallapragada, P.R.; Rajanna, S.; Rajanna, B. Ameliorative effects of Bacopa monniera on lead-induced oxidative stress in different regions of rat brain. Drug Chem. Toxicol., 2014, 37(3), 357-364.
[http://dx.doi.org/10.3109/01480545.2013.866137] [PMID: 24328849]
[66]
Barkur, R.R.; Bairy, L.K. Assessment of oxidative stress in hippocampus, cerebellum and frontal cortex in rat pups exposed to lead (Pb) during specific periods of initial brain development. Biol. Trace Elem. Res., 2015, 164(2), 212-218.
[http://dx.doi.org/10.1007/s12011-014-0221-3] [PMID: 25575663]
[67]
Kumar Singh, P.; Kumar Singh, M.; Singh Yadav, R.; Kumar Dixit, R.; Mehrotra, A.; Nath, R. Attenuation of lead-induced neurotoxicity by omega-3 fatty acid in rats. Ann. Neurosci., 2017, 24(4), 221-232.
[http://dx.doi.org/10.1159/000481808] [PMID: 29849446]
[68]
Adonaylo, V.N.; Oteiza, P.I. Lead intoxication: Antioxidant defenses and oxidative damage in rat brain. Toxicology, 1999, 135(2-3), 77-85.
[http://dx.doi.org/10.1016/S0300-483X(99)00051-7] [PMID: 10463764]
[69]
Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther., 2017, 360(1), 201-205.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[70]
Strużyńska, L.; Dąbrowska-Bouta, B.; Koza, K.; Sulkowski, G. Inflammation-like glial response in lead-exposed immature rat brain. Toxicol. Sci., 2007, 95(1), 156-162.
[http://dx.doi.org/10.1093/toxsci/kfl134] [PMID: 17047031]
[71]
Caito, S.; Aschner, M. Neurotoxicity of Metals; Aschner, M.; Costa, L.G., Eds.; Springer International Publishing: Cham, 2017, pp. 3-12.
[http://dx.doi.org/10.1007/978-3-319-60189-2_1]
[72]
Chibowska, K.; Baranowska-Bosiacka, I.; Falkowska, A.; Gutowska, I.; Goschorska, M.; Chlubek, D. Effect of lead (Pb) on inflammatory processes in the brain. Int. J. Mol. Sci., 2016, 17(12), 2140.
[http://dx.doi.org/10.3390/ijms17122140] [PMID: 27999370]
[73]
Valentino, M.; Rapisarda, V.; Santarelli, L.; Bracci, M.; Scorcelletti, M.; Di Lorenzo, L.; Cassano, F.; Soleo, L. Effect of lead on the levels of some immunoregulatory cytokines in occupationally exposed workers. Hum. Exp. Toxicol., 2007, 26(7), 551-556.
[http://dx.doi.org/10.1177/0960327107073817] [PMID: 17884957]
[74]
Giovanni, A.; Maria, A.T.; Andrea, F. Depression and inflammation: Disentangling a clear yet complex and multifaceted link. Neuropsychiatry, 2017, 7(4), 448-445.
[75]
Saccaro, L.F.; Schilliger, Z.; Dayer, A.; Perroud, N.; Piguet, C. Inflammation, anxiety, and stress in bipolar disorder and borderline personality disorder: A narrative review. Neurosci. Biobehav. Rev., 2021, 127, 184-192.
[http://dx.doi.org/10.1016/j.neubiorev.2021.04.017] [PMID: 33930472]
[76]
Vogel, S.W.N.; Bijlenga, D.; Verduijn, J.; Bron, T.I.; Beekman, A.T.F.; Kooij, J.J.S.; Penninx, B.W.J.H. Attention-deficit/hyperactivity disorder symptoms and stress-related biomarkers. Psychoneuroendocrinology, 2017, 79, 31-39.
[http://dx.doi.org/10.1016/j.psyneuen.2017.02.009] [PMID: 28249186]
[77]
Saccaro, L.F.; Schilliger, Z.; Perroud, N.; Piguet, C. Inflammation, anxiety, and stress in attention-deficit/hyperactivity disorder. Biomedicines, 2021, 9(10), 1313.
[http://dx.doi.org/10.3390/biomedicines9101313] [PMID: 34680430]
[78]
McCabe, M.J., Jr; Lawrence, D.A. Lead, a major environmental pollutant, is immunomodulatory by its differential effects on CD4+ T cell subsets. Toxicol. Appl. Pharmacol., 1991, 111(1), 13-23.
[http://dx.doi.org/10.1016/0041-008X(91)90129-3] [PMID: 1719661]
[79]
Dehghanifiroozabadi, M.; Noferesti, P.; Amirabadizadeh, A.; Nakhaee, S.; Aaseth, J.; Noorbakhsh, F.; Mehrpour, O. Blood lead levels and multiple sclerosis: A case-control study. Mult. Scler. Relat. Disord., 2018, 27, 151-155.
[PMID: 30384201]
[80]
Bjørklund, G.; Dadar, M.; Aaseth, J. Delayed-type hypersensitivity to metals in connective tissue diseases and fibromyalgia. Environ. Res., 2018, 161, 573-579.
[http://dx.doi.org/10.1016/j.envres.2017.12.004] [PMID: 29245125]
[81]
Khalid, M.; Abdollahi, M. Epigenetic modifications associated with pathophysiological effects of lead exposure. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2019, 37(4), 235-287.
[http://dx.doi.org/10.1080/10590501.2019.1640581] [PMID: 31402779]
[82]
Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol., 2010, 28(10), 1057-1068.
[http://dx.doi.org/10.1038/nbt.1685] [PMID: 20944598]
[83]
Cuomo, D.; Foster, M.J.; Threadgill, D. Systemic review of genetic and epigenetic factors underlying differential toxicity to environmental lead (Pb) exposure. Environ. Sci. Pollut. Res. Int., 2022, 29(24), 35583-35598.
[http://dx.doi.org/10.1007/s11356-022-19333-5] [PMID: 35244845]
[84]
de Faria Amormino, S.A.; Arão, T.C.; Saraiva, A.M.; Gomez, R.S.; Dutra, W.O.; da Costa, J.E.; de Fátima Correia Silva, J.; Moreira, P.R. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis. Hum. Immunol., 2013, 74(9), 1231-1236.
[http://dx.doi.org/10.1016/j.humimm.2013.04.037] [PMID: 23747679]
[85]
Pilsner, J.R.; Hu, H.; Ettinger, A.; Sánchez, B.N.; Wright, R.O.; Cantonwine, D.; Lazarus, A.; Lamadrid-Figueroa, H.; Mercado-García, A.; Téllez-Rojo, M.M.; Hernández-Avila, M. Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ. Health Perspect., 2009, 117(9), 1466-1471.
[http://dx.doi.org/10.1289/ehp.0800497] [PMID: 19750115]
[86]
Luo, M.; Xu, Y.; Cai, R.; Tang, Y.; Ge, M.M.; Liu, Z.H.; Xu, L.; Hu, F.; Ruan, D.Y.; Wang, H.L. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats. Toxicol. Lett., 2014, 225(1), 78-85.
[http://dx.doi.org/10.1016/j.toxlet.2013.11.025] [PMID: 24291742]
[87]
Schneider, J.S.; Kidd, S.K.; Anderson, D.W. Influence of developmental lead exposure on expression of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus. Toxicol. Lett., 2013, 217(1), 75-81.
[http://dx.doi.org/10.1016/j.toxlet.2012.12.004] [PMID: 23246732]
[88]
Dosunmu, R.; Alashwal, H.; Zawia, N.H. Genome-wide expression and methylation profiling in the aged rodent brain due to early-life Pb exposure and its relevance to aging. Mech. Ageing Dev., 2012, 133(6), 435-443.
[http://dx.doi.org/10.1016/j.mad.2012.05.003] [PMID: 22613225]
[89]
Wright, R.O.; Schwartz, J.; Wright, R.J.; Bollati, V.; Tarantini, L.; Park, S.K.; Hu, H.; Sparrow, D.; Vokonas, P.; Baccarelli, A. Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ. Health Perspect., 2010, 118(6), 790-795.
[http://dx.doi.org/10.1289/ehp.0901429] [PMID: 20064768]
[90]
Kovatsi, L.; Georgiou, E.; Ioannou, A.; Haitoglou, C.; Tzimagiorgis, G.; Tsoukali, H.; Kouidou, S. p16 promoter methylation in Pb2+-exposed individuals. Clin. Toxicol., 2010, 48(2), 124-128.
[http://dx.doi.org/10.3109/15563650903567091] [PMID: 20199129]
[91]
Wu, J.; Basha, M.R.; Brock, B.; Cox, D.P.; Cardozo-Pelaez, F.; McPherson, C.A.; Harry, J.; Rice, D.C.; Maloney, B.; Chen, D.; Lahiri, D.K.; Zawia, N.H. Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): Evidence for a developmental origin and environmental link for AD. J. Neurosci., 2008, 28(1), 3-9.
[http://dx.doi.org/10.1523/JNEUROSCI.4405-07.2008] [PMID: 18171917]
[92]
Feng, J.; Zhou, Y.; Campbell, S.L.; Le, T.; Li, E.; Sweatt, J.D.; Silva, A.J.; Fan, G. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci., 2010, 13(4), 423-430.
[http://dx.doi.org/10.1038/nn.2514] [PMID: 20228804]
[93]
Li, Y.Y.; Chen, T.; Wan, Y.; Xu, S. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. Environ. Toxicol., 2012, 27(8), 495-502.
[http://dx.doi.org/10.1002/tox.20666] [PMID: 22764079]
[94]
Schneider, J.S.; Anderson, D.W.; Sonnenahalli, H.; Vadigepalli, R. Sex-based differences in gene expression in hippocampus following postnatal lead exposure. Toxicol. Appl. Pharmacol., 2011, 256(2), 179-190.
[http://dx.doi.org/10.1016/j.taap.2011.08.008] [PMID: 21864555]
[95]
Schneider, J.S.; Mettil, W.; Anderson, D.W. Differential effect of postnatal lead exposure on gene expression in the hippocampus and frontal cortex. J. Mol. Neurosci., 2012, 47(1), 76-88.
[http://dx.doi.org/10.1007/s12031-011-9686-0] [PMID: 22160880]
[96]
Schneider, J.S.; Anderson, D.W.; Talsania, K.; Mettil, W.; Vadigepalli, R. Effects of developmental lead exposure on the hippocampal transcriptome: influences of sex, developmental period, and lead exposure level. Toxicol. Sci., 2012, 129(1), 108-125.
[http://dx.doi.org/10.1093/toxsci/kfs189] [PMID: 22641619]
[97]
Sánchez-Martín, F.J.; Lindquist, D.M.; Landero-Figueroa, J.; Zhang, X.; Chen, J.; Cecil, K.M.; Medvedovic, M.; Puga, A. Sex- and tissue-specific methylome changes in brains of mice perinatally exposed to lead. Neurotoxicology, 2015, 46, 92-100.
[http://dx.doi.org/10.1016/j.neuro.2014.12.004] [PMID: 25530354]
[98]
Liu, J.; Morgan, M.; Hutchison, K.; Calhoun, V.D. A study of the influence of sex on genome wide methylation. PLoS One, 2010, 5(4), e10028.
[http://dx.doi.org/10.1371/journal.pone.0010028] [PMID: 20386599]
[99]
Lin, Y.; Huang, L.; Xu, J.; Specht, A.J.; Yan, C.; Geng, H.; Shen, X.; Nie, L.H.; Hu, H. Blood lead, bone lead and child attention-deficit-hyperactivity-disorder-like behavior. Sci. Total Environ., 2019, 659, 161-167.
[http://dx.doi.org/10.1016/j.scitotenv.2018.12.219] [PMID: 30597466]
[100]
Clark, W.; Grunstein, M. Are We Hardwired?: The Role of Genes in Human Behavior; Oxford University Press, 2004.
[http://dx.doi.org/10.1093/acprof:oso/9780195178005.001.0001]
[101]
Lasley, S.M.; Gilbert, M.E. Glutamatergic components underlying lead-induced impairments in hippocampal synaptic plasticity. Neurotoxicology, 2000, 21(6), 1057-1068.
[PMID: 11233752]
[102]
Stansfield, K.H.; Ruby, K.N.; Soares, B.D.; McGlothan, J.L.; Liu, X.; Guilarte, T.R. Early-life lead exposure recapitulates the selective loss of parvalbumin-positive GABAergic interneurons and subcortical dopamine system hyperactivity present in schizophrenia. Transl. Psychiatry, 2015, 5(3), e522.
[http://dx.doi.org/10.1038/tp.2014.147] [PMID: 25756805]
[103]
Duan, Y.; Peng, L.; Shi, H.; Jiang, Y. The effects of lead on GABAergic interneurons in rodents. Toxicol. Ind. Health, 2017, 33(11), 867-875.
[http://dx.doi.org/10.1177/0748233717732902] [PMID: 29056070]
[104]
Cobos, I.; Calcagnotto, M.E.; Vilaythong, A.J.; Thwin, M.T.; Noebels, J.L.; Baraban, S.C.; Rubenstein, J.L.R. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat. Neurosci., 2005, 8(8), 1059-1068.
[http://dx.doi.org/10.1038/nn1499] [PMID: 16007083]
[105]
Minnema, D.; Michaelson, I.A.; Cooper, G.P. Calcium efflux and neurotransmitter release from rat hippocampal synaptosomes exposed to lead*1. Toxicol. Appl. Pharmacol., 1988, 92(3), 351-357.
[http://dx.doi.org/10.1016/0041-008X(88)90175-5] [PMID: 2895506]
[106]
Atchison, W.D.; Narahashi, T. Mechanism of action of lead on neuromuscular junctions. Neurotoxicology, 1984, 5(3), 267-282.
[PMID: 6097847]
[107]
Villaseñor-Granados, T.; Díaz-Cervantes, E.; Soto-Arredondo, K.J.; Martínez-Alfaro, M.; Robles, J.; García-Revilla, M.A. Binding of Pb-Melatonin and Pb-(Melatonin-metabolites) complexes with DMT1 and ZIP8: implications for lead detoxification. Daru, 2019, 27(1), 137-148.
[http://dx.doi.org/10.1007/s40199-019-00256-5] [PMID: 30850959]
[108]
Bouyatas, M.M.; Gamrani, H. Immunohistochemical evaluation of the effect of lead exposure on subcommissural organ innervation and secretion in Shaw’s Jird (Meriones shawi). Acta Histochem., 2007, 109(6), 421-427.
[http://dx.doi.org/10.1016/j.acthis.2007.05.002] [PMID: 17707886]
[109]
Correia, A.S.; Vale, N. Tryptophan metabolism in depression: A narrative review with a focus on serotonin and kynurenine pathways. Int. J. Mol. Sci., 2022, 23(15), 8493.
[http://dx.doi.org/10.3390/ijms23158493] [PMID: 35955633]
[110]
Ramirez, O.D.; Ovalle, R.P.; Pineda, B.; González, E.D.F.; Ramos, C.L.A.; Vázquez, C.G.I.; Roldán, R.G.; Pérez de la, C.G.; Díaz, R.A.; Méndez, A.M.; Marcial, Q.J.; Gómez, M.S.; Ríos, C.; Pérez de la Cruz, V. Kynurenine pathway as a new target of cognitive impairment induced by lead toxicity during the lactation. Sci. Rep., 2020, 10(1), 3184.
[http://dx.doi.org/10.1038/s41598-020-60159-3] [PMID: 32081969]
[111]
Omeiza, N.A.; Abdulrahim, H.A.; Alagbonsi, A.I.; Ezurike, P.U.; Soluoku, T.K.; Isiabor, H.; Alli-oluwafuyi, A.A. Melatonin salvages lead-induced neuro-cognitive shutdown, anxiety, and depressive-like symptoms via oxido-inflammatory and cholinergic mechanisms. Brain Behav., 2021, 11(8), e2227.
[http://dx.doi.org/10.1002/brb3.2227] [PMID: 34087957]
[112]
Finkelstein, Y.; Markowitz, M.E.; Rosen, J.F. Low-level lead-induced neurotoxicity in children: An update on central nervous system effects. Brain Res. Brain Res. Rev., 1998, 27(2), 168-176.
[http://dx.doi.org/10.1016/S0165-0173(98)00011-3] [PMID: 9622620]
[113]
Lee, J.; Freeman, J.L. Embryonic exposure to 10 μg L −1 lead results in female-specific expression changes in genes associated with nervous system development and function and Alzheimer’s disease in aged adult zebrafish brain. Metallomics, 2016, 8(6), 589-596.
[http://dx.doi.org/10.1039/C5MT00267B] [PMID: 26776728]
[114]
Needleman, H.L.; McFarland, C.; Ness, R.B.; Fienberg, S.E.; Tobin, M.J. Bone lead levels in adjudicated delinquents. Neurotoxicol. Teratol., 2002, 24(6), 711-717.
[http://dx.doi.org/10.1016/S0892-0362(02)00269-6] [PMID: 12460653]
[115]
Wright, J.P.; Dietrich, K.N.; Ris, M.D.; Hornung, R.W.; Wessel, S.D.; Lanphear, B.P.; Ho, M.; Rae, M.N. Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med., 2008, 5(5), e101.
[http://dx.doi.org/10.1371/journal.pmed.0050101] [PMID: 18507497]
[116]
Brubaker, C.J.; Schmithorst, V.J.; Haynes, E.N.; Dietrich, K.N.; Egelhoff, J.C.; Lindquist, D.M.; Lanphear, B.P.; Cecil, K.M. Altered myelination and axonal integrity in adults with childhood lead exposure: A diffusion tensor imaging study. Neurotoxicology, 2009, 30(6), 867-875.
[http://dx.doi.org/10.1016/j.neuro.2009.07.007] [PMID: 19619581]
[117]
Cecil, K.M.; Brubaker, C.J.; Adler, C.M.; Dietrich, K.N.; Altaye, M.; Egelhoff, J.C.; Wessel, S.; Elangovan, I.; Hornung, R.; Jarvis, K.; Lanphear, B.P. Decreased brain volume in adults with childhood lead exposure. PLoS Med., 2008, 5(5), e112.
[http://dx.doi.org/10.1371/journal.pmed.0050112] [PMID: 18507499]
[118]
Yuan, W.; Holland, S.K.; Cecil, K.M.; Dietrich, K.N.; Wessel, S.D.; Altaye, M.; Hornung, R.W.; Ris, M.D.; Egelhoff, J.C.; Lanphear, B.P. The impact of early childhood lead exposure on brain organization: A functional magnetic resonance imaging study of language function. Pediatrics, 2006, 118(3), 971-977.
[http://dx.doi.org/10.1542/peds.2006-0467] [PMID: 16950987]
[119]
Bellinger, D.C. Very low lead exposures and children’s neurodevelopment. Curr. Opin. Pediatr., 2008, 20(2), 172-177.
[http://dx.doi.org/10.1097/MOP.0b013e3282f4f97b] [PMID: 18332714]
[120]
Vij, A.G.; Dhundasi, S. Hemopoietic, hemostatic and mutagenic effects of lead and possible prevention by zinc and vitamin C. Al Ameen J. Med. Sci., 2009, 2, 27-36.
[121]
Ferraro, M.V.M.; Fenocchio, A.S.; Mantovani, M.S.; Ribeiro, C.O.; Cestari, M.M. Mutagenic effects of tributyltin and inorganic lead (Pb II) on the fish H. malabaricus as evaluated using the comet assay and the piscine micronucleus and chromosome aberration tests. Genet. Mol. Biol., 2004, 27(1), 103-107.
[http://dx.doi.org/10.1590/S1415-47572004000100017]
[122]
Martinez, E.A.; Moore, B.C.; Schaumloffel, J.; Dasgupta, N. Teratogenic versus mutagenic abnormalities in chironomid larvae exposed to zinc and lead. Arch. Environ. Contam. Toxicol., 2004, 47(2), 193-198.
[http://dx.doi.org/10.1007/s00244-004-3116-z] [PMID: 15386144]
[123]
Yang, J.L.; Wang, L.C.; Chang, C.Y.; Liu, T.Y. Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ. Mol. Mutagen., 1999, 33(3), 194-201.
[http://dx.doi.org/10.1002/(SICI)1098-2280(1999)33:3<194::AID-EM3>3.0.CO;2-O] [PMID: 10334621]
[124]
Bjørklund, G.; Zou, L.; Wang, J.; Chasapis, C.T.; Peana, M. Thioredoxin reductase as a pharmacological target. Pharmacol. Res., 2021, 174, 105854.
[http://dx.doi.org/10.1016/j.phrs.2021.105854] [PMID: 34455077]
[125]
Christophersen, O.A. Radiation protection following nuclear power accidents: A survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. Microb. Ecol. Health Dis., 2012, 23(1), 14787.
[http://dx.doi.org/10.3402/mehd.v23i0.14787] [PMID: 23990836]
[126]
Bermúdez-Guzmán, L.; Leal, A. DNA repair deficiency in neuropathogenesis: When all roads lead to mitochondria. Transl. Neurodegener., 2019, 8(1), 14.
[http://dx.doi.org/10.1186/s40035-019-0156-x] [PMID: 31110700]
[127]
Meyer, J.N.; Leung, M.C.K.; Rooney, J.P.; Sendoel, A.; Hengartner, M.O.; Kisby, G.E.; Bess, A.S. Mitochondria as a target of environmental toxicants. Toxicol. Sci., 2013, 134(1), 1-17.
[http://dx.doi.org/10.1093/toxsci/kft102] [PMID: 23629515]
[128]
Sousa, C.A.; Soares, E.V. Mitochondria are the main source and one of the targets of Pb (lead)-induced oxidative stress in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 2014, 98(11), 5153-5160.
[http://dx.doi.org/10.1007/s00253-014-5631-9] [PMID: 24652061]
[129]
Son, G.; Han, J. Roles of mitochondria in neuronal development. BMB Rep., 2018, 51(11), 549-556.
[http://dx.doi.org/10.5483/BMBRep.2018.51.11.226] [PMID: 30269744]
[130]
Khacho, M.; Slack, R.S. Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain. Dev. Dyn., 2018, 247(1), 47-53.
[http://dx.doi.org/10.1002/dvdy.24538] [PMID: 28643345]
[131]
Falk, M.J. Neurodevelopmental manifestations of mitochondrial disease. J. Dev. Behav. Pediatr., 2010, 31(7), 610-621.
[http://dx.doi.org/10.1097/DBP.0b013e3181ef42c1] [PMID: 20814259]
[132]
Kim, S.; Arora, M.; Fernandez, C.; Landero, J.; Caruso, J.; Chen, A. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children. Environ. Res., 2013, 126, 105-110.
[http://dx.doi.org/10.1016/j.envres.2013.08.008] [PMID: 24034783]
[133]
Wang, H.L.; Chen, X.T.; Yang, B.; Ma, F.L.; Wang, S.; Tang, M.L.; Hao, M.G.; Ruan, D.Y. Case-control study of blood lead levels and attention deficit hyperactivity disorder in Chinese children. Environ. Health Perspect., 2008, 116(10), 1401-1406.
[http://dx.doi.org/10.1289/ehp.11400] [PMID: 18941585]
[134]
Yun, L.; Zhang, W.; Qin, K. Relationship among maternal blood lead, ALAD gene polymorphism and neonatal neurobehavioral development. Int. J. Clin. Exp. Pathol., 2015, 8(6), 7277-7281.
[PMID: 26261627]
[135]
Huang, S.; Hu, H.; Sánchez, B.N.; Peterson, K.E.; Ettinger, A.S.; Lamadrid-Figueroa, H.; Schnaas, L.; Mercado-García, A.; Wright, R.O.; Basu, N.; Cantonwine, D.E.; Hernández-Avila, M.; Téllez-Rojo, M.M. Childhood blood lead levels and symptoms of attention deficit hyperactivity disorder (ADHD): A cross-sectional study of Mexican children. Environ. Health Perspect., 2016, 124(6), 868-874.
[http://dx.doi.org/10.1289/ehp.1510067] [PMID: 26645203]
[136]
Reuben, A.; Caspi, A.; Belsky, D.W.; Broadbent, J.; Harrington, H.; Sugden, K.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Moffitt, T.E. Association of childhood blood lead levels with cognitive function and socioeconomic status at age 38 years and with iq change and socioeconomic mobility between childhood and adulthood. JAMA, 2017, 317(12), 1244-1251.
[http://dx.doi.org/10.1001/jama.2017.1712] [PMID: 28350927]
[137]
Chen, A.; Dietrich, K.N.; Ware, J.H.; Radcliffe, J.; Rogan, W.J. IQ and blood lead from 2 to 7 years of age: are the effects in older children the residual of high blood lead concentrations in 2-year-olds? Environ. Health Perspect., 2005, 113(5), 597-601.
[http://dx.doi.org/10.1289/ehp.7625] [PMID: 15866769]
[138]
Hu, H.; Téllez-Rojo, M.M.; Bellinger, D.; Smith, D.; Ettinger, A.S.; Lamadrid-Figueroa, H.; Schwartz, J.; Schnaas, L.; Mercado-García, A.; Hernández-Avila, M. Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ. Health Perspect., 2006, 114(11), 1730-1735.
[http://dx.doi.org/10.1289/ehp.9067] [PMID: 17107860]
[139]
Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; Rothenberg, S.J.; Needleman, H.L.; Schnaas, L.; Wasserman, G.; Graziano, J.; Roberts, R. Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ. Health Perspect., 2005, 113(7), 894-899.
[http://dx.doi.org/10.1289/ehp.7688] [PMID: 16002379]
[140]
Fenga, C.; Gangemi, S.; Alibrandi, A.; Costa, C.; Micali, E. Relationship between lead exposure and mild cognitive impairment. J. Prev. Med. Hyg., 2016, 57(4), E205-E210.
[PMID: 28167858]
[141]
Santa Maria, M.P.; Hill, B.D.; Kline, J. Lead (Pb) neurotoxicology and cognition. Appl. Neuropsychol. Child, 2019, 8(3), 272-293.
[http://dx.doi.org/10.1080/21622965.2018.1428803] [PMID: 29494781]
[142]
Daneshparvar, M.; Mostafavi, S-A.; Zare Jeddi, M.; Yunesian, M.; Mesdaghinia, A.; Mahvi, A.H.; Akhondzadeh, S. The role of lead exposure on attention-deficit/ hyperactivity disorder ‎in children: A systematic review. Iran. J. Psychiatry, 2016, 11(1), 1-14.
[PMID: 27252763]
[143]
Mostafa, G.A.; Bjørklund, G.; Urbina, M.A.; Al-Ayadhi, L.Y. The positive association between elevated blood lead levels and brain-specific autoantibodies in autistic children from low lead-polluted areas. Metab. Brain Dis., 2016, 31(5), 1047-1054.
[http://dx.doi.org/10.1007/s11011-016-9836-8] [PMID: 27250967]
[144]
White, L.D.; Cory-Slechta, D.A.; Gilbert, M.E.; Tiffany- Castiglioni, E.; Zawia, N.H.; Virgolini, M.; Rossi-George, A.; Lasley, S.M.; Qian, Y.C.; Basha, M.R. New and evolving concepts in the neurotoxicology of lead. Toxicol. Appl. Pharmacol., 2007, 225(1), 1-27.
[http://dx.doi.org/10.1016/j.taap.2007.08.001] [PMID: 17904601]
[145]
Dickerson, A.S.; Rahbar, M.H.; Bakian, A.V.; Bilder, D.A.; Harrington, R.A.; Pettygrove, S.; Kirby, R.S.; Durkin, M.S.; Han, I.; Moyé, L.A., III; Pearson, D.A.; Wingate, M.S.; Zahorodny, W.M. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic. Environ. Monit. Assess., 2016, 188(7), 407-407.
[http://dx.doi.org/10.1007/s10661-016-5405-1] [PMID: 27301968]
[146]
Geier, D.; Kern, J.; Geier, M. Blood lead levels and learning disabilities: A cross-sectional study of the 2003–2004 national health and nutrition examination survey (NHANES). Int. J. Environ. Res. Public Health, 2017, 14(10), 1202.
[http://dx.doi.org/10.3390/ijerph14101202] [PMID: 28994742]
[147]
Reuben, A. Childhood lead exposure and adult neurodegenerative disease. J. Alzheimers Dis., 2018, 64(1), 17-42.
[http://dx.doi.org/10.3233/JAD-180267] [PMID: 29865081]
[148]
Mansouri, M.T.; Muñoz-Fambuena, I.; Cauli, O. Cognitive impairment associated with chronic lead exposure in adults. Neurol. Psychiatry Brain Res., 2018, 30, 5-8.
[http://dx.doi.org/10.1016/j.npbr.2018.04.001]
[149]
Barker, D.J.P. In utero programming of cardiovascular disease. Theriogenology, 2000, 53(2), 555-574.
[http://dx.doi.org/10.1016/S0093-691X(99)00258-7] [PMID: 10735050]
[150]
Mandy, M.; Nyirenda, M. Developmental origins of health and disease: The relevance to developing nations. Int. Health, 2018, 10(2), 66-70.
[http://dx.doi.org/10.1093/inthealth/ihy006] [PMID: 29528398]
[151]
Vig, E.; Hu, H. Lead toxicity in older adults. J. Am. Geriatr. Soc., 2000, 48(11), 1501-1506.
[PMID: 11083332]
[152]
Bolin, C.M.; Basha, R.; Cox, D.; Zawia, N.H.; Maloney, B.; Lahiri, D.K.; Cardozo-Pelaez, F. Exposure to lead (Pb) and the developmental origin of oxidative DNA damage in the aging brain. FASEB J., 2006, 20(6), 788-790.
[http://dx.doi.org/10.1096/fj.05-5091fje] [PMID: 16484331]
[153]
Castellani, R.J.; Lee, H.; Perry, G.; Smith, M.A. Antioxidant protection and neurodegenerative disease: The role of amyloid-β and tau. Am. J. Alzheimers Dis. Demen., 2006, 21(2), 126-130.
[http://dx.doi.org/10.1177/153331750602100213] [PMID: 16634469]
[154]
Weisskopf, M.G.; Wright, R.O.; Schwartz, J.; Spiro, A., III; Sparrow, D.; Aro, A.; Hu, H. Cumulative lead exposure and prospective change in cognition among elderly men: the VA normative aging study. Am. J. Epidemiol., 2004, 160(12), 1184-1193.
[http://dx.doi.org/10.1093/aje/kwh333] [PMID: 15583371]
[155]
Giacoppo, S.; Galuppo, M.; Calabrò, R.S.; D’Aleo, G.; Marra, A.; Sessa, E.; Bua, D.G.; Potortì, A.G.; Dugo, G.; Bramanti, P.; Mazzon, E. Heavy metals and neurodegenerative diseases: An observational study. Biol. Trace Elem. Res., 2014, 161(2), 151-160.
[http://dx.doi.org/10.1007/s12011-014-0094-5] [PMID: 25107328]
[156]
Schwartz, B.S.; Stewart, W.F.; Bolla, K.I.; Simon, D.; Bandeen-Roche, K.; Gordon, B.; Links, J.M.; Todd, A.C. Past adult lead exposure is associated with longitudinal decline in cognitive function. Neurology, 2000, 55(8), 1144-1150.
[http://dx.doi.org/10.1212/WNL.55.8.1144] [PMID: 11071492]
[157]
Stewart, W.F.; Schwartz, B.S. Effects of lead on the adult brain: A 15-year exploration. Am. J. Ind. Med., 2007, 50(10), 729-739.
[http://dx.doi.org/10.1002/ajim.20434] [PMID: 17311281]
[158]
Khalil, N.; Morrow, L.A.; Needleman, H.; Talbott, E.O.; Wilson, J.W.; Cauley, J.A. Association of cumulative lead and neurocognitive function in an occupational cohort. Neuropsychology, 2009, 23(1), 10-19.
[http://dx.doi.org/10.1037/a0013757] [PMID: 19210029]
[159]
Bihaqi, S.W. Early life exposure to lead (Pb) and changes in DNA methylation: Relevance to Alzheimer’s disease. Rev. Environ. Health, 2019, 34(2), 187-195.
[http://dx.doi.org/10.1515/reveh-2018-0076] [PMID: 30710487]
[160]
Brown, E.E.; Shah, P.; Pollock, B.G.; Gerretsen, P.; Graff-Guerrero, A. Lead (Pb) in Alzheimer’s dementia: A systematic review of human case-control studies. Curr. Alzheimer Res., 2019, 16(4), 353-361.
[http://dx.doi.org/10.2174/1567205016666190311101445] [PMID: 30854970]
[161]
Li, T.; Lu, L.; Pember, E.; Li, X.; Zhang, B.; Zhu, Z. New insights into neuroinflammation involved in pathogenic mechanism of alzheimer’s disease and its potential for therapeutic intervention. Cells, 2022, 11(12), 1925.
[http://dx.doi.org/10.3390/cells11121925] [PMID: 35741054]
[162]
Yegambaram, M.; Manivannan, B.; Beach, T.; Halden, R. Role of environmental contaminants in the etiology of Alzheimer’s disease: A review. Curr. Alzheimer Res., 2015, 12(2), 116-146.
[http://dx.doi.org/10.2174/1567205012666150204121719] [PMID: 25654508]
[163]
Mir, R.H.; Sawhney, G.; Pottoo, F.H.; Mohi-ud-din, R.; Madishetti, S.; Jachak, S.M.; Ahmed, Z.; Masoodi, M.H. Role of environmental pollutants in Alzheimer’s disease: A review. Environ. Sci. Pollut. Res. Int., 2020, 27(36), 44724-44742.
[http://dx.doi.org/10.1007/s11356-020-09964-x] [PMID: 32715424]
[164]
Calivarathan, L.; Brahadeeswaran, S.; Lateef, M. An insight into the molecular mechanism of mitochondrial toxicant-induced neuronal apoptosis in Parkinson’s disease. Curr. Mol. Med., 2023, 23(1), 63-75.
[http://dx.doi.org/10.2174/1566524022666220203163631] [PMID: 35125081]
[165]
Ghanwat, G.; Patil, A.J.; Patil, J.; Kshirsagar, M.; Sontakke, A.; Ayachit, R.K. Effect of vitamin C supplementation on blood lead level, oxidative stress and antioxidant status of battery manufacturing workers of Western Maharashtra, India. J. Clin. Diagn. Res., 2016, 10(4), BC08-BC11.
[http://dx.doi.org/10.7860/JCDR/2016/15968.7528] [PMID: 27190789]
[166]
Antonio-García, M.T.; Massó-Gonzalez, E.L. Toxic effects of perinatal lead exposure on the brain of rats: Involvement of oxidative stress and the beneficial role of antioxidants. Food Chem. Toxicol., 2008, 46(6), 2089-2095.
[http://dx.doi.org/10.1016/j.fct.2008.01.053] [PMID: 18417264]
[167]
Ahmad, F.; Haque, S.; Ravinayagam, V.; Ahmad, A.; Kamli, M.R.; Barreto, G.E.; Ghulam Md, A. Developmental lead (Pb)-induced deficits in redox and bioenergetic status of cerebellar synapses are ameliorated by ascorbate supplementation. Toxicology, 2020, 440, 152492.
[http://dx.doi.org/10.1016/j.tox.2020.152492] [PMID: 32407874]
[168]
Bhattacharya, S. Essential trace metals as countermeasure for lead toxicity. J. Environ. Pathol. Toxicol. Oncol., 2022, 41(2), 61-67.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2022040132] [PMID: 35695652]
[169]
Bjørklund, G.; Mutter, J.; Aaseth, J. Metal chelators and neurotoxicity: Lead, mercury, and arsenic. Arch. Toxicol., 2017, 91(12), 3787-3797.
[http://dx.doi.org/10.1007/s00204-017-2100-0] [PMID: 29063135]
[170]
Peana, M.; Zoroddu, M.A.; Pelucelli, A.; Medici, S.; Cappai, R.; Nurchi, V.M. Metal toxicity and speciation: A review. Curr. Med. Chem., 2021, 28(35), 7190-7208.
[http://dx.doi.org/10.2174/0929867328666210324161205] [PMID: 33761850]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy