Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Evaluating the Potential of Light Exposure on Reducing the Frequency of Epileptic Seizures

Author(s): Basheer Abdulfattah AlDajani, Mohammad Uzair, Hammad Qaiser, Ali Mir, Nojoud Mohammad Saleh, Raidah Al Baradie, Saneela Tahseen and Shahid Bashir*

Volume 23, Issue 4, 2024

Published on: 24 May, 2023

Page: [463 - 467] Pages: 5

DOI: 10.2174/1871527322666230407104706

Price: $65

Abstract

Epilepsy is one of the most common and devastating neurological disorders that causes unprovoked, recurrent seizures arising from excessive synchronized neuronal discharging. Although antiepileptic drugs (AEDs) reduce the frequency of epilepsy seizures, drug-refractory epileptic patients exert resistance to AEDs, resulting in treatment difficulty. Moreover, pharmacological treatments do not show satisfactory results in response to photosensitive epilepsy. In the recent era, light therapy emerged as a potential non-pharmacological approach for treating various diseases, including depression, seasonal affective disorders, migraine, pain, and others. Several studies have also shown the potential of light therapy in treating epilepsy. In addition, Red light evokes epilepsy seizures. Blue lenses filter the red light and significantly suppress the frequency of epilepsy seizures. However, the effects of green light on the frequency of epileptic seizures are not studied yet. In addition, light-activated gene therapy or optogenetics also emerged as a possible option for epilepsy treatment. Animal models have shown the therapeutic possibilities of optogenetics and light therapy; however, human studies addressing this possibility are still vague. This review provides the beneficial effects of light in reducing seizure frequency in epilepsy patients. A limited number of studies have been reported so far; therefore, light therapy for treating epilepsy requires more studies on animal models to provide precise results of light effects on seizures.

Keywords: Epilepsy, light therapy, photosensitive epilepsy, optogenetics, red light, blue light.

Graphical Abstract
[1]
WHO. Epilepsy World Health Organization. 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/epilepsy
[2]
Liu G, Xiao R, Xu L, Cai J. Minireview of epilepsy detection techniques based on electroencephalogram signals. Front Syst Neurosci 2021; 15: 685387.
[http://dx.doi.org/10.3389/fnsys.2021.685387] [PMID: 34093143]
[3]
Beghi E. The epidemiology of epilepsy. Neuroepidemiology 2020; 54(2): 185-91.
[http://dx.doi.org/10.1159/000503831] [PMID: 31852003]
[4]
Fisher RS. The new classification of seizures by the International League Against Epilepsy 2017. Curr Neurol Neurosci Rep 2017; 17(6): 48.
[http://dx.doi.org/10.1007/s11910-017-0758-6] [PMID: 28425015]
[5]
Rincon N, Barr D, Velez-Ruiz N. Neuromodulation in drug resistant epilepsy. Aging Dis 2021; 12(4): 1070-80.
[http://dx.doi.org/10.14336/AD.2021.0211] [PMID: 34221550]
[6]
Chatzikonstantinou S, Gioula G, Kimiskidis VK, McKenna J, Mavroudis I, Kazis D. The gut microbiome in drug‐resistant epilepsy. Epilepsia Open 2021; 6(1): 28-37.
[http://dx.doi.org/10.1002/epi4.12461] [PMID: 33681645]
[7]
Vakharia VN, Duncan JS, Witt JA, Elger CE, Staba R, Engel J Jr. Getting the best outcomes from epilepsy surgery. Ann Neurol 2018; 83(4): 676-90.
[http://dx.doi.org/10.1002/ana.25205] [PMID: 29534299]
[8]
Li MCH, Cook MJ. Deep brain stimulation for drug-resistant epilepsy. Epilepsia 2018; 59(2): 273-90.
[http://dx.doi.org/10.1111/epi.13964] [PMID: 29218702]
[9]
Baxendale SA. Light therapy as a treatment for epilepsy. Med Hypotheses 2011; 76(5): 661-4.
[http://dx.doi.org/10.1016/j.mehy.2011.01.025] [PMID: 21333455]
[10]
Martin L, Porreca F, Mata EI, et al. Green light exposure improves pain and quality of life in fibromyalgia patients: A preliminary one-way crossover clinical trial. Pain Med 2021; 22(1): 118-30.
[http://dx.doi.org/10.1093/pm/pnaa329] [PMID: 33155057]
[11]
Chao DM, Chen G, Cheng JS. Melatonin might be one possible medium of electroacupuncture anti-seizures. Acupunct Electrother Res 2001; 26(1): 39-48.
[http://dx.doi.org/10.3727/036012901816356027] [PMID: 11394492]
[12]
Danesi MA. Seasonal variations in the incidence of photoparoxysmal response to stimulation among photosensitive epileptic patients: Evidence from repeated EEG recordings. J Neurol Neurosurg Psychiatry 1988; 51(6): 875-7.
[http://dx.doi.org/10.1136/jnnp.51.6.875] [PMID: 3136232]
[13]
Procopio M, Marriott PK, Williams P. Season of birth: Aetiological implications for epilepsy. Seizure 1997; 6(2): 99-105.
[http://dx.doi.org/10.1016/S1059-1311(97)80062-3] [PMID: 9153721]
[14]
Procopio M, Marriott PK, Davies RJE. Seasonality of birth in epilepsy: A Southern hemisphere study. Seizure 2006; 15(1): 17-21.
[http://dx.doi.org/10.1016/j.seizure.2005.10.001] [PMID: 16298147]
[15]
Baxendale S. Seeing the light? Seizures and sunlight. Epilepsy Res 2009; 84(1): 72-6.
[http://dx.doi.org/10.1016/j.eplepsyres.2008.11.015] [PMID: 19144500]
[16]
Baxendale S, O’Sullivan J, Heaney D. Bright light therapy as an add on treatment for medically intractable epilepsy. Epilepsy Behav 2012; 24(3): 359-64.
[http://dx.doi.org/10.1016/j.yebeh.2012.04.123] [PMID: 22658437]
[17]
Baxendale S, O’Sullivan J, Heaney D. Bright light therapy for symptoms of anxiety and depression in focal epilepsy: Randomised controlled trial. Br J Psychiatry 2013; 202(5): 352-6.
[http://dx.doi.org/10.1192/bjp.bp.112.122119] [PMID: 23520221]
[18]
Brausch CC, Ferguson JH. Color as a factor in light-sensitive epilepsy. Neurology 1965; 15(2): 154-64.
[http://dx.doi.org/10.1212/WNL.15.2.154] [PMID: 14275272]
[19]
Takahashi T, Tsukahara Y. Influence of color on the photoconvulsive response. Electroencephalogr Clin Neurophysiol 1976; 41(2): 124-36.
[http://dx.doi.org/10.1016/0013-4694(76)90040-7] [PMID: 58775]
[20]
Parra J, Lopes da Silva FH, Stroink H, Kalitzin S. Is colour modulation an independent factor in human visual photosensitivity? Brain 2007; 130(6): 1679-89.
[http://dx.doi.org/10.1093/brain/awm103] [PMID: 17525144]
[21]
Covanis A, Solodar J. Photosensitive and pattern-sensitive epilepsy: A guide for patients and caregivers.In. Kasteleijn-Nolst DT, Nesmos, (Eds.) The Importance of Photosensitivity for Epilepsy 2021; pp. 393-406.
[http://dx.doi.org/10.1007/978-3-319-05080-5_32]
[22]
Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY. ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 2013; 16(10): 1499-508.
[http://dx.doi.org/10.1038/nn.3502] [PMID: 23995068]
[23]
Mesri JC, Dellepiane C. Colour and photosensitive epilepsy. Medicina 1991; 51(4): 327-30.
[PMID: 1821920]
[24]
Yang X, Rode DL, Peterka DS, Yuste R, Rothman SM. Optical control of focal epilepsy in vivo with caged γ-aminobutyric acid. Ann Neurol 2012; 71(1): 68-75.
[http://dx.doi.org/10.1002/ana.22596] [PMID: 22275253]
[25]
Capovilla G, Beccaria F, Romeo A, Veggiotti P, Canger R, Paladin F. Effectiveness of a particular blue lens on photoparoxysmal response in photosensitive epileptic patients. Ital J Neurol Sci 1999; 20(3): 161-6.
[http://dx.doi.org/10.1007/s100720050026] [PMID: 10541598]
[26]
Takahashi T, Tsukahara Y. Usefulness of blue sunglasses in photosensitive epilepsy. Epilepsia 1992; 33(3): 517-21.
[http://dx.doi.org/10.1111/j.1528-1157.1992.tb01702.x] [PMID: 1592030]
[27]
Capovilla G, Gambardella A, Rubboli G, et al. Suppressive efficacy by a commercially available blue lens on PPR in 610 photosensitive epilepsy patients. Epilepsia 2006; 47(3): 529-33.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00463.x] [PMID: 16529617]
[28]
Kepecs MR, Boro A, Haut S, Kepecs G, Moshé SL. A novel nonpharmacologic treatment for photosensitive epilepsy: A report of three patients tested with blue cross-polarized glasses. Epilepsia 2004; 45(9): 1158-62.
[http://dx.doi.org/10.1111/j.0013-9580.2004.07004.x] [PMID: 15329083]
[29]
Joshi J, Rubart M, Zhu W. Optogenetics: Background, methodological advances and potential applications for cardiovascular research and medicine. Front Bioeng Biotechnol 2020; 7: 466.
[http://dx.doi.org/10.3389/fbioe.2019.00466] [PMID: 32064254]
[30]
Tønnesen J, Kokaia M. Epilepsy and optogenetics: Can seizures be controlled by light? Clin Sci 2017; 131(14): 1605-16.
[http://dx.doi.org/10.1042/CS20160492] [PMID: 28667062]
[31]
Kokaia M, Andersson M, Ledri M. An optogenetic approach in epilepsy. Neuropharmacology 2013; 69: 89-95.
[http://dx.doi.org/10.1016/j.neuropharm.2012.05.049] [PMID: 22698957]
[32]
Wykes RC, Kullmann DM, Pavlov I, Magloire V. Optogenetic approaches to treat epilepsy. J Neurosci Methods 2016; 260: 215-20.
[http://dx.doi.org/10.1016/j.jneumeth.2015.06.004] [PMID: 26072246]
[33]
Shimoda Y, Beppu K, Ikoma Y, et al. Optogenetic stimulus-triggered acquisition of seizure resistance. Neurobiol Dis 2022; 163: 105602.
[http://dx.doi.org/10.1016/j.nbd.2021.105602] [PMID: 34954320]
[34]
Kleis P, Paschen E, Häussler U, Bernal Sierra YA, Haas CA. Long-term in vivo application of a potassium channel-based optogenetic silencer in the healthy and epileptic mouse hippocampus. BMC Biol 2022; 20(1): 18.
[http://dx.doi.org/10.1186/s12915-021-01210-1] [PMID: 35031048]
[35]
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005; 8(9): 1263-8.
[http://dx.doi.org/10.1038/nn1525] [PMID: 16116447]
[36]
Krook-Magnuson E, Armstrong C, Oijala M, Soltesz I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 2013; 4(1): 1376.
[http://dx.doi.org/10.1038/ncomms2376] [PMID: 23340416]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy