Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Crosstalk between Oxidative Stress and Inflammation Induced by Ionizing Radiation in Healthy and Cancerous Cells

Author(s): Mohsen Mohammadgholi and Seyed Jalal Hosseinimehr*

Volume 31, Issue 19, 2024

Published on: 08 June, 2023

Page: [2751 - 2769] Pages: 19

DOI: 10.2174/0929867330666230407104208

Price: $65

conference banner
Abstract

Radiotherapy (RT) is a unique modality in cancer treatment with no replacement in many cases and uses a tumoricidal dose of various ionizing radiation (IR) types to kill cancer cells. It causes oxidative stress through reactive oxygen species (ROS) production or the destruction of antioxidant systems. On the other hand, RT stimulates the immune system both directly and indirectly by releasing danger signals from stress-exposed and dying cells. Oxidative stress and inflammation are two reciprocal and closely related mechanisms, one induced and involved by the other. ROS regulates the intracellular signal transduction pathways, which participate in the activation and expression of pro-inflammatory genes. Reciprocally, inflammatory cells release ROS and immune system mediators during the inflammation process, which drive the induction of oxidative stress. Oxidative stress or inflammation-induced damages can result in cell death (CD) or survival mechanisms that may be destructive for normal cells or beneficial for cancerous cells. The present study has focused on the radioprotection of those agents with binary effects of antioxidant and anti-inflammatory mechanisms IR-induced CD.

Keywords: Oxidative stress, inflammation, ionizing radiation, cell death, cancer, radioprotection, reactive oxygen species.

[1]
Hulvat, M.C. Cancer incidence and trends. Surg. Clin. North Am., 2020, 100(3), 469-481.
[http://dx.doi.org/10.1016/j.suc.2020.01.002] [PMID: 32402294]
[2]
Yahya, E.B.; Alqadhi, A.M. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci., 2021, 269, 119087.
[http://dx.doi.org/10.1016/j.lfs.2021.119087] [PMID: 33476633]
[3]
Bidram, E.; Esmaeili, Y.; Ranji-Burachaloo, H.; Al-Zaubai, N.; Zarrabi, A.; Stewart, A.; Dunstan, D.E. A concise review on cancer treatment methods and delivery systems. J. Drug Deliv. Sci. Technol., 2019, 54, 101350.
[http://dx.doi.org/10.1016/j.jddst.2019.101350]
[4]
Ural, K.; Isa, C. Toxicology; Elsevier, 2021, pp. 233-241.
[5]
Nuszkiewicz, J.; Woźniak, A.; Szewczyk-Golec, K. Ionizing radiation as a source of oxidative stress-the protective role of melatonin and vitamin D. Int. J. Mol. Sci., 2020, 21(16), 5804.
[http://dx.doi.org/10.3390/ijms21165804] [PMID: 32823530]
[6]
Formenti, S.C.; Demaria, S. Combining radiotherapy and cancer immunotherapy: A paradigm shift. J. Natl. Cancer Inst., 2013, 105(4), 256-265.
[http://dx.doi.org/10.1093/jnci/djs629] [PMID: 23291374]
[7]
Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov., 2009, 3(1), 73-80.
[http://dx.doi.org/10.2174/187221309787158371] [PMID: 19149749]
[8]
Krylatov, A.V.; Maslov, L.N.; Voronkov, N.S.; Boshchenko, A.A.; Popov, S.V.; Gomez, L.; Wang, H.; Jaggi, A.S.; Downey, J.M. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev., 2018, 14(4), 290-300.
[http://dx.doi.org/10.2174/1573403X14666180702152436] [PMID: 29962348]
[9]
Liu, R.; Bian, Y.; Liu, L.; Liu, L.; Liu, X.; Ma, S. Molecular pathways associated with oxidative stress and their potential applications in radiotherapy (Review). Int. J. Mol. Med., 2022, 49(5), 65.
[http://dx.doi.org/10.3892/ijmm.2022.5121] [PMID: 35293589]
[10]
Raviraj, J.; Bokkasam, V.; Kumar, V.; Reddy, U.; Suman, V. Radiosensitizers, radioprotectors, and radiation mitigators. Indian J. Dent. Res., 2014, 25(1), 83-90.
[http://dx.doi.org/10.4103/0970-9290.131142] [PMID: 24748306]
[11]
Mun, G.I.; Kim, S.; Choi, E.; Kim, C.S.; Lee, Y.S. Pharmacology of natural radioprotectors. Arch. Pharm. Res., 2018, 41(11), 1033-1050.
[http://dx.doi.org/10.1007/s12272-018-1083-6] [PMID: 30361949]
[12]
Laube, M.; Kniess, T.; Pietzsch, J. Development of antioxidant COX-2 inhibitors as radioprotective agents for radiation therapy-a hypothesis-driven review. Antioxidants, 2016, 5(2), 14.
[http://dx.doi.org/10.3390/antiox5020014] [PMID: 27104573]
[13]
Hall, E.J.; Giaccia, A.J. Radiobiology for the radiologist. Springer, 2018.
[14]
Shimizu, S.; Konishi, A.; Nishida, Y.; Mizuta, T.; Nishina, H.; Yamamoto, A.; Tsujimoto, Y. Involvement of JNK in the regulation of autophagic cell death. Oncogene, 2010, 29(14), 2070-2082.
[http://dx.doi.org/10.1038/onc.2009.487] [PMID: 20101227]
[15]
Duprez, L.; Wirawan, E.; Berghe, T.V.; Vandenabeele, P. Major cell death pathways at a glance. Microbes Infect., 2009, 11(13), 1050-1062.
[http://dx.doi.org/10.1016/j.micinf.2009.08.013] [PMID: 19733681]
[16]
Yu, X.; He, S. The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways. Virol. J., 2016, 13(1), 77.
[http://dx.doi.org/10.1186/s12985-016-0528-0] [PMID: 27154074]
[17]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: recommendations of the Nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[18]
Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; Hengartner, M.; Knight, R.A.; Kumar, S.; Lipton, S.A.; Malorni, W.; Nuñez, G.; Peter, M.E.; Tschopp, J.; Yuan, J.; Piacentini, M.; Zhivotovsky, B.; Melino, G. Classification of cell death: Recommendations of the nomenclature committee on cell death 2009. Cell Death Differ., 2009, 16(1), 3-11.
[http://dx.doi.org/10.1038/cdd.2008.150] [PMID: 18846107]
[19]
van Doorn, W.G. Classes of programmed cell death in plants, compared to those in animals. J. Exp. Bot., 2011, 62(14), 4749-4761.
[http://dx.doi.org/10.1093/jxb/err196] [PMID: 21778180]
[20]
Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell, 2011, 147(4), 728-741.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[21]
Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[22]
Bozhkov, P.V. Plant autophagy: Mechanisms and functions. J. Exp. Bot., 2018, 69(6), 1281-1285.
[http://dx.doi.org/10.1093/jxb/ery070] [PMID: 29547996]
[23]
Pollack, J.; Harris, S.; Marten, M. Autophagy in filamentous fungi. Fungal Genet. Biol., 2009, 46(1), 1-8.
[http://dx.doi.org/10.1016/j.fgb.2008.10.010] [PMID: 19010432]
[24]
Galluzzi, L.; Vitale, I.; Abrams, J.M.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; Dawson, T.M.; Dawson, V.L.; El-Deiry, W.S.; Fulda, S.; Gottlieb, E.; Green, D.R.; Hengartner, M.O.; Kepp, O.; Knight, R.A.; Kumar, S.; Lipton, S.A.; Lu, X.; Madeo, F.; Malorni, W.; Mehlen, P.; Nuñez, G.; Peter, M.E.; Piacentini, M.; Rubinsztein, D.C.; Shi, Y.; Simon, H-U.; Vandenabeele, P.; White, E.; Yuan, J.; Zhivotovsky, B.; Melino, G.; Kroemer, G. Molecular definitions of cell death subroutines: Recommendations of the nomenclature committee on cell death 2012. Cell Death Differ., 2012, 19(1), 107-120.
[http://dx.doi.org/10.1038/cdd.2011.96] [PMID: 21760595]
[25]
Proskuryakov, S.Y.; Konoplyannikov, A.G.; Gabai, V.L. Necrosis: A specific form of programmed cell death? Exp. Cell Res., 2003, 283(1), 1-16.
[http://dx.doi.org/10.1016/S0014-4827(02)00027-7] [PMID: 12565815]
[26]
Khalid, N.; Azimpouran, M. Necrosis. Treasure Island (FL). StatPearls Publishing, 2023.
[27]
Galluzzi, L.; Maiuri, M.C.; Vitale, I.; Zischka, H.; Castedo, M.; Zitvogel, L.; Kroemer, G. Cell death modalities: Classification and pathophysiological implications. Cell Death Differ., 2007, 14(7), 1237-1243.
[http://dx.doi.org/10.1038/sj.cdd.4402148] [PMID: 17431418]
[28]
Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front. Cell Dev. Biol., 2020, 8, 41.
[http://dx.doi.org/10.3389/fcell.2020.00041] [PMID: 32117972]
[29]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[30]
Kim, B.; Hong, Y.; Lee, S.; Liu, P.; Lim, J.; Lee, Y.; Lee, T.; Chang, K.; Hong, Y. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int. J. Mol. Sci., 2015, 16(11), 26880-26913.
[http://dx.doi.org/10.3390/ijms161125991] [PMID: 26569225]
[31]
Kim, W.; Lee, S.; Seo, D.; Kim, D.; Kim, K.; Kim, E.; Kang, J.; Seong, K.M.; Youn, H.; Youn, B. Cellular stress responses in radiotherapy. Cells, 2019, 8(9), 1105.
[http://dx.doi.org/10.3390/cells8091105] [PMID: 31540530]
[32]
Vaes, R.D.W.; Hendriks, L.E.L.; Vooijs, M.; De Ruysscher, D. Biomarkers of radiotherapy-induced immunogenic cell death. Cells, 2021, 10(4), 930.
[http://dx.doi.org/10.3390/cells10040930] [PMID: 33920544]
[33]
Maier, P.; Hartmann, L.; Wenz, F.; Herskind, C. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int. J. Mol. Sci., 2016, 17(1), 102.
[http://dx.doi.org/10.3390/ijms17010102] [PMID: 26784176]
[34]
Corre, I.; Guillonneau, M.; Paris, F. Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity. Int. J. Mol. Sci., 2013, 14(11), 22678-22696.
[http://dx.doi.org/10.3390/ijms141122678] [PMID: 24252908]
[35]
Chaurasia, M.; Bhatt, A.N.; Das, A.; Dwarakanath, B.S.; Sharma, K. Radiation-induced autophagy: Mechanisms and consequences. Free Radic. Res., 2016, 50(3), 273-290.
[http://dx.doi.org/10.3109/10715762.2015.1129534] [PMID: 26764568]
[36]
Desai, R. Cell death. Available from: https://drrajivdesaimd.com/2014/01/01/cell-death/
[37]
Manning, G.; Tichý, A.; Sirák, I.; Badie, C. Radiotherapy-associated long-term modification of expression of the inflammatory biomarker genes ARG1, BCL2L1, and MYC. Front. Immunol., 2017, 8, 412.
[http://dx.doi.org/10.3389/fimmu.2017.00412] [PMID: 28443095]
[38]
Gong, Y.; Fan, Z.; Luo, G.; Yang, C.; Huang, Q.; Fan, K.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; Liu, C. The role of necroptosis in cancer biology and therapy. Mol. Cancer, 2019, 18(1), 100.
[http://dx.doi.org/10.1186/s12943-019-1029-8] [PMID: 31122251]
[39]
Eriksson, D.; Stigbrand, T. Radiation-induced cell death mechanisms. Tumour Biol., 2010, 31(4), 363-372.
[http://dx.doi.org/10.1007/s13277-010-0042-8] [PMID: 20490962]
[40]
Vitale, I.; Galluzzi, L.; Castedo, M.; Kroemer, G. Mitotic catastrophe: A mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol., 2011, 12(6), 385-392.
[http://dx.doi.org/10.1038/nrm3115] [PMID: 21527953]
[41]
Vakifahmetoglu, H.; Olsson, M.; Zhivotovsky, B. Death through a tragedy: Mitotic catastrophe. Cell Death Differ., 2008, 15(7), 1153-1162.
[http://dx.doi.org/10.1038/cdd.2008.47] [PMID: 18404154]
[42]
He, X.; Yang, A.; McDonald, D.G.; Riemer, E.C.; Vanek, K.N.; Schulte, B.A.; Wang, G.Y. MiR-34a modulates ionizing radiation-induced senescence in lung cancer cells. Oncotarget, 2017, 8(41), 69797-69807.
[http://dx.doi.org/10.18632/oncotarget.19267] [PMID: 29050242]
[43]
Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol., 2013, 75(1), 685-705.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183653] [PMID: 23140366]
[44]
Wang, G.; Cheng, X.; Zhang, J.; Liao, Y.; Jia, Y.; Qing, C. Possibility of inducing tumor cell senescence during therapy (Review). Oncol. Lett., 2021, 22(1), 496.
[http://dx.doi.org/10.3892/ol.2021.12757] [PMID: 33981358]
[45]
Kwon, S.; Ko, H.; You, D.G.; Kataoka, K.; Park, J.H. Nanomedicines for reactive oxygen species mediated approach: An emerging paradigm for cancer treatment. Acc. Chem. Res., 2019, 52(7), 1771-1782.
[http://dx.doi.org/10.1021/acs.accounts.9b00136] [PMID: 31241894]
[46]
del Río, L.A.; López-Huertas, E. ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol., 2016, 57(7), pcw076.
[http://dx.doi.org/10.1093/pcp/pcw076] [PMID: 27081099]
[47]
Martínez, M.C.; Andriantsitohaina, R. Reactive nitrogen species: Molecular mechanisms and potential significance in health and disease. Antioxid. Redox Signal., 2009, 11(3), 669-702.
[http://dx.doi.org/10.1089/ars.2007.1993] [PMID: 19014277]
[48]
Doshi, S.B.; Khullar, K.; Sharma, R.K.; Agarwal, A. Role of reactive nitrogen species in male infertility. Reprod. Biol. Endocrinol., 2012, 10(1), 109.
[http://dx.doi.org/10.1186/1477-7827-10-109] [PMID: 23241221]
[49]
Bhattacharya, S. In Free radicals in human health and disease. Springer, 2015, 17-29.
[http://dx.doi.org/10.1007/978-81-322-2035-0_2]
[50]
Mittler, R. ROS are good. Trends Plant Sci., 2017, 22(1), 11-19.
[http://dx.doi.org/10.1016/j.tplants.2016.08.002] [PMID: 27666517]
[51]
Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res., 2018, 122(6), 877-902.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311401] [PMID: 29700084]
[52]
Salim, S. Oxidative stress and psychological disorders. Curr. Neuropharmacol., 2014, 12(2), 140-147.
[http://dx.doi.org/10.2174/1570159X11666131120230309] [PMID: 24669208]
[53]
McKelvey, K.J.; Hudson, A.L.; Back, M.; Eade, T.; Diakos, C.I. Radiation, inflammation and the immune response in cancer. Mamm. Genome, 2018, 29(11-12), 843-865.
[http://dx.doi.org/10.1007/s00335-018-9777-0] [PMID: 30178305]
[54]
Wang, Y.; Qi, H.; Liu, Y.; Duan, C.; Liu, X.; Xia, T.; Chen, D.; Piao, H.; Liu, H.X. The double-edged roles of ROS in cancer prevention and therapy. Theranostics, 2021, 11(10), 4839-4857.
[http://dx.doi.org/10.7150/thno.56747] [PMID: 33754031]
[55]
Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[56]
Yahyapour, R.; Amini, P.; Rezapour, S.; Cheki, M.; Rezaeyan, A.; Farhood, B.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Radiation-induced inflammation and autoimmune diseases. Mil. Med. Res., 2018, 5(1), 9.
[http://dx.doi.org/10.1186/s40779-018-0156-7] [PMID: 29554942]
[57]
Wei, J.; Wang, B.; Wang, H.; Meng, L.; Zhao, Q.; Li, X.; Xin, Y.; Jiang, X. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms. Oxid Med Cell Longev, 2019, 2019, 3010342.
[http://dx.doi.org/10.1155/2019/3010342]
[58]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[59]
Kato, J.; Svensson, C.I. Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain. Prog. Mol. Biol. Transl. Sci., 2015, 131, 251-279.
[http://dx.doi.org/10.1016/bs.pmbts.2014.11.014] [PMID: 25744676]
[60]
Neher, M.D.; Weckbach, S.; Flierl, M.A.; Huber-Lang, M.S.; Stahel, P.F. Molecular mechanisms of inflammation and tissue injury after major trauma-is complement the “bad guy”? J. Biomed. Sci., 2011, 18(1), 90.
[http://dx.doi.org/10.1186/1423-0127-18-90] [PMID: 22129197]
[61]
Mavragani, I.V.; Laskaratou, D.A.; Frey, B.; Candéias, S.M.; Gaipl, U.S.; Lumniczky, K.; Georgakilas, A.G. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol. Res., 2016, 5(1), 12-33.
[http://dx.doi.org/10.1039/c5tx00222b] [PMID: 30090323]
[62]
Ashley, N.T.; Weil, Z.M.; Nelson, R.J. Inflammation: Mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst., 2012, 43(1), 385-406.
[http://dx.doi.org/10.1146/annurev-ecolsys-040212-092530]
[63]
Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34.
[http://dx.doi.org/10.3109/08830185.2010.529976] [PMID: 21235323]
[64]
Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol., 2020, 20(2), 95-112.
[http://dx.doi.org/10.1038/s41577-019-0215-7] [PMID: 31558839]
[65]
Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in inflammatory disease. Int. J. Mol. Sci., 2019, 20(23), 6008.
[http://dx.doi.org/10.3390/ijms20236008] [PMID: 31795299]
[66]
Brooks, A.J.; Dehkhoda, F.; Kragelund, B.B. Cytokine receptors. Princ Endocrinol Horm Action, 2016.
[http://dx.doi.org/10.1007/978-3-319-27318-1_8-1]
[67]
Singh, V.; Gupta, D.; Arora, R. NF-κB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries, 2015, 3(1), e35.
[http://dx.doi.org/10.15190/d.2015.27] [PMID: 32309561]
[68]
Lingappan, K. NF-κB in oxidative stress. Curr. Opin. Toxicol., 2018, 7, 81-86.
[http://dx.doi.org/10.1016/j.cotox.2017.11.002] [PMID: 29862377]
[69]
Barnabei, L.; Laplantine, E.; Mbongo, W.; Rieux-Laucat, F.; Weil, R. NF-κB: At the borders of autoimmunity and inflammation. Front. Immunol., 2021, 12, 716469.
[http://dx.doi.org/10.3389/fimmu.2021.716469] [PMID: 34434197]
[70]
Sun, S.C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol., 2017, 17(9), 545-558.
[http://dx.doi.org/10.1038/nri.2017.52] [PMID: 28580957]
[71]
Patel, Y.; Heyward, C.A.; White, M.R.H.; Kell, D.B. Predicting the points of interaction of small molecules in the NF-κB pathway. BMC Syst. Biol., 2011, 5(1), 32.
[http://dx.doi.org/10.1186/1752-0509-5-32] [PMID: 21342508]
[72]
Munshi, A.; Ramesh, R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer, 2013, 4(9-10), 401-408.
[http://dx.doi.org/10.1177/1947601913485414] [PMID: 24349638]
[73]
Dent, P.; Yacoub, A.; Fisher, P.B.; Hagan, M.P.; Grant, S. MAPK pathways in radiation responses. Oncogene, 2003, 22(37), 5885-5896.
[http://dx.doi.org/10.1038/sj.onc.1206701] [PMID: 12947395]
[74]
Morrison, D.K. MAP kinase pathways. Cold Spring Harb. Perspect. Biol., 2012, 4(11), a011254.
[http://dx.doi.org/10.1101/cshperspect.a011254] [PMID: 23125017]
[75]
Harrison, D.A. The JAK/STAT Pathway. Cold Spring Harb. Perspect. Biol., 2012, 4(3), a011205.
[http://dx.doi.org/10.1101/cshperspect.a011205] [PMID: 22383755]
[76]
Seif, F.; Khoshmirsafa, M.; Aazami, H.; Mohsenzadegan, M.; Sedighi, G.; Bahar, M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal., 2017, 15(1), 23.
[http://dx.doi.org/10.1186/s12964-017-0177-y] [PMID: 28637459]
[77]
Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol., 2020, 80, 106210.
[http://dx.doi.org/10.1016/j.intimp.2020.106210] [PMID: 31972425]
[78]
Hin Tang, J.J.; Hao Thng, D.K.; Lim, J.J.; Toh, T.B. JAK/STAT signaling in hepatocellular carcinoma. Hepat. Oncol., 2020, 7(1), HEP18.
[http://dx.doi.org/10.2217/hep-2020-0001] [PMID: 32273976]
[79]
Deorukhkar, A.; Krishnan, S. Targeting inflammatory pathways for tumor radiosensitization. Biochem. Pharmacol., 2010, 80(12), 1904-1914.
[http://dx.doi.org/10.1016/j.bcp.2010.06.039] [PMID: 20599771]
[80]
Bharadwaj, U.; Kasembeli, M.M.; Robinson, P.; Tweardy, D.J. Targeting Janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: Rationale, progress, and caution. Pharmacol. Rev., 2020, 72(2), 486-526.
[http://dx.doi.org/10.1124/pr.119.018440] [PMID: 32198236]
[81]
Hein, A.L.; Ouellette, M.M.; Yan, Y. Radiation-induced signaling pathways that promote cancer cell survival (Review). Int. J. Oncol., 2014, 45(5), 1813-1819.
[http://dx.doi.org/10.3892/ijo.2014.2614] [PMID: 25174607]
[82]
Xu, F.; Na, L.; Li, Y.; Chen, L. RETRACTED ARTICLE: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci., 2020, 10(1), 54.
[http://dx.doi.org/10.1186/s13578-020-00416-0] [PMID: 32266056]
[83]
Padmanabhan, R.; Meskin, N.; Al Moustafa, A.E. Mathematical Models of Cancer and Different Therapies; Springer, 2021, pp. 123-133.
[http://dx.doi.org/10.1007/978-981-15-8640-8_6]
[84]
Rosenblatt, E.; Zubizarreta, E. Radiotherapy in cancer care: Facing the global challenge. Int. Atom. Energy Agency Vienna, 2017.
[85]
Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, K.W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci., 2014, 1, 24.
[http://dx.doi.org/10.3389/fmolb.2014.00024] [PMID: 25988165]
[86]
Hubenak, J.R.; Zhang, Q.; Branch, C.D.; Kronowitz, S.J. Mechanisms of injury to normal tissue after radiotherapy: a review. Plast. Reconstr. Surg., 2014, 133(1), 49e-56e.
[http://dx.doi.org/10.1097/01.prs.0000440818.23647.0b] [PMID: 24374687]
[87]
Formenti, S.C.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol., 2009, 10(7), 718-726.
[http://dx.doi.org/10.1016/S1470-2045(09)70082-8] [PMID: 19573801]
[88]
Ahmad, S.S.; Duke, S.; Jena, R.; Williams, M.V.; Burnet, N.G. Advances in radiotherapy. BMJ, 2012, 345(dec04 1), e7765.
[http://dx.doi.org/10.1136/bmj.e7765] [PMID: 23212681]
[89]
Khan, H.A.; Alhomida, A.S. A review of the logistic role of l-carnitine in the management of radiation toxicity and radiotherapy side effects. J. Appl. Toxicol., 2011, 31(8), 707-713.
[http://dx.doi.org/10.1002/jat.1716] [PMID: 21818761]
[90]
Chen, H.H.W.; Kuo, M.T. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget, 2017, 8(37), 62742-62758.
[http://dx.doi.org/10.18632/oncotarget.18409] [PMID: 28977985]
[91]
Braunstein, S.; Nakamura, J.L. Radiotherapy-induced malignancies: Review of clinical features, pathobiology, and evolving approaches for mitigating risk. Front. Oncol., 2013, 3, 73.
[http://dx.doi.org/10.3389/fonc.2013.00073] [PMID: 23565507]
[92]
Vilalta, M.; Rafat, M.; Graves, E.E. Effects of radiation on metastasis and tumor cell migration. Cell. Mol. Life Sci., 2016, 73(16), 2999-3007.
[http://dx.doi.org/10.1007/s00018-016-2210-5] [PMID: 27022944]
[93]
Barker, H.E.; Paget, J.T.E.; Khan, A.A.; Harrington, K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer, 2015, 15(7), 409-425.
[http://dx.doi.org/10.1038/nrc3958] [PMID: 26105538]
[94]
Wang, J.; Wang, H.; Qian, H. Biological effects of radiation on cancer cells. Mil. Med. Res., 2018, 5(1), 20.
[http://dx.doi.org/10.1186/s40779-018-0167-4] [PMID: 29958545]
[95]
Majeed, H.; Gupta, V. Adverse effects of radiation therapy. StatPearls, 2020.
[96]
Gieringer, M.; Gosepath, J.; Naim, R. Radiotherapy and wound healing: Principles, management and prospects (Review). Oncol. Rep., 2011, 26(2), 299-307.
[http://dx.doi.org/10.3892/or.2011.1319] [PMID: 21617873]
[97]
Tang, L.; Wei, F.; Wu, Y.; He, Y.; Shi, L.; Xiong, F.; Gong, Z.; Guo, C.; Li, X.; Deng, H.; Cao, K.; Zhou, M.; Xiang, B.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Zeng, Z. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J. Exp. Clin. Cancer Res., 2018, 37(1), 87.
[http://dx.doi.org/10.1186/s13046-018-0758-7] [PMID: 29688867]
[98]
Galeaz, C.; Totis, C.; Bisio, A. Radiation resistance: A matter of transcription factors. Front. Oncol., 2021, 11, 662840.
[http://dx.doi.org/10.3389/fonc.2021.662840] [PMID: 34141616]
[99]
Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 2014, 20(7), 1126-1167.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[100]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[101]
Cheki, M.; Yahyapour, R.; Farhood, B.; Rezaeyan, A.; Shabeeb, D.; Amini, P.; Rezapoor, S.; Najafi, M. COX-2 in radiotherapy: A potential target for radioprotection and radiosensitization. Curr. Mol. Pharmacol., 2018, 11(3), 173-183.
[http://dx.doi.org/10.2174/1874467211666180219102520] [PMID: 29468988]
[102]
Lee, T.K.; Stupans, I. Radioprotection: The non-steroidal anti-inflammatory drugs (NSAIDs) and prostaglandins. J. Pharm. Pharmacol., 2010, 54(11), 1435-1445.
[http://dx.doi.org/10.1211/00223570254] [PMID: 12495545]
[103]
Khayyal, M.T.; El-Ghazaly, M.A.; El-Hazek, R.M.; Nada, A.S. The effects of celecoxib, a COX-2 selective inhibitor, on acute inflammation induced in irradiated rats. Inflammopharmacology, 2009, 17(5), 255-266.
[http://dx.doi.org/10.1007/s10787-009-0014-z] [PMID: 19798548]
[104]
Demirel, C.; Kilciksiz, S.C.; Gurgul, S.; Erdal, N.; Yigit, S.; Tamer, L.; Ayaz, L. Inhibition of radiation-induced oxidative damage in the lung tissue: May acetylsalicylic acid have a positive role? Inflammation, 2016, 39(1), 158-165.
[http://dx.doi.org/10.1007/s10753-015-0234-x] [PMID: 26276129]
[105]
Hosseinimehr, S.J.; Nobakht, R.; Ghasemi, A.; Pourfallah, T.A. Radioprotective effect of mefenamic acid against radiation-induced genotoxicity in human lymphocytes. Radiat. Oncol. J., 2015, 33(3), 256-260.
[http://dx.doi.org/10.3857/roj.2015.33.3.256] [PMID: 26484310]
[106]
Alok, A.; Adhikari, J.S.; Chaudhury, N.K. Radioprotective role of clinical drug diclofenac sodium. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2013, 755(2), 156-162.
[http://dx.doi.org/10.1016/j.mrgentox.2013.06.015] [PMID: 23827778]
[107]
Yamasaki, M.C.; Nejaim, Y.; Roque-Torres, G.D.; Freitas, D.Q. Meloxicam as a radiation-protective agent on mandibles of irradiated rats. Braz. Dent. J., 2017, 28(2), 249-255.
[http://dx.doi.org/10.1590/0103-6440201701271] [PMID: 28492757]
[108]
Dokmeci, D.; Akpolat, M.; Aydogdu, N.; Uzal, C.; Turan, N.F. The modifying effect of ibuprofen on total body irradiation-induced elevation of oxidative reactions in male hamsters. Acta Med. Biol., 2004, 52(2), 67-72.
[109]
Nishiguchi, I.; Furuta, Y.; Hunter, N.; Murray, D.; Milas, L. Radioprotection of hematopoietic tissues in mice by indomethacin. Radiat. Res., 1990, 122(2), 188-192.
[http://dx.doi.org/10.2307/3577605] [PMID: 2159648]
[110]
Hofmann, B.; Steinhilber, D. 5-Lipoxygenase inhibitors: A review of recent patents (2010 – 2012). Expert Opin. Ther. Pat., 2013, 23(7), 895-909.
[http://dx.doi.org/10.1517/13543776.2013.791678] [PMID: 23600432]
[111]
Peixoto, C.A.; Silva, B.S. Anti-inflammatory effects of diethylcarbamazine: A review. Eur. J. Pharmacol., 2014, 734, 35-41.
[http://dx.doi.org/10.1016/j.ejphar.2014.03.046] [PMID: 24726556]
[112]
Farzipour, S.; Amiri, F.T.; Mihandoust, E.; Shaki, F.; Noaparast, Z.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of diethylcarbamazine on radiation-induced acute lung injury and oxidative stress in mice. J. Bioenerg. Biomembr., 2020, 52(1), 39-46.
[http://dx.doi.org/10.1007/s10863-019-09820-9] [PMID: 31853753]
[113]
Torabizadeh, S.A.; Rezaeifar, M.; Jomehzadeh, A.; Nabizadeh Haghighi, F.; Ansari, M. Radioprotective potential of sulindac sulfide to prevent DNA damage due to ionizing radiation. Drug Des. Devel. Ther., 2019, 13, 4127-4134.
[http://dx.doi.org/10.2147/DDDT.S218022] [PMID: 31827319]
[114]
Hosseinimehr, S.; Fathi, M.; Ghasemi, A.; Shiadeh, S.R.; Pourfallah, T. Celecoxib mitigates genotoxicity induced by ionizing radiation in human blood lymphocytes. Res. Pharm. Sci., 2017, 12(1), 82-87.
[http://dx.doi.org/10.4103/1735-5362.199051] [PMID: 28255318]
[115]
Hormati, A.; Ahmadpour, S.; Afkhami Ardekani, M.; Khodadust, F.; Refahi, S. Radioprotective effects of montelukast, a selective leukotriene CysLT1 receptor antagonist, against nephrotoxicity induced by gamma radiation in mice. J. Biochem. Mol. Toxicol., 2020, 34(6), e22479.
[http://dx.doi.org/10.1002/jbt.22479] [PMID: 32125029]
[116]
Tokat, A.O.; Akbulut, A.; Billur, D.; Koca, G.; Bayram, P.; Kuru, S.; Karasu, S.; Aydogmus, S.; Cakmak, H.; Ozmert, S.; Korkmaz, M. Montelukast attenuates radioactive I131-induced pulmonary damage on rats. Int. J. Radiat. Biol., 2018, 94(6), 542-550.
[http://dx.doi.org/10.1080/09553002.2018.1466065] [PMID: 29659324]
[117]
Koca, G.; Gültekin, S.S.; Han, Ü.; Kuru, S.; Demirel, K.; Korkmaz, M. The efficacy of montelukast as a protective agent against 131I-induced salivary gland damage in rats. Nucl. Med. Commun., 2013, 34(5), 507-517.
[http://dx.doi.org/10.1097/MNM.0b013e32835ffecd] [PMID: 23478587]
[118]
Di Raimondo, D.; Tuttolomondo, A.; Buttà, C.; Miceli, S.; Licata, G.; Pinto, A. Effects of ACE-inhibitors and angiotensin receptor blockers on inflammation. Curr. Pharm. Des., 2012, 18(28), 4385-4413.
[http://dx.doi.org/10.2174/138161212802481282] [PMID: 22283779]
[119]
Robbins, M.E.; Diz, D.I. Pathogenic role of the renin–angiotensin system in modulating radiation-induced late effects. Int. J. Radiat. Oncol. Biol. Phys., 2006, 64(1), 6-12.
[http://dx.doi.org/10.1016/j.ijrobp.2005.08.033] [PMID: 16377409]
[120]
Hitomi, H.; Kiyomoto, H.; Nishiyama, A. Angiotensin II and oxidative stress. Curr. Opin. Cardiol., 2007, 22(4), 311-315.
[http://dx.doi.org/10.1097/HCO.0b013e3281532b53] [PMID: 17556883]
[121]
Benzie, I.F.F.; Tomlinson, B. Antioxidant power of angiotensin-converting enzyme inhibitors in vitro. Br. J. Clin. Pharmacol., 1998, 45(2), 168-169.
[http://dx.doi.org/10.1046/j.1365-2125.1998.00664.x] [PMID: 9491832]
[122]
Bhuyan, B.J.; Mugesh, G. Synthesis, characterization and antioxidant activity of angiotensin converting enzyme inhibitors. Org. Biomol. Chem., 2011, 9(5), 1356-1365.
[http://dx.doi.org/10.1039/C0OB00823K] [PMID: 21186397]
[123]
Hosseinimehr, S.J.; Mahmoudzadeh, A.; Akhlagpour, S. Captopril protects mice bone marrow cells against genotoxicity induced by gamma irradiation. Cell Biochem. Funct., 2007, 25(4), 389-394.
[http://dx.doi.org/10.1002/cbf.1311] [PMID: 16447141]
[124]
Davis, T.A.; Landauer, M.R.; Mog, S.R.; Barshishat-Kupper, M.; Zins, S.R.; Amare, M.F.; Day, R.M. Timing of captopril administration determines radiation protection or radiation sensitization in a murine model of total body irradiation. Exp. Hematol., 2010, 38(4), 270-281.
[http://dx.doi.org/10.1016/j.exphem.2010.01.004] [PMID: 20116413]
[125]
Rittase, W.B.; McCart, E.A.; Muir, J.M.; Bouten, R.M.; Slaven, J.E.; Mungunsukh, O.; Bylicky, M.A.; Wilkins, W.L.; Lee, S.H.; Gudmundsson, K.O.; Di Pucchio, T.; Olsen, C.H.; Du, Y.; Day, R.M. Effects of captopril against radiation injuries in the Göttingen minipig model of hematopoietic-acute radiation syndrome. PLoS One, 2021, 16(8), e0256208.
[http://dx.doi.org/10.1371/journal.pone.0256208] [PMID: 34449797]
[126]
Yoon, S.-C.; Park, J.-M.; Jang, H.-S.; Shinn, K.-S.; Bahk, Y.-W. Radioprotective effect of captopril on the mouse jejunal mucosa. Int. J. Radiat. Oncol. Biol. Phys., 1994, 30(4), 873-878.
[http://dx.doi.org/10.1016/0360-3016(94)90363-8] [PMID: 7960990]
[127]
Day, R.M.; Davis, T.A.; Barshishat-Kupper, M.; McCart, E.A.; Tipton, A.J.; Landauer, M.R. Enhanced hematopoietic protection from radiation by the combination of genistein and captopril. Int. Immunopharmacol., 2013, 15(2), 348-356.
[http://dx.doi.org/10.1016/j.intimp.2012.12.029] [PMID: 23328620]
[128]
Charrier, S.; Michaud, A.; Badaoui, S.; Giroux, S.; Ezan, E.; Sainteny, F.; Corvol, P.; Vainchenker, W. Inhibition of angiotensin I–converting enzyme induces radioprotection by preserving murine hematopoietic short-term reconstituting cells. Blood, 2004, 104(4), 978-985.
[http://dx.doi.org/10.1182/blood-2003-11-3828] [PMID: 15105290]
[129]
Fooladi, M.; Cheki, M.; Shirazi, A.; Sheikhzadeh, P.; Amirrashedi, M.; Ghahramani, F.; Khoobi, M. Histopathological evaluation of protective effect of telmisartan against radiation-induced bone marrow injury. J. Biomed. Phys. Eng., 2021, 12(3), 277-284.
[PMID: 35698535]
[130]
Markowitz, J.F. Pediatric Gastrointestinal and Liver Disease W.B. Saunders: Saint Louis, 2011; pp. 490-504..
[131]
Pearson, D.C.; Jourd’Heuil, D.; Meddings, J.B. The anti-oxidant properties of 5-aminosalicylic acid. Free Radic. Biol. Med., 1996, 21(3), 367-373.
[http://dx.doi.org/10.1016/0891-5849(96)00031-7] [PMID: 8855448]
[132]
Koelink, P.J. 5-ASA-colorectal cancer-cell death: an intriguing threesome; Leiden University, 2010.
[133]
Mantena, S.K.; Unnikrishnan, M.K.; Joshi, R.; Radha, V.; Devi, P.U.; Mukherjee, T. In vivo radioprotection by 5-aminosalicylic acid. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2008, 650(1), 63-79.
[http://dx.doi.org/10.1016/j.mrgentox.2007.10.005] [PMID: 18155638]
[134]
Sudheer Kumar, M.; Unnikrishnan, M.K.; Uma Devi, P. Effect of 5-aminosalicylic acid on radiation-induced micronuclei in mouse bone marrow. Mutat. Res., 2003, 527(1-2), 7-14.
[http://dx.doi.org/10.1016/S0027-5107(03)00052-6] [PMID: 12787909]
[135]
Hall, S.; Rudrawar, S.; Zunk, M.; Bernaitis, N.; Arora, D.; McDermott, C.; Anoopkumar-Dukie, S. Protection against radiotherapy-induced toxicity. Antioxidants, 2016, 5(3), 22.
[http://dx.doi.org/10.3390/antiox5030022] [PMID: 27399787]
[136]
Dutta, S.; Wadekar, R.R.; Roy, T. Radioprotective natural products as alternative complements in oncological radiotherapy. Bol. Latinoam. Caribe Plantas Med. Aromat., 2021, 20(2), 101-122.
[http://dx.doi.org/10.37360/blacpma.21.20.2.9]
[137]
Mantena, S.K.; Unnikrishnan, M.K.; Uma Devi, P. Radioprotective effect of sulfasalazine on mouse bone marrow chromosomes. Mutagenesis, 2008, 23(4), 285-292.
[http://dx.doi.org/10.1093/mutage/gen005] [PMID: 18353769]
[138]
Kim, S.W.; Kang, H.J.; Jhon, M.; Kim, J.W.; Lee, J.Y.; Walker, A.J.; Agustini, B.; Kim, J.M.; Berk, M. Statins and inflammation: New therapeutic opportunities in psychiatry. Front. Psychiatry, 2019, 10, 103.
[http://dx.doi.org/10.3389/fpsyt.2019.00103] [PMID: 30890971]
[139]
Bedi, O.; Dhawan, V.; Sharma, P.L.; Kumar, P. Pleiotropic effects of statins: New therapeutic targets in drug design. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(7), 695-712.
[http://dx.doi.org/10.1007/s00210-016-1252-4] [PMID: 27146293]
[140]
Davignon, J.; Jacob, R.F.; Mason, R.P. The antioxidant effects of statins. Coron. Artery Dis., 2004, 15(5), 251-258.
[http://dx.doi.org/10.1097/01.mca.0000131573.31966.34] [PMID: 15238821]
[141]
Fritz, G.; Henninger, C.; Huelsenbeck, J. Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents. Br. Med. Bull., 2011, 97(1), 17-26.
[http://dx.doi.org/10.1093/bmb/ldq044] [PMID: 21252099]
[142]
Talebpour Amiri, F.; Hamzeh, M.; Naeimi, R.A.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of atorvastatin against ionizing radiation-induced nephrotoxicity in mice. Int. J. Radiat. Biol., 2018, 94(2), 106-113.
[http://dx.doi.org/10.1080/09553002.2018.1420926] [PMID: 29268056]
[143]
Hosseinimehr, S.J.; Izakmehri, M.; Ghasemi, A. In vitro protective effect of atorvastatin against ionizing radiation induced genotoxicity in human lymphocytes. Cell. Mol. Biol., 2015, 61(1), 68-71.
[PMID: 25817349]
[144]
Naeimi, R.A.; Talebpour Amiri, F.; Khalatbary, A.R.; Ghasemi, A.; Zargari, M.; Ghesemi, M.; Hosseinimehr, S.J. Atorvastatin mitigates testicular injuries induced by ionizing radiation in mice. Reprod. Toxicol., 2017, 72, 115-121.
[http://dx.doi.org/10.1016/j.reprotox.2017.06.052] [PMID: 28668617]
[145]
Doi, H.; Matsumoto, S.; Odawara, S.; Shikata, T.; Kitajima, K.; Tanooka, M.; Takada, Y.; Tsujimura, T.; Kamikonya, N.; Hirota, S. Pravastatin reduces radiation-induced damage in normal tissues. Exp. Ther. Med., 2017, 13(5), 1765-1772.
[http://dx.doi.org/10.3892/etm.2017.4192] [PMID: 28565765]
[146]
Yang, H.; Huang, F.; Tao, Y.; Zhao, X.; Liao, L.; Tao, X. Simvastatin ameliorates ionizing radiation-induced apoptosis in the thymus by activating the AKT/sirtuin 1 pathway in mice. Int. J. Mol. Med., 2017, 40(3), 762-770.
[http://dx.doi.org/10.3892/ijmm.2017.3047] [PMID: 28677744]
[147]
Sun, X.; Yang, X.; Chen, J.; Ge, X.L.; Qin, Q.; Zhu, H.; Zhang, C.; Xu, L. Simvastatin attenuates radiation-induced salivary gland dysfunction in mice. Drug Des. Devel. Ther., 2016, 10, 2271-2278.
[http://dx.doi.org/10.2147/DDDT.S105809] [PMID: 27471375]
[148]
Zhao, X.; Yang, H.; Jiang, G.; Ni, M.; Deng, Y.; Cai, J.; Li, Z.; Shen, F.; Tao, X. Simvastatin attenuates radiation-induced tissue damage in mice. J. Radiat. Res., 2014, 55(2), 257-264.
[http://dx.doi.org/10.1093/jrr/rrt115] [PMID: 24105712]
[149]
Ziegler, V.; Henninger, C.; Simiantonakis, I.; Buchholzer, M.; Ahmadian, M.R.; Budach, W.; Fritz, G. Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation. Cell Death Dis., 2017, 8(8), e2978-e2978.
[http://dx.doi.org/10.1038/cddis.2017.372] [PMID: 28796249]
[150]
El-Batal, A.I.; Thabet, N.M.; Osman, A.; Ghaffar, A.; Azab, K.S. Amelioration of oxidative damage induced in gamma irradiated rats by nano selenium and lovastatin mixture. World Appl. Sci. J., 2012, 19(7), 962-971.
[151]
Nübel, T.; Damrot, J.; Roos, W.P.; Kaina, B.; Fritz, G. Lovastatin protects human endothelial cells from killing by ionizing radiation without impairing induction and repair of DNA double-strand breaks. Clin. Cancer Res., 2006, 12(3), 933-939.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1903] [PMID: 16467108]
[152]
Xourgia, E.; Tzouganatou, E.M.; Papazafiropoulou, A.; Melidonis, A. Anti-inflammatory properties of antidiabetic agents. World J. Metaanal., 2019, 7(4), 129-141.
[http://dx.doi.org/10.13105/wjma.v7.i4.129]
[153]
Hasanpour Dehkordi, A.; Abbaszadeh, A.; Mir, S.; Hasanvand, A. Metformin and its anti-inflammatory and anti-oxidative effects; new concepts. J. Renal Inj. Prev., 2019, 8(1), 54-61.
[http://dx.doi.org/10.15171/jrip.2019.11]
[154]
Da, F.; Guo, J.; Yao, L.; Gao, Q.; Jiao, S.; Miao, X.; Liu, J. Pretreatment with metformin protects mice from whole-body irradiation. J. Radiat. Res., 2021, 62(4), 618-625.
[http://dx.doi.org/10.1093/jrr/rrab012] [PMID: 33912960]
[155]
Mortezaee, K.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Metformin as a radiation modifier; implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol., 2019, 14(1), 41-53.
[http://dx.doi.org/10.2174/1574884713666181025141559] [PMID: 30360725]
[156]
Cheki, M.; Shirazi, A.; Mahmoudzadeh, A.; Bazzaz, J.T.; Hosseinimehr, S.J. The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 809, 24-32.
[http://dx.doi.org/10.1016/j.mrgentox.2016.09.001] [PMID: 27692296]
[157]
Liu, H.; Wang, S.; Wu, Z.; Huang, Z.; Chen, W.; Yang, Y.; Cui, J.; Liu, C.; Zhao, H.; Guo, J.; Zhang, P.; Gao, F.; Li, B.; Cai, J. Glibenclamide, a diabetic drug, prevents acute radiation-induced liver injury of mice via up-regulating intracellular ROS and subsequently activating Akt-NF-κB pathway. Oncotarget, 2017, 8(25), 40568-40582.
[http://dx.doi.org/10.18632/oncotarget.16501] [PMID: 28380448]
[158]
Pouri, M.; Shaghaghi, Z.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of gliclazide as an anti-hyperglycemic agent against genotoxicity induced by ionizing radiation on human lymphocytes. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 40-46.
[http://dx.doi.org/10.2174/1871525717666190524092918] [PMID: 31124426]
[159]
Heliövaara, M.K.; Herz, M.; Teppo, A.M.; Leinonen, E.; Ebeling, P. Pioglitazone has anti-inflammatory effects in patients with Type 2 diabetes. J. Endocrinol. Invest., 2007, 30(4), 292-297.
[http://dx.doi.org/10.1007/BF03346296] [PMID: 17556865]
[160]
Kazemi, R.; Hosseinimehr, S.J. Radioprotective effect of pioglitazone against genotoxicity induced by ionizing radiation in healthy human lymphocytes. Cardiovasc. Hematol. Agents Med. Chem., 2021, 19(1), 72-75.
[http://dx.doi.org/10.2174/1871525718666200525005231] [PMID: 32448107]
[161]
Kuruba, V.; Gollapalli, P. Natural radioprotectors and their impact on cancer drug discovery. Radiat. Oncol. J., 2018, 36(4), 265-275.
[http://dx.doi.org/10.3857/roj.2018.00381] [PMID: 30630265]
[162]
Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell Longev., 2016, 2016, 7432797.
[http://dx.doi.org/10.1155/2016/7432797]
[163]
Adnan, M.; Rasul, A.; Shah, M.A.; Hussain, G.; Asrar, M.; Riaz, A.; Sarfraz, I.; Hussain, A.; Khorsandi, K.; Lai, N.S. Radioprotective role of natural polyphenols: From sources to mechanisms. Anticancer Agents Med. Chem., 2022, 22(1), 30-39.
[http://dx.doi.org/10.2174/1871520621666210419095829] [PMID: 33874875]
[164]
Faramarzi, S.; Piccolella, S.; Manti, L.; Pacifico, S. Could polyphenols really be a good radioprotective strategy? Molecules, 2021, 26(16), 4969.
[http://dx.doi.org/10.3390/molecules26164969] [PMID: 34443561]
[165]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750]
[166]
Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]
[167]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[168]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[169]
Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem., 2019, 299, 125124.
[http://dx.doi.org/10.1016/j.foodchem.2019.125124] [PMID: 31288163]
[170]
Choy, K.W.; Murugan, D.; Leong, X.F.; Abas, R.; Alias, A.; Mustafa, M.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front. Pharmacol., 2019, 10, 1295.
[http://dx.doi.org/10.3389/fphar.2019.01295] [PMID: 31749703]
[171]
Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc., 2010, 69(3), 273-278.
[http://dx.doi.org/10.1017/S002966511000162X] [PMID: 20569521]
[172]
Wang, Q.; Xie, C.; Xi, S.; Qian, F.; Peng, X.; Huang, J.; Tang, F. Radioprotective effect of flavonoids on ionizing radiation-induced brain damage. Molecules, 2020, 25(23), 5719.
[http://dx.doi.org/10.3390/molecules25235719] [PMID: 33287417]
[173]
Mashhadi, A.B.M. An overview of the cellular mechanisms of flavonoids radioprotective effects. Adv. Pharm. Bull., 2019, 10(1), 13-19.
[http://dx.doi.org/10.15171/apb.2020.002] [PMID: 32002357]
[174]
Hosseinimehr, S.J.; Ahmadi, A.; Beiki, D.; Habibi, E.; Mahmoudzadeh, A. Protective effects of hesperidin against genotoxicity induced by 99mTc-MIBI in human cultured lymphocyte cells. Nucl. Med. Biol., 2009, 36(7), 863-867.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.06.002] [PMID: 19720298]
[175]
Hosseinimehr, S.J.; Mahmoudzadeh, A.; Ahmadi, A.; Mohamadifar, S.; Akhlaghpoor, S. Radioprotective effects of hesperidin against genotoxicity induced by -irradiation in human lymphocytes. Mutagenesis, 2009, 24(3), 233-235.
[http://dx.doi.org/10.1093/mutage/gep001] [PMID: 19193695]
[176]
El-Gazzar, M.G.; Zaher, N.H.; El-Hossary, E.M.; Ismail, A.F.M. Radio-protective effect of some new curcumin analogues. J. Photochem. Photobiol. B, 2016, 162, 694-702.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.08.002] [PMID: 27505300]
[177]
Tang, F.R.; Loke, W.K.; Wong, P.; Khoo, B.C. Radioprotective effect of ursolic acid in radiation-induced impairment of neurogenesis, learning and memory in adolescent BALB/c mouse. Physiol. Behav., 2017, 175, 37-46.
[http://dx.doi.org/10.1016/j.physbeh.2017.03.027] [PMID: 28341234]
[178]
Wang, H.; Sim, M.K.; Loke, W.K.; Chinnathambi, A.; Alharbi, S.A.; Tang, F.R.; Sethi, G. Potential protective effects of ursolic acid against gamma irradiation-induced damage are mediated through the modulation of diverse inflammatory mediators. Front. Pharmacol., 2017, 8, 352.
[http://dx.doi.org/10.3389/fphar.2017.00352] [PMID: 28670276]
[179]
Asadullina, N.; Gudkov, S.; Bruskov, V. Biochemistry and Biophysics. In: Springer Nature BV; , 2012; 442, p. 22.
[180]
Najafi, M.; Shirazi, A.; Motevaseli, E.; Rezaeyan, A.H.; Salajegheh, A.; Rezapoor, S. Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology, 2017, 25(4), 403-413.
[http://dx.doi.org/10.1007/s10787-017-0332-5] [PMID: 28255737]
[181]
AlMathkour, M.M.; AlSuhaibani, E.S. Protective effect of aspirin on γ radiation-induced sperm malformations in Swiss Albino male mice. Am. J. Life Sci., 2014, 2(4), 205-215.
[http://dx.doi.org/10.11648/j.ajls.20140204.13]
[182]
Koca, G.; Yalniz-Akkaya, Z.; Gültekin, S.S.; Yumusak, N.; Demirel, K.; Korkmaz, M.; Atilgan, H.I.; Altiparmak, U.E.; Onal, B.; Ornek, F. Radioprotective effect of montelukast sodium in rat lacrimal glands after radioiodine treatment. Rev. Esp. Med. Nucl. Imagen Mol., 2013, 32(5), 294-300.
[PMID: 23499122]
[183]
Atilgan, H.I.; Yumuşak, N.; Sadic, M.; Gultekin, S.S.; Gokhan, K.; Ozyurt, S.; Demirel, K.; Korkmaz, M. Radioprotective effect of montelukast sodium against hepatic radioiodine (131I) toxicity: A histopathological investigation in the rat model. Ankara Univ. Vet. Fak. Derg., 2015, 62(1), 37-43.
[http://dx.doi.org/10.1501/Vetfak_0000002655]
[184]
Ostrau, C.; Hülsenbeck, J.; Herzog, M.; Schad, A.; Torzewski, M.; Lackner, K.J.; Fritz, G. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother. Oncol., 2009, 92(3), 492-499.
[http://dx.doi.org/10.1016/j.radonc.2009.06.020] [PMID: 19615773]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy