Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Drugs to Treat Neuroinflammation in Neurodegenerative Disorders

Author(s): Yao-Chin Wang, Woon-Man Kung, Yi-Hsiu Chung* and Sunil Kumar*

Volume 31, Issue 14, 2024

Published on: 05 June, 2023

Page: [1818 - 1829] Pages: 12

DOI: 10.2174/0929867330666230403125140

Price: $65

Abstract

Neuroinflammation is associated with disorders of the nervous system, and it is induced in response to many factors, including pathogen infection, brain injury, toxic substances, and autoimmune diseases. Astrocytes and microglia have critical roles in neuroinflammation. Microglia are innate immune cells in the central nervous system (CNS), which are activated in reaction to neuroinflammation-inducing factors. Astrocytes can have pro- or anti-inflammatory responses, which depend on the type of stimuli presented by the inflamed milieu. Microglia respond and propagate peripheral inflammatory signals within the CNS that cause low-grade inflammation in the brain. The resulting alteration in neuronal activities leads to physiological and behavioral impairment. Consequently, activation, synthesis, and discharge of various pro-inflammatory cytokines and growth factors occur. These events lead to many neurodegenerative conditions, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis discussed in this study. After understanding neuroinflammation mechanisms and the involvement of neurotransmitters, this study covers various drugs used to treat and manage these neurodegenerative illnesses. The study can be helpful in discovering new drug molecules for treating neurodegenerative disorders.

Keywords: Neuroinflammation, astrocytes, microglia, Alzheimer's disease, Parkinson's disease, multiple sclerosis.

[1]
Ebert, S.E.; Jensen, P.; Ozenne, B.; Armand, S.; Svarer, C.; Stenbaek, D.S.; Moeller, K.; Dyssegaard, A.; Thomsen, G.; Steinmetz, J.; Forchhammer, B.H.; Knudsen, G.M.; Pinborg, L.H. Molecular imaging of neuroinflammation in patients after mild traumatic brain injury: a longitudinal 123 I- CLINDE single photon emission computed tomography study. Eur. J. Neurol., 2019, 26(12), 1426-1432.
[http://dx.doi.org/10.1111/ene.13971] [PMID: 31002206]
[2]
Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology, 2018, 129(2), 343-366.
[http://dx.doi.org/10.1097/ALN.0000000000002130] [PMID: 29462012]
[3]
Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol., 2021, 17(3), 157-172.
[http://dx.doi.org/10.1038/s41582-020-00435-y] [PMID: 33318676]
[4]
Park, K.; Lee, S.J. Deciphering the star codings: astrocyte manipulation alters mouse behavior. Exp. Mol. Med., 2020, 52(7), 1028-1038.
[http://dx.doi.org/10.1038/s12276-020-0468-z] [PMID: 32665584]
[5]
Sofroniew, M.V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci., 2015, 16(5), 249-263.
[http://dx.doi.org/10.1038/nrn3898] [PMID: 25891508]
[6]
Li, K. Reactive Astrocytes in Neurodegenerative Diseases. Aging Dis., 2018, 10.
[PMID: 31165009]
[7]
Rouach, N.; Koulakoff, A.; Abudara, V.; Willecke, K.; Giaume, C. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science, 2008, 322(5907), 1551-1555.
[http://dx.doi.org/10.1126/science.1164022] [PMID: 19056987]
[8]
Jessen, N.A.; Munk, A.S.F.; Lundgaard, I.; Nedergaard, M. The glymphatic system: A beginner’s guide. Neurochem. Res., 2015, 40(12), 2583-2599.
[http://dx.doi.org/10.1007/s11064-015-1581-6] [PMID: 25947369]
[9]
Matejuk, A.; Ransohoff, R.M. Crosstalk between astrocytes and microglia: An overview. Front. Immunol., 2020, 11, 1416-1416.
[http://dx.doi.org/10.3389/fimmu.2020.01416] [PMID: 32765501]
[10]
Mattson, M.P.; Arumugam, T.V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell Metab., 2018, 27(6), 1176-1199.
[http://dx.doi.org/10.1016/j.cmet.2018.05.011] [PMID: 29874566]
[11]
Cekanaviciute, E.; Buckwalter, M.S. Astrocytes: Integrative regulators of neuroinflammation in stroke and other neurological diseases. Neurotherapeutics, 2016, 13(4), 685-701.
[http://dx.doi.org/10.1007/s13311-016-0477-8] [PMID: 27677607]
[12]
Tyzack, G.E.; Sitnikov, S.; Barson, D.; Adams-Carr, K.L.; Lau, N.K.; Kwok, J.C.; Zhao, C.; Franklin, R.J.M.; Karadottir, R.T.; Fawcett, J.W.; Lakatos, A. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat. Commun., 2014, 5(1), 4294.
[http://dx.doi.org/10.1038/ncomms5294] [PMID: 25014177]
[13]
Colombo, E.; Farina, C. Astrocytes: Key regulators of neuroinflammation. Trends Immunol., 2016, 37(9), 608-620.
[http://dx.doi.org/10.1016/j.it.2016.06.006] [PMID: 27443914]
[14]
Mitchell, T.J.; John, S. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology, 2005, 114(3), 301-312.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02091.x] [PMID: 15720432]
[15]
Klegeris, A. Targeting neuroprotective functions of astrocytes in neuroimmune diseases. Expert Opin. Ther. Targets, 2021, 25(4), 237-241.
[http://dx.doi.org/10.1080/14728222.2021.1915993] [PMID: 33836642]
[16]
Rothhammer, V.; Quintana, F.J. Control of autoimmune CNS inflammation by astrocytes. Semin. Immunopathol., 2015, 37(6), 625-638.
[http://dx.doi.org/10.1007/s00281-015-0515-3] [PMID: 26223505]
[17]
Palpagama, T.H.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. The role of microglia and astrocytes in huntington’s disease. Front. Mol. Neurosci., 2019, 12(258), 258.
[http://dx.doi.org/10.3389/fnmol.2019.00258] [PMID: 31708741]
[18]
Guo, S.; Wang, H.; Yin, Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front. Aging Neurosci., 2022, 14, 815347.
[http://dx.doi.org/10.3389/fnagi.2022.815347] [PMID: 35250543]
[19]
Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42.
[http://dx.doi.org/10.1186/s40035-020-00221-2] [PMID: 33239064]
[20]
Gendelman, H.E. Neural immunity: Friend or foe? J. Neurovirol., 2002, 8(6), 474-479.
[http://dx.doi.org/10.1080/13550280290168631] [PMID: 12476342]
[21]
DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(S2), 136-153.
[http://dx.doi.org/10.1111/jnc.13607]
[22]
Bachiller, S.; Jiménez-Ferrer, I.; Paulus, A.; Yang, Y.; Swanberg, M.; Deierborg, T.; Boza-Serrano, A. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front. Cell. Neurosci., 2018, 12(488), 488.
[http://dx.doi.org/10.3389/fncel.2018.00488] [PMID: 30618635]
[23]
Harry, G.J.; Kraft, A.D. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metab. Toxicol., 2008, 4(10), 1265-1277.
[http://dx.doi.org/10.1517/17425255.4.10.1265] [PMID: 18798697]
[24]
Streit, W.J.; Mrak, R.E.; Griffin, W.S.T. Microglia and neuroinflammation: a pathological perspective. J. Neuroinflammation, 2004, 1(1), 14.
[http://dx.doi.org/10.1186/1742-2094-1-14] [PMID: 15285801]
[25]
Streit, W.J. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci., 2006, 29(9), 506-510.
[http://dx.doi.org/10.1016/j.tins.2006.07.001] [PMID: 16859761]
[26]
Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci., 2005, 8(6), 752-758.
[http://dx.doi.org/10.1038/nn1472] [PMID: 15895084]
[27]
Raivich, G. Like cops on the beat: the active role of resting microglia. Trends Neurosci., 2005, 28(11), 571-573.
[http://dx.doi.org/10.1016/j.tins.2005.09.001] [PMID: 16165228]
[28]
Wang, W-Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136-136.
[PMID: 26207229]
[29]
Boche, D.; Perry, V.H.; Nicoll, J.A.R. Review: Activation patterns of microglia and their identification in the human brain. Neuropathol. Appl. Neurobiol., 2013, 39(1), 3-18.
[http://dx.doi.org/10.1111/nan.12011] [PMID: 23252647]
[30]
Sica, A.; Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest., 2012, 122(3), 787-795.
[http://dx.doi.org/10.1172/JCI59643] [PMID: 22378047]
[31]
Shibata, M. Hypothalamic neuronal responses to cytokines. Yale J. Biol. Med., 1990, 63(2), 147-156.
[PMID: 2205055]
[32]
Bernheim, H.A.; Kluger, M.J. Fever: effect of drug-induced antipyresis on survival. Science, 1976, 193(4249), 237-239.
[http://dx.doi.org/10.1126/science.935867] [PMID: 935867]
[33]
Kempuraj, D.; Thangavel, R.; Selvakumar, G.P.; Zaheer, S.; Ahmed, M.E.; Raikwar, S.P.; Zahoor, H.; Saeed, D.; Natteru, P.A.; Iyer, S.; Zaheer, A. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front. Cell. Neurosci., 2017, 11, 216-216.
[http://dx.doi.org/10.3389/fncel.2017.00216] [PMID: 28790893]
[34]
Park, B.S.; Lee, J.O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med., 2013, 45(12), e66-e66.
[http://dx.doi.org/10.1038/emm.2013.97] [PMID: 24310172]
[35]
Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine, 2008, 42(2), 145-151.
[http://dx.doi.org/10.1016/j.cyto.2008.01.006] [PMID: 18304834]
[36]
Vaure, C.Ã.; Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol., 2014, 5(316), 316.
[http://dx.doi.org/10.3389/fimmu.2014.00316] [PMID: 25071777]
[37]
Soares, J.B.; Pimentel-Nunes, P.; Roncon-Albuquerque, R., Jr; Leite-Moreira, A. The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases. Hepatol. Int., 2010, 4(4), 659-672.
[http://dx.doi.org/10.1007/s12072-010-9219-x] [PMID: 21286336]
[38]
Wang, L.; Li, D.; Yang, K.; Hu, Y.; Zeng, Q. Toll-like receptor-4 and mitogen-activated protein kinase signal system are involved in activation of dendritic cells in patients with acute coronary syndrome. Immunology, 2008, 125(1), 122-130.
[http://dx.doi.org/10.1111/j.1365-2567.2008.02827.x] [PMID: 18373609]
[39]
Badshah, H.; Ali, T.; Kim, M.O. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway. Sci. Rep., 2016, 6(1), 24493.
[http://dx.doi.org/10.1038/srep24493] [PMID: 27093924]
[40]
Guo, C.; Yang, L.; Wan, C.X.; Xia, Y.Z.; Zhang, C.; Chen, M.H.; Wang, Z.D.; Li, Z.R.; Li, X.M.; Geng, Y.D.; Kong, L.Y. Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. Phytomedicine, 2016, 23(13), 1629-1637.
[http://dx.doi.org/10.1016/j.phymed.2016.10.007] [PMID: 27823627]
[41]
Maung, A.A.; Fujimi, S.; Miller, M.L.; MacConmara, M.P.; Mannick, J.A.; Lederer, J.A. Enhanced TLR4 reactivity following injury is mediated by increased p38 activation. J. Leukoc. Biol., 2005, 78(2), 565-573.
[http://dx.doi.org/10.1189/jlb.1204698] [PMID: 15857937]
[42]
Ahmed, M.B.; Islam, S.U.; Lee, Y.S. Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Anim. Cells Syst., 2020, 24(1), 44-52.
[http://dx.doi.org/10.1080/19768354.2020.1726811] [PMID: 32158615]
[43]
Fukata, M.; Chen, A.; Klepper, A.; Krishnareddy, S.; Vamadevan, A.S.; Thomas, L.S.; Xu, R.; Inoue, H.; Arditi, M.; Dannenberg, A.J.; Abreu, M.T. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology, 2006, 131(3), 862-877.
[http://dx.doi.org/10.1053/j.gastro.2006.06.017] [PMID: 16952555]
[44]
Lee, J.Y.; Nam, J.H.; Nam, Y.; Nam, H.Y.; Yoon, G.; Ko, E.; Kim, S.B.; Bautista, M.R.; Capule, C.C.; Koyanagi, T.; Leriche, G.; Choi, H.G.; Yang, J.; Kim, J.; Hoe, H.S. The small molecule CA140 inhibits the neuroinflammatory response in wild-type mice and a mouse model of AD. J. Neuroinflammation, 2018, 15(1), 286.
[http://dx.doi.org/10.1186/s12974-018-1321-3] [PMID: 30309372]
[45]
Greenhill, C.J.; Rose-John, S.; Lissilaa, R.; Ferlin, W.; Ernst, M.; Hertzog, P.J.; Mansell, A.; Jenkins, B.J. IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3. J. Immunol., 2011, 186(2), 1199-1208.
[http://dx.doi.org/10.4049/jimmunol.1002971] [PMID: 21148800]
[46]
Meraz-Ríos, M.A.; Toral-Rios, D.; Franco-Bocanegra, D.; Villeda-Hernández, J.; Campos-Peña, V. Inflammatory process in Alzheimer’s disease. Front. Integr. Nuerosci., 2013, 7, 59.
[47]
Dunn, N.; Mullee, M.; Perry, V.H.; Holmes, C. Association between dementia and infectious disease: evidence from a case-control study. Alzheimer Dis. Assoc. Disord., 2005, 19(2), 91-94.
[http://dx.doi.org/10.1097/01.wad.0000165511.52746.1f] [PMID: 15942327]
[48]
Ren, L.; Yi, J.; Yang, J.; Li, P.; Cheng, X.; Mao, P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease. Medicine (Baltimore), 2018, 97(37), e12172-e12172.
[http://dx.doi.org/10.1097/MD.0000000000012172] [PMID: 30212946]
[49]
Etminan, M.; Gill, S.; Samii, A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ, 2003, 327(7407), 128.
[http://dx.doi.org/10.1136/bmj.327.7407.128] [PMID: 12869452]
[50]
Lamkanfi, M.; Dixit, V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol., 2012, 28(1), 137-161.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155745] [PMID: 22974247]
[51]
Spooren, A.; Kolmus, K.; Laureys, G.; Clinckers, R.; De Keyser, J.; Haegeman, G.; Gerlo, S. Interleukin-6, a mental cytokine. Brain Res. Brain Res. Rev., 2011, 67(1-2), 157-183.
[http://dx.doi.org/10.1016/j.brainresrev.2011.01.002] [PMID: 21238488]
[52]
Qi, Y.; Zou, L.B.; Wang, L.H.; Jin, G.; Pan, J.J.; Chi, T.Y.; Ji, X.F. Xanthoceraside inhibits pro-inflammatory cytokine expression in Aβ25-35/IFN-γ-stimulated microglia through the TLR2 receptor, MyD88, nuclear factor-κB, and mitogen-activated protein kinase signaling pathways. J. Pharmacol. Sci., 2013, 122(4), 305-317.
[http://dx.doi.org/10.1254/jphs.13031FP] [PMID: 23966052]
[53]
Chen, H.; Shuai, L.; Lu, J. Folic acid supplementation mitigates Alzheimer's disease by reducing inflammation: A randomized controlled trial. Mediators Inflamm, 2016, 2016, 5912146.
[http://dx.doi.org/10.1155/2016/5912146]
[54]
Kumar, A.; Sharma, S. Donepezil, in StatPearls; StatPearls Publishing LLC: Treasure Island (FL), 2020.
[55]
Birks, J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev., 2006, 2006(1), CD005593.
[PMID: 16437532]
[56]
Schneider, L.S.; Dagerman, K.S.; Higgins, J.P.; McShane, R. Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch. Neurol., 2011, 68(8), 991-998.
[http://dx.doi.org/10.1001/archneurol.2011.69] [PMID: 21482915]
[57]
Touchon, J.; Bergman, H.; Bullock, R.; Rapatz, G.; Nagel, J.; Lane, R. Response to rivastigmine or donepezil in Alzheimer’s patients with symptoms suggestive of concomitant Lewy body pathology. Curr. Med. Res. Opin., 2006, 22(1), 49-59.
[http://dx.doi.org/10.1185/030079906X80279] [PMID: 16393430]
[58]
Fitzgerald, P.J.; Hale, P.J.; Ghimire, A.; Watson, B.O. The cholinesterase inhibitor donepezil has antidepressant-like properties in the mouse forced swim test. Transl. Psychiatry, 2020, 10(1), 255.
[http://dx.doi.org/10.1038/s41398-020-00928-w] [PMID: 32712627]
[59]
Forloni, G.; Balducci, C. Alzheimer’s disease, oligomers, and inflammation. J. Alzheimers Dis., 2018, 62(3), 1261-1276.
[http://dx.doi.org/10.3233/JAD-170819] [PMID: 29562537]
[60]
Kim, H.G.; Moon, M.; Choi, J.G.; Park, G.; Kim, A.J.; Hur, J.; Lee, K.T.; Oh, M.S. Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo. Neurotoxicology, 2014, 40, 23-32.
[http://dx.doi.org/10.1016/j.neuro.2013.10.004] [PMID: 24189446]
[61]
Liu, Y.; Zhang, Y.; Zheng, X.; Fang, T.; Yang, X.; Luo, X.; Guo, A.; Newell, K.A.; Huang, X.F.; Yu, Y. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J. Neuroinflammation, 2018, 15(1), 112.
[http://dx.doi.org/10.1186/s12974-018-1141-5] [PMID: 29669582]
[62]
Wu, H.M.; Tzeng, N.S.; Qian, L.; Wei, S.J.; Hu, X.; Chen, S.H.; Rawls, S.M.; Flood, P.; Hong, J.S.; Lu, R.B. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology, 2009, 34(10), 2344-2357.
[http://dx.doi.org/10.1038/npp.2009.64] [PMID: 19536110]
[63]
Nizri, E.; Irony-Tur-Sinai, M.; Faranesh, N.; Lavon, I.; Lavi, E.; Weinstock, M.; Brenner, T. Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. J. Neuroimmunol., 2008, 203(1), 12-22.
[http://dx.doi.org/10.1016/j.jneuroim.2008.06.018] [PMID: 18692909]
[64]
Tansey, M.G.; Goldberg, M.S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis., 2010, 37(3), 510-518.
[http://dx.doi.org/10.1016/j.nbd.2009.11.004] [PMID: 19913097]
[65]
DeMaagd, G.; Philip, A. Parkinson's disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm. Ther., 2015, 40(8), 504-532.
[PMID: 26236139]
[66]
Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19-19.
[http://dx.doi.org/10.1186/s40035-015-0042-0] [PMID: 26464797]
[67]
Tang, Y.; Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(2), 1181-1194.
[http://dx.doi.org/10.1007/s12035-014-9070-5] [PMID: 25598354]
[68]
Lynch, M.A. Age-related neuroinflammatory changes negatively impact on neuronal function. Front. Aging Neurosci., 2010, 1(6), 6.
[http://dx.doi.org/10.3389/neuro.24.006.2009] [PMID: 20552057]
[69]
Tufekci, K.U. Chapter four - inflammation in Parkinson’s disease. Advances in protein chemistry and structural biology; Donev, R., Ed.; Academic Press, 2012, pp. 69-132.
[70]
Poewe, W.; Espay, A.J. Long duration response in Parkinson’s disease: levodopa revisited. Brain, 2020, 143(8), 2332-2335.
[http://dx.doi.org/10.1093/brain/awaa226] [PMID: 32844192]
[71]
Hershey, T.; Black, K.J.; Carl, J.L.; McGee-Minnich, L.; Snyder, A.Z.; Perlmutter, J.S. Long term treatment and disease severity change brain responses to levodopa in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2003, 74(7), 844-851.
[http://dx.doi.org/10.1136/jnnp.74.7.844] [PMID: 12810765]
[72]
Poletti, M.; Bonuccelli, U. Acute and chronic cognitive effects of levodopa and dopamine agonists on patients with Parkinson’s disease: a review. Ther. Adv. Psychopharmacol., 2013, 3(2), 101-113.
[http://dx.doi.org/10.1177/2045125312470130] [PMID: 24167681]
[73]
Aarsland, D.; Ballard, C.; Walker, Z.; Bostrom, F.; Alves, G.; Kossakowski, K.; Leroi, I.; Pozo-Rodriguez, F.; Minthon, L.; Londos, E. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol., 2009, 8(7), 613-618.
[http://dx.doi.org/10.1016/S1474-4422(09)70146-2] [PMID: 19520613]
[74]
Rashid, U.; Ansari, F.L. Challenges in designing therapeutic agents for treating Alzheimer’s disease-from serendipity to rationality. In: Drug design and discovery in Alzheimer's disease; Atta ur, R.; Choudhary, M.I., Eds.; Elsevier, 2014; pp. 40-141.
[75]
McShane, R.; Maggie, J.W.; Emmert, R. Memantine for dementia. Cochrane Database Syst. Rev., 2019, 3(3), CD003154.
[http://dx.doi.org/10.1002/14651858.CD003154.pub6]
[76]
Rizzi, G.; Tan, K.R. Dopamine and acetylcholine, a circuit point of view in Parkinson’s disease. Front. Neural Circuits, 2017, 11(110), 110.
[http://dx.doi.org/10.3389/fncir.2017.00110] [PMID: 29311846]
[77]
Alshammari, T.M.; AlMutairi, E.N. Use of an entacapone- containing drug combination and risk of death: Analysis of the FDA AERS (FAERS) database. Saudi Pharm J., 2015, 23(1), 28-32.
[http://dx.doi.org/10.1016/j.jsps.2014.04.005] [PMID: 25685040]
[78]
Lecht, S.; Haroutiunian, S.; Hoffman, A.; Lazarovici, P. Rasagiline - a novel MAO B inhibitor in Parkinson’s disease therapy. Ther. Clin. Risk Manag., 2007, 3(3), 467-474.
[PMID: 18488080]
[79]
LeWitt, P.A.; Fahn, S. Levodopa therapy for Parkinson disease: A look backward and forward. Neurology, 2016, 86(14)(Suppl. 1), S3-S12.
[http://dx.doi.org/10.1212/WNL.0000000000002509] [PMID: 27044648]
[80]
Yan, Y.; Jiang, W.; Liu, L.; Wang, X.; Ding, C.; Tian, Z.; Zhou, R. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell, 2015, 160(1-2), 62-73.
[http://dx.doi.org/10.1016/j.cell.2014.11.047] [PMID: 25594175]
[81]
Chen, H.; Jacobs, E.; Schwarzschild, M.A.; McCullough, M.L.; Calle, E.E.; Thun, M.J.; Ascherio, A. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann. Neurol., 2005, 58(6), 963-967.
[http://dx.doi.org/10.1002/ana.20682] [PMID: 16240369]
[82]
Naegele, M.; Martin, R. The good and the bad of neuroinflammation in multiple sclerosis. Handbook of Clinical Neurology; Goodin, D.S., Ed.; Elsevier, 2014, pp. 59-87.
[83]
Matthews, P.M. Chronic inflammation in multiple sclerosis - seeing what was always there. Nat. Rev. Neurol., 2019, 15(10), 582-593.
[http://dx.doi.org/10.1038/s41582-019-0240-y] [PMID: 31420598]
[84]
Frank-Cannon, T.C.; Alto, L.T.; McAlpine, F.E.; Tansey, M.G. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener., 2009, 4(1), 47-47.
[http://dx.doi.org/10.1186/1750-1326-4-47] [PMID: 19917131]
[85]
Wynn, D.R. Enduring clinical value of copaxone® (glatiramer acetate) in multiple sclerosis after 20 years of use. Mult. Scler. Int., 2019, 2019, 1-19.
[http://dx.doi.org/10.1155/2019/7151685] [PMID: 30775037]
[86]
Pjrek, E.; Winkler, D.; Dervic, K.; Aschauer, H.; Kasper, S. Psychosis as a possible side-effect of treatment with glatiramer acetate. Int. J. Neuropsychopharmacol., 2005, 8(3), 487-488.
[http://dx.doi.org/10.1017/S1461145705005304] [PMID: 15975191]
[87]
Mandal, P.; Gupta, A.; Fusi-Rubiano, W.; Keane, P.A.; Yang, Y. Fingolimod: therapeutic mechanisms and ocular adverse effects. Eye (Lond.), 2017, 31(2), 232-240.
[http://dx.doi.org/10.1038/eye.2016.258] [PMID: 27886183]
[88]
Gajofatto, A.; Turatti, M.; Monaco, S.; Benedetti, M.D. Clinical efficacy, safety, and tolerability of fingolimod for the treatment of relapsing-remitting multiple sclerosis. Drug Healthc. Patient Saf., 2015, 7, 157-167.
[http://dx.doi.org/10.2147/DHPS.S69640] [PMID: 26715860]
[89]
O’Connor, P.; Comi, G.; Freedman, M.S.; Miller, A.E.; Kappos, L.; Bouchard, J.P.; Lebrun-Frenay, C.; Mares, J.; Benamor, M.; Thangavelu, K.; Liang, J.; Truffinet, P.; Lawson, V.J.; Wolinsky, J.S. Long-term safety and efficacy of teriflunomide. Neurology, 2016, 86(10), 920-930.
[http://dx.doi.org/10.1212/WNL.0000000000002441] [PMID: 26865517]
[90]
Rafiee Zadeh, A.; Ghadimi, K.; Ataei, A.; Askari, M.; Sheikhinia, N.; Tavoosi, N.; Falahatian, M. Mechanism and adverse effects of multiple sclerosis drugs: a review article. Part 2. Int. J. Physiol. Pathophysiol. Pharmacol., 2019, 11(4), 105-114.
[PMID: 31523358]
[91]
Deeks, E.D. Cladribine tablets: A review in relapsing MS. CNS Drugs, 2018, 32(8), 785-796.
[http://dx.doi.org/10.1007/s40263-018-0562-0] [PMID: 30105527]
[92]
Minton, K. Cladribine hope for multiple sclerosis. Nat. Rev. Immunol., 2009, 9(6), 387-387.
[http://dx.doi.org/10.1038/nri2579]
[93]
Carlström, K.E.; Ewing, E.; Granqvist, M.; Gyllenberg, A.; Aeinehband, S.; Enoksson, S.L.; Checa, A.; Badam, T.V.S.; Huang, J.; Gomez-Cabrero, D.; Gustafsson, M.; Al Nimer, F.; Wheelock, C.E.; Kockum, I.; Olsson, T.; Jagodic, M.; Piehl, F. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat. Commun., 2019, 10(1), 3081.
[http://dx.doi.org/10.1038/s41467-019-11139-3] [PMID: 31300673]
[94]
Toumi, M.; Jadot, G. Economic impact of new active substance status on EU payers’ budgets: example of dimethyl fumarate (Tecfidera®) for multiple sclerosis. J. Mark. Access Health Policy, 2014, 2(1), 23932.
[http://dx.doi.org/10.3402/jmahp.v2.23932] [PMID: 27226838]
[95]
Foroughipour, M.; Gazeran, S. Effectiveness and side effects of dimethyl fumarate in multiple sclerosis after 12 months of follow up: An Iranian clinical trial. Iran. J. Neurol., 2019, 18(4), 154-158.
[PMID: 32117551]
[96]
Diaz, R.A.; Doss, S.; Burke, M.J.; George, E.; Adler, A.I. Alemtuzumab for relapsing-remitting multiple sclerosis. Lancet Neurol., 2014, 13(9), 869-870.
[http://dx.doi.org/10.1016/S1474-4422(14)70184-X] [PMID: 25285344]
[97]
Guarnera, C.; Bramanti, P.; Mazzon, E. Alemtuzumab: a review of efficacy and risks in the treatment of relapsing remitting multiple sclerosis. Ther. Clin. Risk Manag., 2017, 13, 871-879.
[http://dx.doi.org/10.2147/TCRM.S134398] [PMID: 28761351]
[98]
Huggett, B. How Tysabri survived. Nat. Biotechnol., 2009, 27(11), 986-986.
[http://dx.doi.org/10.1038/nbt1109-986] [PMID: 19898447]
[99]
Hoepner, R.; Faissner, S.; Salmen, A.; Gold, R.; Chan, A. Efficacy and side effects of natalizumab therapy in patients with multiple sclerosis. J. Cent. Nerv. Syst. Dis., 2014, 6, JCNSD.S14049.
[http://dx.doi.org/10.4137/JCNSD.S14049] [PMID: 24855407]
[100]
Ali, Z.K.; Baker, D.E. Formulary drug review: Ocrelizumab. Hosp. Pharm., 2017, 52(9), 599-606.
[http://dx.doi.org/10.1177/0018578717731733] [PMID: 29276296]
[101]
Aschenbrenner, D.S. Two new drugs approved for multiple sclerosis. Am. J. Nurs., 2019, 119(7), 22-23.
[http://dx.doi.org/10.1097/01.NAJ.0000569436.66670.b3]
[102]
Marriott, J.J.; Miyasaki, J.M.; Gronseth, G.; O’Connor, P.W. Evidence Report: The efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology, 2010, 74(18), 1463-1470.
[http://dx.doi.org/10.1212/WNL.0b013e3181dc1ae0] [PMID: 20439849]
[103]
Scott, L.J.; Figgitt, D.P. Mitoxantrone. CNS Drugs, 2004, 18(6), 379-396.
[http://dx.doi.org/10.2165/00023210-200418060-00010] [PMID: 15089110]
[104]
David, O.J.; Kovarik, J.M.; Schmouder, R.L. Clinical pharmacokinetics of fingolimod. Clin. Pharmacokinet., 2012, 51(1), 15-28.
[http://dx.doi.org/10.2165/11596550-000000000-00000] [PMID: 22149256]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy