Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Epigenetics Mechanism and Therapeutic Potential of Approved Epi-drugs in Pulmonary Hypertension Disease

Author(s): Li Zhanqiang, Huang Huoqiang* and Lu Dianxiang*

Volume 23, Issue 18, 2023

Published on: 19 May, 2023

Page: [1715 - 1726] Pages: 12

DOI: 10.2174/1568026623666230403090650

Price: $65

conference banner
Abstract

Epigenetics is defined as a heritable change occurring in gene expression and phenotype without altering the underlying primary DNA sequence itself. Epigenetic variation consists of DNA methylation repatterning, posttranslational modification of histone proteins, and non-coding RNAs (ncRNAs). Epigenetic modifications are deeply involved in tumorigenesis and tumor development. Epigenetic abnormalities can be therapeutically reversed, and three families of epigenetic marks, including “readers”, “writers” and “erasers”, could be modulated by epi drugs. Over the past decade, ten small-molecule epi drugs (e.g., inhibitors of DNA methyltransferases and histone deacetylases) have been approved by FDA or CFDA for the treatment of different cancers. Epigenetics therapy has been most effective in oncology and has become an attractive area in cancer treatment.

Pulmonary hypertension (PH) encompasses a set of multifactorial diseases of progressive cardiopulmonary disorder. WHO classifies PH into five groups based on similar pathophysiological mechanisms, clinical presentation, haemodynamic characteristics, therapeutic management, and underlying etiology. Since PH shows many similarities with cancer, such as proliferation, resistance to apoptosis, and dysregulation of tumor suppressor genes, the current epigenetics therapeutic strategies used in cancer might be considered for the treatment of PH. The role of epigenetics in the setting of PH is a fast-growing field of research. In this review, we have summarized the up-to-date articles on the role of epigenetic mechanisms in the context of PH. The aim of this review is to provide a comprehensive insight from the epigenetics perspective and introduce the potential role of approved epi drugs in PH treatment.

Keywords: Pulmonary hypertension, Clinical classification, Epigenetics, Mechanism, Epi drugs, Potential role.

Graphical Abstract
[1]
Ganesan, A.; Arimondo, P.B.; Rots, M.G.; Jeronimo, C.; Berdasco, M. The timeline of epigenetic drug discovery: From reality to dreams. Clinical Epigenetics; BioMed Central Ltd., 2019, 11.
[2]
Badesch, D.B.; Champion, H.C.; Gomez Sanchez, M.A.; Hoeper, M.M.; Loyd, J.E.; Manes, A.; McGoon, M.; Naeije, R.; Olschewski, H.; Oudiz, R.J. Diagnosis and assessment of pulmonary arterial hypertension. J. Am. Coll. Cardiol., 2009, 54(S1), S55-S66.
[http://dx.doi.org/10.1016/j.jacc.2009.04.011]
[3]
Guiot, J.; Parzibut, G.; Weber, T.; Davin, L.; Dulgheru, R.; Lancellotti, P.; Louis, R.; Vachiery, J.L. [Pulmonary arterial hypertension Rev. Med. Liege, 2019, 74(3), 139-145.
[PMID: 30897313]
[4]
Montani, D.; Günther, S.; Dorfmüller, P.; Perros, F.; Girerd, B.; Garcia, G.; Jaïs, X.; Savale, L.; Artaud-Macari, E.; Price, L.C.; Humbert, M.; Simonneau, G.; Sitbon, O. Pulmonary arterial hypertension. Orphanet J. Rare Dis., 2013, 8(1), 97-97.
[http://dx.doi.org/10.1186/1750-1172-8-97] [PMID: 23829793]
[5]
Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J., 2019, 531801913
[http://dx.doi.org/10.1183/13993003.01913-2018]
[6]
Sommer, N.; Ghofrani, H.A.; Pak, O.; Bonnet, S.; Provencher, S. Current and future treatments of pulmonary arterial hypertension. Br. J. Pharmacol., 2021, 178(1), 6-30.
[http://dx.doi.org/10.1111/bph.15016] [PMID: 32034759]
[7]
Condon, D.F.; Nickel, N.P.; Anderson, R.; Mirza, S.; de Jesus Perez, V.A. The 6th world symposium on pulmonary hypertension: What’s old is new. F1000Res., 2019.
[8]
Rich, J.D.; Rich, S. Clinical diagnosis of pulmonary hypertension. Circulation, 2014, 130, 1820-1830.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.006971]
[9]
Stringham, R.; Shah, N.R. Pulmonary arterial hypertension: An update on diagnosis and treatment. Am. Fam. Physician, 2010, 82(4), 370-377.
[10]
Bazan, I.S.; Fares, W.H. Pulmonary hypertension: Diagnostic andtherapeutic challenges. Therapeutics and Clinical Risk Management. Dove Medical Press Ltd., 2015, 11, 1221-1233.
[11]
Lan, N.; Massam, B.; Kulkarni, S.; Lang, C. Pulmonary arterial hypertension: Pathophysiology and treatment. Diseases, 2018, 6(2), 38-38.
[http://dx.doi.org/10.3390/diseases6020038] [PMID: 29772649]
[12]
Sahay, S. Evaluation and classification of pulmonary arterial hypertension. J. Thorac. Dis., 2019, 11, S1789-S1799.
[http://dx.doi.org/10.21037/jtd.2019.08.54]
[13]
Bisserier, M.; Janostiak, R.; Lezoualc’h, F.; Hadri, L. Targeting epigenetic mechanisms as an emerging therapeutic strategy in pulmonary hypertension disease. Vascul. Biol., 2020, 2(1), R17-R34.
[http://dx.doi.org/10.1530/VB-19-0030] [PMID: 32161845]
[14]
Bisserier, M.; Pradhan, N.; Hadri, L. Current and emerging therapeutic approaches to pulmonary hypertension. Reviews in Cardiovascular Medicine; IMR Press Limited, 2020, 21, pp. 163-179.
[15]
Gerthoffer, W. Epigenetic targets for oligonucleotide therapies of pulmonary arterial hypertension. Int. J. Mol. Sci., 2020, 21, pp. 1-16.
[http://dx.doi.org/10.3390/ijms21239222]
[16]
Kocken, J.M.M.; da Costa, M.P.A. Epigenetic regulation of pulmonary arterial hypertension-induced vascular and right ventricular remodeling: New opportunities?Int J Mol Sci. MDPI AG, 2020, 21, pp. 1-26.
[http://dx.doi.org/10.3390/ijms21238901]
[17]
Levy, E.; Spahis, S.; Bigras, J.L.; Delvin, E.; Borys, J.M. The epigenetic machinery in vascular dysfunction and hypertension. Curr. Hypertens. Rep., 2017, 19(6), 52.
[http://dx.doi.org/10.1007/s11906-017-0745-y]
[18]
Soler-Botija, C.; Gálvez-Montón, C.; Bayés-Genís, A. Epigenetic biomarkers in cardiovascular diseases. Front. Genet., 2019, 10, 950.
[http://dx.doi.org/10.3389/fgene.2019.00950]
[19]
Halusková, J. Epigenetic Studies in Human Diseases. Folia Biol, 2014, 56, pp. (3)83-96.
[20]
Kumar, S.; Singh, A.K.; Mohapatra, T. Epigenetics: History, present status and future perspective. Indian J. Genet. Plant Breed., 2017, 77(4), 445-463.
[http://dx.doi.org/10.5958/0975-6906.2017.00061.X]
[21]
Inbar-Feigenberg, M.; Choufani, S.; Butcher, D.T.; Roifman, M.; Weksberg, R. Basic concepts of epigenetics. Fertil. Steril., 2013, 99(3), 607-615.
[http://dx.doi.org/10.1016/j.fertnstert.2013.01.117] [PMID: 23357459]
[22]
Simó-Riudalbas, L.; Esteller, M. Targeting the histone orthography of cancer: drugs for writers, erasers and readers. Br. J. Pharmacol., 2015, 172(11), 2716-2732.
[http://dx.doi.org/10.1111/bph.12844]
[23]
Dong, G.; Chen, W.; Wang, X.; Yang, X.; Xu, T.; Wang, P.; Zhang, W.; Rao, Y.; Miao, C.; Sheng, C. Small molecule inhibitors simultaneously targeting cancer metabolism and epigenetics: Discovery of novel nicotinamide phosphoribosyltransferase (NAMPT) and Histone Deacetylase (HDAC) Dual inhibitors. J. Med. Chem., 2017, 60(19), 7965-7983.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00467] [PMID: 28885834]
[24]
Gillette, T.G.; Hill, J.A. Readers, writers, and erasers: Chromatin as the whiteboard of heart disease. Circulation Research; Lippincott Williams and Wilkins, 2015, Vol. 116, pp. 1245-1253.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303630]
[25]
Xiao, W.; Zhou, Q.; Wen, X.; Wang, R.; Liu, R.; Wang, T.; Shi, J.; Hu, Y.; Hou, J. Small-molecule inhibitors overcome epigenetic reprogramming for cancer therapy. Front. Pharmacol., 2021, 12702360
[http://dx.doi.org/10.3389/fphar.2021.702360]
[26]
Yuan, Z.D.; Zhu, W.N.; Liu, K.Z.; Huang, Z.P.; Han, Y.C. Small molecule epigenetic modulators in pure chemical cell fate conversion. Stem Cells International; Hindawi Limited, 2020, Vol. 2020, .
[http://dx.doi.org/10.1155/2020/8890917]
[27]
Dugan, J.; Pollyea, D. Enasidenib for the treatment of acute myeloid leukemia. Expert Rev. Clin. Pharmacol., 2018, 11(8), 755-760.
[http://dx.doi.org/10.1080/17512433.2018.1477585] [PMID: 29770715]
[28]
Norsworthy, K.J.; Luo, L.; Hsu, V.; Gudi, R.; Dorff, S.E.; Przepiorka, D.; Deisseroth, A.; Shen, Y.L.; Sheth, C.M.; Charlab, R.; Williams, G.M.; Goldberg, K.B.; Farrell, A.T.; Pazdur, R. FDA approval summary: Ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutation. Clin. Cancer Res., 2019, 25(11), 3205-3209.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3749] [PMID: 30692099]
[29]
Weiss, M.C.; Agulnik, M. Tazemetostat as a treatment for epithelioid sarcoma. Expert Opin. Orphan Drugs, 2020, 8(9), 311-315.
[http://dx.doi.org/10.1080/21678707.2020.1809377]
[30]
Tchurikov, N.A. Molecular mechanisms of epigenetics. Biochemistry, 2005, 70(4), 406-423.
[http://dx.doi.org/10.1007/s10541-005-0131-2]
[31]
Condon, D.; Agarwal, S.; Chakraborty, A.; de Jesus Perez, V.A. The cancer hypothesis of pulmonary arterial hypertension: the next ten years. Am. J. Physiol. Lung Cell. Mol. Physiol., 2020, 318(6), L1138-L1139.
[http://dx.doi.org/10.1152/ajplung.00057.2020] [PMID: 32186209]
[32]
Ballout, F.A.; Manshad, A.S.; Okwuosa, T.M. Pulmonary hypertension and cancer: Etiology, diagnosis, and management. Curr. Treat. Options Cardiovasc. Med., 2017, 19(6), 44.
[http://dx.doi.org/10.1007/s11936-017-0543-5] [PMID: 28466120]
[33]
Huston, J.H.; Ryan, J.J. The emerging role of epigenetics in pulmonary arterial hypertension: An important avenue for clinical trials (2015 Grover Conference Series). Pulm. Circ., 2016, 6(3), 274-284.
[http://dx.doi.org/10.1086/687765] [PMID: 27683604]
[34]
Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1), 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[35]
Ravichandran, M.; Jurkowska, R.Z.; Jurkowski, T.P. Target specificity of mammalian DNA methylation and demethylation machinery. Organic and Biomolecular Chemistry. Royal Society of Chemistry, 2018, Vol. 16, pp. 1419-1435.
[http://dx.doi.org/10.1039/C7OB02574B]
[36]
Dhar, G.A.; Saha, S.; Mitra, P.; Nag, C.R. DNA methylation and regulation of gene expression: Guardian of our health. Nucleus, 2021, 64(3), 259-270.
[http://dx.doi.org/10.1007/s13237-021-00367-y]
[37]
Jin, Z.; Liu, Y. DNA methylation in human diseases. Genes Dis., 2018, 5(1), 1-8.
[http://dx.doi.org/10.1016/j.gendis.2018.01.002]
[38]
Jin, B.; Li, Y.; Robertson, K.D. DNA methylation: Superior or subordinate in the epigenetic hierarchy? Genes Cancer, 2011, 2(6), 607-617.
[http://dx.doi.org/10.1177/1947601910393957] [PMID: 21941617]
[39]
Feng, Y.; Chen, J.J.; Xie, N.B.; Ding, J.H.; You, X.J.; Tao, W.B.; Zhang, X.; Yi, C.; Zhou, X.; Yuan, B.F.; Feng, Y.Q. Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation. Chem. Sci., 2021, 12(34), 11322-11329.
[http://dx.doi.org/10.1039/D1SC02161C] [PMID: 34567494]
[40]
Ismail, J.N.; Ghannam, M.; Al Outa, A.; Frey, F.; Shirinian, M. Ten-eleven translocation proteins and their role beyond DNA demethylation-what we can learn from the fly. Epigenetics, 2020, 15(11), 1139-1150.
[http://dx.doi.org/10.1080/15592294.2020.1767323] [PMID: 32419604]
[41]
Archer, S.L.; Marsboom, G.; Kim, G.H.; Zhang, H.J.; Toth, P.T.; Svensson, E.C.; Dyck, J.R.B.; Gomberg-Maitland, M.; Thébaud, B.; Husain, A.N.; Cipriani, N.; Rehman, J. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: A basis for excessive cell proliferation and a new therapeutic target. Circulation, 2010, 121(24), 2661-2671.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.916098] [PMID: 20529999]
[42]
Kim, G.H.; Ryan, J.J.; Marsboom, G.; Archer, S.L. Epigenetic mechanisms of pulmonary hypertension. Pulm. Circ., 2011, 1(3), 347-356.
[http://dx.doi.org/10.4103/2045-8932.87300] [PMID: 22140624]
[43]
Xu, X.F.; Cheng, F.; Du, L.Z. Epigenetic regulation of pulmonary arterial hypertension. Hypertens. Res., 2011, 34(9), 981-986.
[http://dx.doi.org/10.1038/hr.2011.79] [PMID: 21677658]
[44]
Kim, G.H.; Ryan, J.J.; Archer, S.L. The role of redox signaling in epigenetics and cardiovascular disease. Antioxid. Redox Signal., 2013, 18(15), 1920-1936.
[http://dx.doi.org/10.1089/ars.2012.4926] [PMID: 23480168]
[45]
Chelladurai, P.; Seeger, W.; Pullamsetti, S.S. Epigenetic mechanisms in pulmonary arterial hypertension: The need for global perspectives. Eur. Respir. Rev., 2016, 25(140), 135-140.
[http://dx.doi.org/10.1183/16000617.0036-2016] [PMID: 27246590]
[46]
Archer, S.L. Acquired mitochondrial abnormalities, including epigenetic inhibition of superoxide dismutase 2, in pulmonary hypertension and cancer: Therapeutic implications. Adv. Exp. Med. Biol., 2016, 903, 29-53.
[http://dx.doi.org/10.1007/978-1-4899-7678-9_3] [PMID: 27343087]
[47]
Li, N.; Zhu, L.; Zhu, C.; Zhou, H.; Zheng, D.; Xu, G.; Shi, H.; Gao, J.; Li, A.J.; Wang, Z.; Sun, L.; Li, X.; Shao, G. BMPR2 promoter methylation and its expression in valvular heart disease complicated with pulmonary artery hypertension. Aging, 2021, 13(22), 24580-24604.
[http://dx.doi.org/10.18632/aging.203690] [PMID: 34793329]
[48]
Bisserier, M.; Mathiyalagan, P.; Zhang, S.; Elmastour, F.; Dorfmüller, P.; Humbert, M.; David, G.; Tarzami, S.; Weber, T.; Perros, F.; Sassi, Y.; Sahoo, S.; Hadri, L. Regulation of the methylation and expression levels of the bmpr2 gene by sin3a as a novel therapeutic mechanism in pulmonary arterial hypertension. Circulation, 2021, 144(1), 52-73.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047978] [PMID: 34078089]
[49]
Potus, F.; Pauciulo, M.W.; Cook, E.K.; Zhu, N.; Hsieh, A.; Welch, C.L.; Shen, Y.; Tian, L.; Lima, P.; Mewburn, J.; D’Arsigny, C.L.; Lutz, K.A.; Coleman, A.W.; Damico, R.; Snetsinger, B.; Martin, A.Y.; Hassoun, P.M.; Nichols, W.C.; Chung, W.K.; Rauh, M.J.; Archer, S.L. Novel mutations and decreased expression of the epigenetic regulator TET2 in pulmonary arterial hypertension. Circulation, 2020, 141(24), 1986-2000.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044320] [PMID: 32192357]
[50]
Thenappan, T.; Ormiston, M.L.; Ryan, J.J.; Archer, S.L. Pulmonary arterial hypertension: Pathogenesis and clinical management. BMJ, 2018, 360, j5492.
[http://dx.doi.org/10.1136/bmj.j5492] [PMID: 29540357]
[51]
Liu, D.; Yan, Y.; Chen, J.W.; Yuan, P.; Wang, X.J.; Jiang, R.; Wang, L.; Zhao, Q.H.; Wu, W.H.; Simonneau, G.; Qu, J.M.; Jing, Z.C. Hypermethylation of BMPR2 promoter occurs in patients with heritable pulmonary arterial hypertension and inhibits BMPR2 expression. Am. J. Respir. Crit. Care Med., 2017, 196(7), 925-928.
[http://dx.doi.org/10.1164/rccm.201611-2273LE] [PMID: 28170297]
[52]
Liu, D.; Morrell, N.W. Genetics and the molecular pathogenesis of pulmonary arterial hypertension. Curr. Hypertens. Rep., 2013, 15(6), 632-637.
[http://dx.doi.org/10.1007/s11906-013-0393-9] [PMID: 24078385]
[53]
Aldred, M.A.; Comhair, S.A.; Varella-Garcia, M.; Asosingh, K.; Xu, W.; Noon, G.P.; Thistlethwaite, P.A.; Tuder, R.M.; Erzurum, S.C.; Geraci, M.W.; Coldren, C.D. Somatic chromosome abnormalities in the lungs of patients with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med., 2010, 182(9), 1153-1160.
[http://dx.doi.org/10.1164/rccm.201003-0491OC] [PMID: 20581168]
[54]
Wang, Y.; Kahaleh, B. Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J. Cell. Mol. Med., 2013, 17(10), 1291-1299.
[http://dx.doi.org/10.1111/jcmm.12105] [PMID: 23859708]
[55]
Andruska, A.; Spiekerkoetter, E. Consequences of BMPR2 deficiency in the pulmonary vasculature and beyond: Contributions to pulmonary arterial hypertension. Int. J. Mol. Sci., 2018, 19(9), 2499.
[http://dx.doi.org/10.3390/ijms19092499] [PMID: 30149506]
[56]
Xu, X.F.; Ma, X.L.; Shen, Z.; Wu, X.L.; Cheng, F.; Du, L.Z. Epigenetic regulation of the endothelial nitric oxide synthase gene in persistent pulmonary hypertension of the newborn rat. J. Hypertens., 2010, 28(11), 2227-2235.
[http://dx.doi.org/10.1097/HJH.0b013e32833e08f1] [PMID: 20724942]
[57]
Rimoldi, S.; Sartori, C.; Rexhaj, E.; Cerny, D.; Von, A.; Soria, R.; Germond, M.; Allemann, Y.; Scherrer, U. Vascular dysfunction in children conceived by assisted reproductive technologies: underlying mechanisms and future implications. Swiss Med. Wkly., 2014, 144w13973
[http://dx.doi.org/10.4414/smw.2014.13973] [PMID: 24964004]
[58]
Ke, X.; Johnson, H.; Jing, X.; Michalkiewicz, T.; Huang, Y.W.; Lane, R.H.; Konduri, G.G. Persistent pulmonary hypertension alters the epigenetic characteristics of endothelial nitric oxide synthase gene in pulmonary artery endothelial cells in a fetal lamb model. Physiol. Genomics, 2018, 50(10), 828-836.
[http://dx.doi.org/10.1152/physiolgenomics.00047.2018] [PMID: 30004838]
[59]
Sidoli, S.; Cheng, L.; Jensen, O.N. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. J. Proteomics, 2012, 75(12), 3419-3433.
[http://dx.doi.org/10.1016/j.jprot.2011.12.029] [PMID: 22234360]
[60]
Chelladurai, P.; Boucherat, O.; Stenmark, K.; Kracht, M.; Seeger, W.; Bauer, U.M.; Bonnet, S.; Pullamsetti, S.S. Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. Br. J. Pharmacol., 2021, 178(1), 54-71.
[http://dx.doi.org/10.1111/bph.14932] [PMID: 31749139]
[61]
Park, S.Y.; Kim, J.S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med., 2020, 52(2), 204-212.
[http://dx.doi.org/10.1038/s12276-020-0382-4] [PMID: 32071378]
[62]
Song, Y.; Wang, R.; Li, L.W.; Liu, X.; Wang, Y.F.; Wang, Q.X.; Zhang, Q. Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer. Int. J. Oncol., 2019, 54(1), 77-86.
[PMID: 30431069]
[63]
Messier, T.L.; Gordon, J.A.R.; Boyd, J.R.; Tye, C.E.; Browne, G.; Stein, J.L.; Lian, J.B.; Stein, G.S. Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes. Oncotarget, 2016, 7(5), 5094-5109.
[http://dx.doi.org/10.18632/oncotarget.6922] [PMID: 26783963]
[64]
Pasini, D.; Malatesta, M.; Jung, H.R.; Walfridsson, J.; Willer, A.; Olsson, L.; Skotte, J.; Wutz, A.; Porse, B.; Jensen, O.N.; Helin, K. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res., 2010, 38(15), 4958-4969.
[http://dx.doi.org/10.1093/nar/gkq244] [PMID: 20385584]
[65]
Zhang, K.; Yau, P.M.; Chandrasekhar, B.; New, R.; Kondrat, R.; Imai, B.S.; Bradbury, M.E. Differentiation between peptides containing acetylated or tri-methylated lysines by mass spectrometry: An application for determining lysine 9 acetylation and methylation of histone H3. Proteomics, 2004, 4(1), 1-10.
[http://dx.doi.org/10.1002/pmic.200300503] [PMID: 14730666]
[66]
Simithy, J.; Sidoli, S.; Yuan, Z.F.; Coradin, M.; Bhanu, N.V.; Marchione, D.M.; Klein, B.J.; Bazilevsky, G.A.; McCullough, C.E.; Magin, R.S.; Kutateladze, T.G.; Snyder, N.W.; Marmorstein, R.; Garcia, B.A. Characterization of histone acylations links chromatin modifications with metabolism. Nat. Commun., 2017, 8(1), 1141.
[http://dx.doi.org/10.1038/s41467-017-01384-9] [PMID: 29070843]
[67]
Allfrey, V.G.; Faulkner, R.; Mirsky, A.E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci., 1964, 51(5), 786-794.
[http://dx.doi.org/10.1073/pnas.51.5.786] [PMID: 14172992]
[68]
DesJarlais, R.; Tummino, P.J. Role of histone-modifying enzymes and their complexes in regulation of chromatin biology. Biochemistry, 2016, 55(11), 1584-1599.
[http://dx.doi.org/10.1021/acs.biochem.5b01210] [PMID: 26745824]
[69]
Kimura, A.; Matsubara, K.; Horikoshi, M. A decade of histone acetylation: Marking eukaryotic chromosomes with specific codes. J. Biochem., 2005, 138(6), 647-662.
[http://dx.doi.org/10.1093/jb/mvi184] [PMID: 16428293]
[70]
Fukuda, H.; Sano, N.; Muto, S.; Horikoshi, M. Simple histone acetylation plays a complex role in the regulation of gene expression. Brief. Funct. Genomics Proteomics, 2006, 5(3), 190-208.
[http://dx.doi.org/10.1093/bfgp/ell032] [PMID: 16980317]
[71]
Choi, J.K.; Howe, L.J. Histone acetylation: Truth of consequences?This paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting - Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem. Cell Biol., 2009, 87(1), 139-150.
[http://dx.doi.org/10.1139/O08-112] [PMID: 19234530]
[72]
Emanuele, M.; Costa, S.; Ragusa, M.A.; Gianguzza, F. Chromatin dynamics of the developmentally regulatedP. lividus neural alpha tubulin gene. Int. J. Dev. Biol., 2011, 55(6), 591-596.
[http://dx.doi.org/10.1387/ijdb.103264me] [PMID: 21948706]
[73]
Verdin, E.; Ott, M. 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol., 2015, 16(4), 258-264.
[http://dx.doi.org/10.1038/nrm3931] [PMID: 25549891]
[74]
Rezai-Zadeh, N.; Tsai, S.C.; Wen, Y.D.; Yao, Y.L.; Yang, W.M.; Seto, E. Histone deacetylases: Purification of the enzymes, substrates, and assay conditions. Methods Enzymol., 2003, 377, 167-179.
[http://dx.doi.org/10.1016/S0076-6879(03)77009-8] [PMID: 14979024]
[75]
Mottet, D.; Castronovo, V. Histone deacetylases: Target enzymes for cancer therapy. Clin. Exp. Metastasis, 2008, 25(2), 183-189.
[http://dx.doi.org/10.1007/s10585-007-9131-5] [PMID: 18058245]
[76]
Cavasin, M.A.; Demos-Davies, K.; Horn, T.R.; Walker, L.A.; Lemon, D.D.; Birdsey, N.; Weiser-Evans, M.C.M.; Harral, J.; Irwin, D.C.; Anwar, A.; Yeager, M.E.; Li, M.; Watson, P.A.; Nemenoff, R.A.; Buttrick, P.M.; Stenmark, K.R.; McKinsey, T.A. Selective class I histone deacetylase inhibition suppresses hypoxia-induced cardiopulmonary remodeling through an antiproliferative mechanism. Circ. Res., 2012, 110(5), 739-748.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.258426] [PMID: 22282194]
[77]
Yang, Q.; Lu, Z.; Ramchandran, R.; Longo, L.D.; Raj, J.U. Pulmonary artery smooth muscle cell proliferation and migration in fetal lambs acclimatized to high-altitude long-term hypoxia: Role of histone acetylation. Am. J. Physiol. Lung Cell. Mol. Physiol., 2012, 303(11), L1001-L1010.
[http://dx.doi.org/10.1152/ajplung.00092.2012] [PMID: 23043075]
[78]
Zhao, L.; Chen, C.N.; Hajji, N.; Oliver, E.; Cotroneo, E.; Wharton, J.; Wang, D.; Li, M.; McKinsey, T.A.; Stenmark, K.R.; Wilkins, M.R. Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation, 2012, 126(4), 455-467.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.103176] [PMID: 22711276]
[79]
Yang, Q.; Dahl, M.J.; Albertine, K.H.; Ramchandran, R.; Sun, M.; Raj, J.U. Role of histone deacetylases in regulation of phenotype of ovine newborn pulmonary arterial smooth muscle cells. Cell Prolif., 2013, 46(6), 654-664.
[http://dx.doi.org/10.1111/cpr.12076] [PMID: 24460719]
[80]
De Raaf, M.A.; Hussaini, A.A.; Gomez-Arroyo, J.G.; Kraskaukas, D.; Farkas, D.; Happé, C.; Voelkel, N.F.; Bogaard, H.J. Histone deacetylase inhibition with trichostatin A does not reverse severe angioproliferative pulmonary hypertension in rats (2013 Grover Conference series). Pulm. Circ., 2014, 4(2), 1-7.
[http://dx.doi.org/10.1086/675986] [PMID: 25006442]
[81]
Kim, J.; Hwangbo, C.; Hu, X.; Kang, Y.; Papangeli, I.; Mehrotra, D.; Park, H.; Ju, H.; McLean, D.L.; Comhair, S.A.; Erzurum, S.C.; Chun, H.J. Restoration of impaired endothelial myocyte enhancer factor 2 function rescues pulmonary arterial hypertension. Circulation, 2015, 131(2), 190-199.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013339] [PMID: 25336633]
[82]
Yang, Q.; Sun, M.; Ramchandran, R.; Raj, J.U. IGF-1 signaling in neonatal hypoxia-induced pulmonary hypertension: Role of epigenetic regulation. Vascul. Pharmacol., 2015, 73, 20-31.
[http://dx.doi.org/10.1016/j.vph.2015.04.005] [PMID: 25921925]
[83]
Chen, F.; Li, X.; Aquadro, E.; Haigh, S.; Zhou, J.; Stepp, D.W.; Weintraub, N.L.; Barman, S.A.; Fulton, D.J.R. Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension. Free Radic. Biol. Med., 2016, 99, 167-178.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.08.003] [PMID: 27498117]
[84]
Nozik-Grayck, E.; Woods, C.; Stearman, R.S.; Venkataraman, S.; Ferguson, B.S.; Swain, K.; Bowler, R.P.; Geraci, M.W.; Ihida-Stansbury, K.; Stenmark, K.R.; McKinsey, T.A.; Domann, F.E. Histone deacetylation contributes to low extracellular superoxide dismutase expression in human idiopathic pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 311(1), L124-L134.
[http://dx.doi.org/10.1152/ajplung.00263.2015] [PMID: 27233998]
[85]
Kim, H.J.; Bae, S.C. Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res., 2011, 3(2), 166-179.
[PMID: 21416059]
[86]
Chelladurai, P.; Dabral, S.; Basineni, S.R.; Chen, C.N.; Schmoranzer, M.; Bender, N.; Feld, C.; Nötzold, R.R.; Dobreva, G.; Wilhelm, J.; Jungblut, B.; Zhao, L.; Bauer, U.M.; Seeger, W.; Pullamsetti, S.S. Isoform-specific characterization of class I histone deacetylases and their therapeutic modulation in pulmonary hypertension. Sci. Rep., 2020, 10(1), 12864.
[http://dx.doi.org/10.1038/s41598-020-69737-x] [PMID: 32733053]
[87]
Chaturvedi, P.; Kalani, A.; Givvimani, S.; Kamat, P.K.; Familtseva, A.; Tyagi, S.C. Differential regulation of DNA methylation versus histone acetylation in cardiomyocytes during HHcy in vitro and in vivo: An epigenetic mechanism. Physiol. Genomics, 2014, 46(7), 245-255.
[http://dx.doi.org/10.1152/physiolgenomics.00168.2013] [PMID: 24495916]
[88]
Huang, P.H.; Plass, C.; Chen, C.S. Effects of histone deacetylase inhibitors on modulating h3k4 methylation marks - a novel cross-talk mechanism between histone-modifying enzymes. Mol. Cell. Pharmacol., 2011, 3(2), 39-43.
[PMID: 22468166]
[89]
Feng, Y.; Wang, J.; Asher, S.; Hoang, L.; Guardiani, C.; Ivanov, I.; Zheng, Y.G. Histone H4 acetylation differentially modulates arginine methylation by an in Cis mechanism. J. Biol. Chem., 2011, 286(23), 20323-20334.
[http://dx.doi.org/10.1074/jbc.M110.207258] [PMID: 21502321]
[90]
Guo, H.B.; Guo, H. Mechanism of histone methylation catalyzed by protein lysine methyltransferase SET7/9 and origin of product specificity. Proc. Natl. Acad. Sci., 2007, 104(21), 8797-8802.
[http://dx.doi.org/10.1073/pnas.0702981104] [PMID: 17517655]
[91]
Zhang, X.; Bruice, T.C. Mechanism of product specificity of AdoMet methylation catalyzed by lysine methyltransferases: transcriptional factor p53 methylation by histone lysine methyltransferase SET7/9. Biochemistry, 2008, 47(9), 2743-2748.
[http://dx.doi.org/10.1021/bi702370p] [PMID: 18260647]
[92]
Milutinovic, S.; Brown, S.E.; Zhuang, Q.; Szyf, M. DNA methyltransferase 1 knock down induces gene expression by a mechanism independent of DNA methylation and histone deacetylation. J. Biol. Chem., 2004, 279(27), 27915-27927.
[http://dx.doi.org/10.1074/jbc.M312823200] [PMID: 15087453]
[93]
Lorincz, M.C.; Schübeler, D.; Goeke, S.C.; Walters, M.; Groudine, M.; Martin, D.I.K. Dynamic analysis of proviral induction and De Novo methylation: Implications for a histone deacetylase-independent, methylation density-dependent mechanism of transcriptional repression. Mol. Cell. Biol., 2000, 20(3), 842-850.
[http://dx.doi.org/10.1128/MCB.20.3.842-850.2000] [PMID: 10629041]
[94]
Tian, X.; Fang, J. Current perspectives on histone demethylases. Acta Biochim. Biophys. Sin., 2007, 39(2), 81-88.
[http://dx.doi.org/10.1111/j.1745-7270.2007.00272.x] [PMID: 17277881]
[95]
Bryk, M.; Briggs, S.D.; Strahl, B.D.; Curcio, M.J.; Allis, C.D.; Winston, F. Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Curr. Biol., 2002, 12(2), 165-170.
[http://dx.doi.org/10.1016/S0960-9822(01)00652-2] [PMID: 11818070]
[96]
Kaniskan, H.Ü.; Konze, K.D.; Jin, J. Selective inhibitors of protein methyltransferases. J. Med. Chem., 2015, 58(4), 1596-1629.
[http://dx.doi.org/10.1021/jm501234a] [PMID: 25406853]
[97]
Kaniskan, H.Ü.; Jin, J. Recent progress in developing selective inhibitors of protein methyltransferases. Curr. Opin. Chem. Biol., 2017, 39, 100-108.
[http://dx.doi.org/10.1016/j.cbpa.2017.06.013] [PMID: 28662389]
[98]
Yap, K.L.; Zhou, M.M. Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry, 2011, 50(12), 1966-1980.
[http://dx.doi.org/10.1021/bi101885m] [PMID: 21288002]
[99]
Kondo, Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med. J., 2009, 50(4), 455-463.
[http://dx.doi.org/10.3349/ymj.2009.50.4.455] [PMID: 19718392]
[100]
Zhang, X.; Bernatavichute, Y.V.; Cokus, S.; Pellegrini, M.; Jacobsen, S.E. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol., 2009, 10(6), R62.
[http://dx.doi.org/10.1186/gb-2009-10-6-r62] [PMID: 19508735]
[101]
Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet., 2012, 13(5), 343-357.
[http://dx.doi.org/10.1038/nrg3173] [PMID: 22473383]
[102]
Ninova, M.; Fejes Tóth, K.; Aravin, A.A. The control of gene expression and cell identity by H3K9 trimethylation. Development, 2019, 146(19)dev181180
[http://dx.doi.org/10.1242/dev.181180] [PMID: 31540910]
[103]
Raiymbek, G.; An, S.; Khurana, N.; Gopinath, S.; Larkin, A.; Biswas, S.; Trievel, R.C.; Cho, U.; Ragunathan, K. An H3K9 methylation-dependent protein interaction regulates the non-enzymatic functions of a putative histone demethylase. eLife, 2020, 9e53155
[http://dx.doi.org/10.7554/eLife.53155] [PMID: 32195666]
[104]
Nichol, J.N.; Dupéré-Richer, D.; Ezponda, T.; Licht, J.D.; Miller, W.H., Jr H3K27 methylation. Adv. Cancer Res., 2016, 131, 59-95.
[http://dx.doi.org/10.1016/bs.acr.2016.05.001] [PMID: 27451124]
[105]
Wiles, E.T.; Selker, E.U. H3K27 methylation: A promiscuous repressive chromatin mark. Curr. Opin. Genet. Dev., 2017, 43, 31-37.
[http://dx.doi.org/10.1016/j.gde.2016.11.001] [PMID: 27940208]
[106]
Shinkai, Y.; Tachibana, M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev., 2011, 25(8), 781-788.
[http://dx.doi.org/10.1101/gad.2027411] [PMID: 21498567]
[107]
Rahman, Z.; Bazaz, M.R.; Devabattula, G.; Khan, M.A.; Godugu, C. Targeting H3K9 methyltransferase G9a and its related molecule GLP as a potential therapeutic strategy for cancer. J. Biochem. Mol. Toxicol., 2021, 35(3)e22674
[http://dx.doi.org/10.1002/jbt.22674] [PMID: 33283949]
[108]
Fritsch, L.; Robin, P.; Mathieu, J.R.R.; Souidi, M.; Hinaux, H.; Rougeulle, C.; Harel-Bellan, A.; Ameyar-Zazoua, M.; Ait-Si-Ali, S. A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol. Cell, 2010, 37(1), 46-56.
[http://dx.doi.org/10.1016/j.molcel.2009.12.017] [PMID: 20129054]
[109]
Dubuc, A.M.; Remke, M.; Korshunov, A.; Northcott, P.A.; Zhan, S.H.; Mendez-Lago, M.; Kool, M.; Jones, D.T.W.; Unterberger, A.; Morrissy, A.S.; Shih, D.; Peacock, J.; Ramaswamy, V.; Rolider, A.; Wang, X.; Witt, H.; Hielscher, T.; Hawkins, C.; Vibhakar, R.; Croul, S.; Rutka, J.T.; Weiss, W.A.; Jones, S.J.M.; Eberhart, C.G.; Marra, M.A.; Pfister, S.M.; Taylor, M.D. Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol., 2013, 125(3), 373-384.
[http://dx.doi.org/10.1007/s00401-012-1070-9] [PMID: 23184418]
[110]
Paolicchi, E.; Crea, F.; Farrar, W.L.; Green, J.E.; Danesi, R. Histone lysine demethylases in breast cancer. Crit. Rev. Oncol. Hematol., 2013, 86(2), 97-103.
[http://dx.doi.org/10.1016/j.critrevonc.2012.11.008] [PMID: 23266085]
[111]
Chen, Y.; Ren, B.; Yang, J.; Wang, H.; Yang, G.; Xu, R.; You, L.; Zhao, Y. The role of histone methylation in the development of digestive cancers: A potential direction for cancer management. Signal Transduct. Target. Ther., 2020, 5(1), 143.
[http://dx.doi.org/10.1038/s41392-020-00252-1] [PMID: 32747629]
[112]
Blanc, R.S.; Richard, S. Arginine methylation: The coming of age. Mol. Cell, 2017, 65(1), 8-24.
[http://dx.doi.org/10.1016/j.molcel.2016.11.003] [PMID: 28061334]
[113]
Li, H.; Zhang, R. Role of EZH2 in epithelial ovarian cancer: From biological insights to therapeutic target. Front. Oncol., 2013, 3, 47.
[http://dx.doi.org/10.3389/fonc.2013.00047] [PMID: 23494175]
[114]
Hoy, S.M. Tazemetostat: First approval. Drugs, 2020, 80(5), 513-521.
[http://dx.doi.org/10.1007/s40265-020-01288-x] [PMID: 32166598]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy